This invention relates generally to fluid sensing, and more particularly to detecting particles flowing in a fluid within a conduit.
The production of particles, such as sand, concerns operators of oil/gas wells because of the possible catastrophic consequences on production. (In this disclosure, “sand should be understood as referring to solid particulate matter as would be found in an oil/gas well, without particular regard to its size or diameter). The production of sand may start at relatively minor levels, but then may rapidly increase resulting in clogged well lines that effectively “fill in” the well and halt production. Sand can also contaminate the separator tanks, which typically connect to other producing wells. When this occurs, the production of all oil wells feeding into the separator tanks must be halted. Furthermore, once sand has entered into the completion equipment, corrosion and/or erosion is likely, resulting in significant economic loss.
Operators will thus labor to avoid the production of sand completely, or at least attempt to detect sand at minor levels so that evasive action can be taken. By detecting sand at minor levels the operator may, for example, lower the rate of production (which might allow the sand to fall back through the well), reduce or cease completely any water injection, or in a multiple well system, shut down the affected well completely while allowing the other wells to continue production. In short, the onset of sand production is often the limiting factor in maximizing the production for a given oil and gas well. Because of the serious consequences associated with unnoticed sand production as described above, operators apply conservative production limits, which reduce the maximum production rates. Thus, a large incentive exists in the industry for methods of detecting sand quickly and continuously.
A variety of methods currently exist in the oil and gas industry to detect sand production. One such method is to physically filter a sample of produced fluids to check for solid particles. One problem with this method is that by the time the fluid has risen to the top of the well, it may be too late as contamination of the separator tanks and completion equipment may have already occurred. Furthermore, the filtering of selected samples will not detect sand continuously but instead only at designated time intervals. Therefore, this method is unlikely to detect sand at the inception of production when sand may most likely be encountered.
A technique that continuously monitors for sand production senses the vibrations caused by sand impacting the pipe or conduit in which the sand flows. These devices, such as a ClampOn™ meter, clamp on to, the pipe, typically at an “elbow” or section of the pipe where the fluid has to take an abrupt turn, and use ultrasonic detection methods to listen for the impact vibration of the sand. However, these ultrasonic methods typically only provide a qualitative measurement and are plagued with the difficulties associated with ultra high frequency coupling into the pipe. Furthermore, the device must be located near an elbow, thus would be unsuitable in the straight or slightly bent piping networks downhole. Although they have the benefit of continuous monitoring, they may also detect the presence of sand too late as they are practically limited to the surface environment.
Real-time monitoring of sand production would be valuable anywhere in the production string, but is particularly valuable downhole, i.e., in conjunction with the production tube, where sand would initially be produced before flowing to the surface. With the emergence of fiber optic sensors, continuous monitoring of fluids in the downhole environment is possible. Fiber Optic sensors and flowmeters already monitor parameters such as fluid sound speed, fluid velocity, pressure, and temperature. Such fiber optic based flowmeters are disclosed in the following U.S. Patent Applications and Patents, and are hereby incorporated by reference in their entireties: Ser. No. 09/740,760, entitled “Apparatus for Sensing Fluid in a Pipe,” filed Nov. 29, 2000; Ser. No. 10/115,727, entitled “Flow Rate Measurements Using Unsteady Pressures,” filed Apr. 3, 2002; and U.S. Pat. No. 6,354,147, entitled “Fluid Parameter Measurement in Pipes Using Acoustic Pressures,” issued Mar. 12, 2002 [hereinafter referred to as the “flow meter references.”]. The ability to reliably monitor sand production downhole in real-time, as the above parameters are currently measured, would allow for more effective management of sand production problems. Furthermore, coupling this capability with the real-time measurement of these other parameters results in a powerful fiber optic flowmeter for managing and optimizing well productivity.
The art would therefore benefit from a sensor that can be placed at any location along the production pipe and that can detect sand particles at minimal levels, thus allowing the operator to respond in an appropriate and timely manner to the production of sand.
A method for detecting the presence of particles, such as sand, flowing within a fluid in a conduit is disclosed. At least two optical sensors measure pressure variations propagating through the fluid. These pressure variations are caused by acoustic noise generated by typical background noises of the well production environment and from sand particles flowing within the fluid. If the acoustics are sufficiently energetic with respect to other disturbances, the signals provided by the sensors will form an acoustic ridge on a kω plot, where each data point represents the power of the acoustic wave corresponding to that particular wave number and temporal frequency. A sand metric then compares the average power of the data points forming the acoustic ridge to the average power of the data points falling outside of the acoustic ridge. The result of this comparison allows one to determine whether particles are present within the fluid. Furthermore, the present invention can also determine whether the generated acoustic noise is occurring upstream or downstream of the sensors, thus giving an indication of the location of the particles in the fluid relative to the sensors.
The foregoing and other features and aspects of the present disclosure will be best understood with reference to the following detailed description of embodiments of the invention, when read in conjunction with the accompanying drawings, wherein:
In the disclosure that follows, in the interest of clarity, not all features of actual implementations are described in this disclosure. It will of course be appreciated that in the development of any such actual implementation, as in any such project, numerous engineering and design decisions must be made to achieve the developers' specific goals, e.g., compliance with mechanical and business related constraints, which will vary from one implementation to another. While attention must necessarily be paid to proper engineering and design practices for the environment in question, it should be appreciated that the development of a method to detect particles, such as sand, flowing within a conduit would nevertheless be a routine undertaking for those of skill in the art given the details provided by this disclosure, even if such development efforts are complex and time-consuming.
The present invention preferably uses a phased spatial array of optical sensors with Bragg gratings that measure acoustic pressure waves caused by sand particles propagating through the fluid. The sensors may measure the acoustic pressure waves by techniques disclosed in U.S. Pat. No. 6,354,147 entitled, “Fluid Parameter Measurement In Pipes Using Acoustic Pressures,” or by sonar processing techniques disclosed in U.S. patent application Ser. No. 09/997,221 entitled, “Method And System For Determining The Speed Of Sound In A Fluid Within A Conduit,” filed Nov. 28, 2001, both of which are incorporated herein by reference in their entirety. Furthermore, the optical sensors may comprise the acoustic sensing arrays found in the incorporated “flow meter references” listed above. By analyzing the power of the signals provided by the optical sensors through the use of a “sand metric,” the present invention enables one to determine the presence of particles, such as sand, within the fluid.
Acoustic “background” noise is present within the fluid flowing within the production pipe. Such acoustics arise from a variety of sources, and can be useful in the detection of parameters of the fluid. For example, as disclosed in the incorporated “flow meter references,” the naturally occurring pressure perturbations in the flowing fluid or fluid mixture can be used to determine, for example, the speed of sound, velocity, and other parameters of the fluid as previously mentioned. However, it has also been found that particles flowing within a fluid generate sufficient acoustic noise detectable over these other, more normal noises occurring within the fluid. Therefore, by analyzing the power of the acoustic signals, as will be discussed in more detail below, and by comparing that power with the power generated by other background noises, the presence of particles may be detected. A variety of interactions between the sand particles in a fluid cause this detectable acoustic noise, which occurs generally within the range of 100 Hz to 6,000 Hz, and more specifically, within the range of 200 Hz to 800 Hz. Mechanisms causing particle acoustic noise may include: (1) noise generated from the increased turbulence resulting from the fluid flowing over the multitude of particles, and (2) impact and scraping of the particles along the walls of the conduit.
Referring now to
As noted, the sensors 14, 16, 18 produce time varying pressure (Pxi(t)) signals indicative of the pressure of the acoustic disturbance detected at each of the sensors, in effect rendering information about pressure as a function of both location (x) and time (t), i.e., P(x,t). In a preferred embodiment useful in the detection of sand, these pressure signals are converted at processor 26 using well-known techniques into a kω plot, where k is wavenumber (2π/λ), and ω is the angular frequency (2πf). This conversion is affected at the processor 26 and preferably involves the use of well-known Fourier Transform algorithms. However, other spatial/temporal conversions (e.g., the generation of an xω plot, a kt plot, etc.) are also possible and useful with the disclosed technique, and “kω plot” should be understood as including these other types of spatial/temporal conversions. Because two variables (x and t) are transformed into two different variables (ω and k), a two-dimensional transform is utilized as one skilled in the art will understand. The well-known CAPON method, the MUSIC method, deterministic maximum likelihood methods, the minimum variance distortionless response method (MVDR) or MVDR beamformer methods, or other beamforming methods, are all preferred two-dimensional transforms useful in the present disclosure. The details of this conversion, the physics of wave propagation inside a pipe containing a fluid, and other considerations relevant to this technique, are disclosed in previously-incorporated U.S. patent application Ser. No. 09/997,221, and are not repeated here for simplicity.
Several different determinations about system acoustics can be made using the kω plot. First, it should be noticed that the accumulation of all of the acoustic events represented in the plot lie generally along straight lines, referred to as a “ridge” 430. This reflects the fact that all of the detected various acoustic events, each having its own unique frequency constitutions, travel through the fluid at approximately the same speed through the fluid, i.e., the fluid speed of sound. This fluid speed of sound, c, can therefore be calculated by computing a best fit line(s) 410, 420 within the ridge(s), and determining that line's slope, where ω=ck. (Dispersion, whereby the speed of sound in the fluid changes as a function of the frequency being transmitted, would cause this slope to deviate from linear, but significant dispersion should not occur with the frequencies of interest in a traditional oil/gas multiphase flow measurement, which ranges from approximately 10 Hz to approximately 2000 Hz). In short, the speed of sound in the fluid, c, can be calculated by using a kω plot, which can be useful in determining important parameters concerning the fluid being measured, such as its density or its phase fractions, as is noted in incorporated U.S. Pat. No. 6,354,147. (As noted in that patent and in the incorporated Ser. No. 09/997,221 application, pipe compliancy may need to be corrected for to determine the speed of sound in the fluid in an unbounded media, which might be a more useful parameter for certain applications). In an actual kω plot, a vertical ridge will also be apparent, but this is an artifact of various system noise and is not significant to determining the presence of sand or other system parameters. Hence, this vertical ridge is not shown in either
Second, and as shown in
Third, the kω plot allows for directionality of the acoustical disturbances to be determined. Referring to
The ridges 430 in the kω plot are assessed in the system by a computerized ridge identifier 27, as shown in
Referring still to
Sand creates acoustic phenomenon in the fluid which as noted travels at the speed of sound in the fluid, as do the other phenomena that are present or naturally occurring in the fluid. Accordingly, the acoustic phenomenon produced by the sand will lie along the same ridge 430 to which these other phenomena contribute. However, the presence of sand adds additional power to the acoustics in the fluid, and evidence suggests that it adds that power within a certain frequency range, e.g., between 200 to 800 Hz Accordingly, by assessing either or both of these effects, the presence of sand can be inferred. Moreover, and as facilitated by the use of fiber optic based flow meters, such detection can be performed continuously directly at the production pipe before sand reaches the top of the well.
As just noted, the presence of sand will add extra acoustic energy to the fluid flowing inside the pipe. Quantification of this energy, in one embodiment of the present invention, is performed by computation at analyzer 28 of a “sand metric” M that can be used to detect the presence of sand or to quantify the amount of sand present. In one embodiment, the sand metric computes the ratio of the average acoustical power along the ridge, Pacoustics, divided by the average acoustical power of some range outside of the ridge, Pnon-acoustics. To normalize this embodiment of the sand metric, this ratio is subtracted by one so that the metric equals zero when no ridge is present, and is greater than zero when a ridge is present, i.e.:
As one skilled in the art will realize, there are various ways by which the analyzer 28 can compute the power values to be used in the sand metric, and either average power values or summed power values may be used. In one embodiment, and referring again to
Once Pacoustic and Pnon-acoustic and the sand metric M are calculated, the metric can be correlated to the presence of sand in any number of ways. In this regard, it is useful to remember that phenomena other than sand can contribute to the energy present at the ridge on the kω plot. Therefore, experimentation with or calibration of the pipe system being monitored may be necessary to understand when the sand metric is indicating the presence or quantity of sand. For example, suppose that an array deployed in operation consistently yields a sand metric of 10. If this value is seen to increase to a value of 12, and if detection of other parameters in the system cannot explain the increase acoustic energy, it may be inferred or at least contemplated that sand is being produced. Further verification of the presence of sand can then be performed, including techniques again employing the use of a kω plot as will be explained shortly. Correlation of the sand metric with other known sand detection techniques can also help to verify that the increase in the sand metric in fact correlates to sand production. For example, the flow meter before deployment can be calibrated using test equipment, such as a flow loop, and sand metric values can be calculated when the system is sand-filled or sand-free. Correlating the sand contents of sampled production fluids with the sand metric can further assist in determining normal values or ranges for the sand metric which would correlate to the production of sand. Other equations may be used to provide a sand metric that compares the ridge power to non-ridge based power, and the equation listed above should only be understood as exemplary.
It has proven difficult to test the utility of the disclosed apparatus and method to detect sand in a test flow loop, as the noise involved in a flow loop test apparatus has been seen to overwhelm the acoustics of sand introduced into the loop. However, data suggestive of the utility of the disclosed embodiments to detect sand is evidenced by an experiment which was performed on an actual working test well. In this test, a fiber optic based flow meter such as that incorporated herein was placed onto a production tube and lowered approximately 22,000 feet into a well suspected of producing sand. The well was activated to pump produced fluids to the surface. Production was then stopped, but the flow meter continued operation to monitor the acoustics within the production pipe.
It is theorized that the results seen in
It is hypothesized that the settling of produced sand could be the only cause of these results. Accordingly, the disclosed technique offers additional advantages for the detection of sand. If produced sand is suspected or detected while the well is producing, either using the disclosed sand metric or by other techniques, production can be temporarily halted to see if sand falls past the meter, i.e., if “top based” acoustics are seen followed by “bottom based” acoustics. Alternatively or in addition, the “top based” acoustics could be assessed to see if they increase in power over time, or the “bottom based” acoustics could be asses to see if they decrease in power over time. Although this constitutes an undesirable brief interruption in production, the interruption is only temporary, and would be worth the delay if the presence of sand can be verified, which might allow production to be varied to reduce the possibility of the continued production of sand. In short, the disclosed apparatus and techniques for detecting the presence of sand has utility both when the well is operational and fluid is flowing, and when production has been halted. If multiple meters are arrayed (e.g., multiplexed in series) along the production pipe, this method of determining the presence of sand can be redundantly verified, as the operator can listen for sand falling past the first meter, then the second meter, and so on.
The above-referenced test relies on the force of gravity to pull sand downward into the well, wherein the falling sand creates acoustic disturbances that are detectable by the flow meter. Accordingly, the detection technique that this test illustrates will perform best on wells or conduits that are vertical, although this is not strictly necessary.
“Directionally detecting” the acoustic disturbances in the fluid that are caused by sand should be understood as not merely determining the mere presence of acoustic disturbances. Instead, this phrase should be understood as meaning not only that acoustic are detected, but that their source is understood with relation to the flow meter that detects the disturbances, i.e., as either above or below the meter. As noted herein, the ability of the disclosed apparatus and methods to employ directional detection of acoustic phenomenon allows added flexibility over prior art approaches to fluid acoustic detection that merely detects acoustics without knowledge of its source.
Furthermore, kω based processing applies temporal and spatial filtering techniques to increase the effective signal-to-noise ratio of sand generated acoustics, i.e., the disclosed method only considers the increase of acoustics propagating at the speed of sound of the fluid over a specific frequency range. Other signals with the sensor output such as electrical noise, vortical noise, impact noise propagating within the production tubing, are all effectively filtered out by the disclosed method.
It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those design alternatives which might have been specifically noted in this disclosure, may be made to the disclosed embodiment without departing from the spirit and scope of the invention as defined in the appended claims. For example, while particularly useful in detecting sand within a production pipe of an oil/gas well, the disclosed apparatus and method will have utility with respect to the detection of particulates in any pipe and in other industrial environments.
Number | Name | Date | Kind |
---|---|---|---|
3149492 | Weinberg | Sep 1964 | A |
3851521 | Ottenstein | Dec 1974 | A |
4080837 | Alexander | Mar 1978 | A |
4114439 | Fick | Sep 1978 | A |
4144768 | Andersson | Mar 1979 | A |
4159646 | Paulsen | Jul 1979 | A |
4164865 | Hall | Aug 1979 | A |
4236406 | Reed | Dec 1980 | A |
4275602 | Fujishiro | Jun 1981 | A |
4445389 | Potzick | May 1984 | A |
4499418 | Helms | Feb 1985 | A |
4515473 | Mermelstein | May 1985 | A |
4520320 | Potzick | May 1985 | A |
4546649 | Kantor | Oct 1985 | A |
4706501 | Atkinson | Nov 1987 | A |
4788852 | Martin | Dec 1988 | A |
4813270 | Baillie | Mar 1989 | A |
4862750 | Nice | Sep 1989 | A |
4864868 | Khalifa | Sep 1989 | A |
4884457 | Hatton | Dec 1989 | A |
4896540 | Shakkottai | Jan 1990 | A |
4932262 | Wlodarczyk | Jun 1990 | A |
4947127 | Helms | Aug 1990 | A |
4950883 | Glenn | Aug 1990 | A |
4976151 | Morishita | Dec 1990 | A |
4996419 | Morey | Feb 1991 | A |
5024099 | Lee | Jun 1991 | A |
5031460 | Kanenobu | Jul 1991 | A |
5040415 | Barkhoudarian | Aug 1991 | A |
5051922 | Toral | Sep 1991 | A |
5058437 | Chaumont. | Oct 1991 | A |
5083452 | Hope | Jan 1992 | A |
5099697 | Agar | Mar 1992 | A |
5115670 | Shen | May 1992 | A |
5152181 | Lew | Oct 1992 | A |
5207107 | Wolf | May 1993 | A |
5218197 | Carroll | Jun 1993 | A |
5317576 | Leonberger | May 1994 | A |
5321991 | Kalotay | Jun 1994 | A |
5347873 | Vander Heyden | Sep 1994 | A |
5361130 | Kersey | Nov 1994 | A |
5363342 | Layton | Nov 1994 | A |
5367911 | Jewell | Nov 1994 | A |
5372046 | Kleven | Dec 1994 | A |
5398542 | Vasbinder | Mar 1995 | A |
5401956 | Dunphy | Mar 1995 | A |
5426297 | Dunphy | Jun 1995 | A |
5440932 | Wareham | Aug 1995 | A |
5493390 | Varasi | Feb 1996 | A |
5493512 | Peube | Feb 1996 | A |
5513913 | Ball | May 1996 | A |
5564832 | Ball | Oct 1996 | A |
5576497 | Vignos | Nov 1996 | A |
5591922 | Segeral | Jan 1997 | A |
5597961 | Marrelli | Jan 1997 | A |
5639667 | Heslot | Jun 1997 | A |
5642098 | Santa Maria | Jun 1997 | A |
5644093 | Wright | Jul 1997 | A |
5654551 | Watt | Aug 1997 | A |
5670529 | Clarke | Sep 1997 | A |
5680489 | Kersey | Oct 1997 | A |
5689540 | Stephenson | Nov 1997 | A |
5708211 | Jepson | Jan 1998 | A |
5730219 | Tubel | Mar 1998 | A |
5732776 | Tubel | Mar 1998 | A |
5741980 | Hill | Apr 1998 | A |
5803167 | Bussear | Sep 1998 | A |
5804713 | Kluth | Sep 1998 | A |
5842347 | Kinder | Dec 1998 | A |
5845033 | Berthold | Dec 1998 | A |
5906238 | Carmody | May 1999 | A |
5907104 | Cage | May 1999 | A |
5908990 | Cummings | Jun 1999 | A |
5925821 | Bousquet | Jul 1999 | A |
5925879 | Hay | Jul 1999 | A |
5939643 | Oertel | Aug 1999 | A |
5956132 | Donzier | Sep 1999 | A |
5959547 | Tubel | Sep 1999 | A |
5963880 | Smith | Oct 1999 | A |
5975204 | Tubel | Nov 1999 | A |
5992519 | Ramakrishnan | Nov 1999 | A |
5996690 | Shaw | Dec 1999 | A |
6002985 | Stephenson | Dec 1999 | A |
6003383 | Zielinska | Dec 1999 | A |
6003385 | De Vanssay | Dec 1999 | A |
6009216 | Pruett | Dec 1999 | A |
6016702 | Maron | Jan 2000 | A |
6158288 | Smith | Dec 2000 | A |
6216532 | Stephenson | Apr 2001 | B1 |
6233374 | Ogle | May 2001 | B1 |
6279660 | Hay | Aug 2001 | B1 |
6354147 | Gysling | Mar 2002 | B1 |
6378357 | Han et al. | Apr 2002 | B1 |
6748811 | Iwanaga et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
19511234 | Dec 1995 | DE |
0684458 | May 1995 | EP |
2 357 868 | Jul 1976 | FR |
406082281 | Sep 1992 | JP |
WO 9314382 | Jul 1993 | WO |
WO 9604528 | Feb 1996 | WO |
WO 0000793 | Jan 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040182139 A1 | Sep 2004 | US |