Sand screen with active flow control and associated method of use

Information

  • Patent Grant
  • 6622794
  • Patent Number
    6,622,794
  • Date Filed
    Tuesday, January 22, 2002
    22 years ago
  • Date Issued
    Tuesday, September 23, 2003
    21 years ago
Abstract
Apparatus and methods are disclosed for actively controlling the flow of hydrocarbon fluids from a producing formation at the downhole sand screen. A preferred embodiment of the invention provides a fluid flow annulus within the production tube inside of the screen. In a first flow control configuration, fluid passing through the screen is required to flow along the annulus to find a flow aperture into an interior flow bore. A static flow control device within the annulus between the sand screen and a first flow aperture dissipates flow energy by forcing the flow through a restricted area that helically winds about the flow annulus. Dissipation of the flow energy increases the pressure reduction from the screen into the production bore and reduces the flow velocity. In a second flow control configuration, flow control structure within the flow annulus obstructs all flow along the annulus. A third flow control configuration removes all flow restrictions within the flow annulus.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the art of well completion methods and equipment for the production of hydrocarbon fluids. More particularly, the invention relates to methods and apparatus for downhole regulation of hydrocarbon fluid production rates.




2. Description of Related Art




Bottom hole well tools are exposed to extremely abrasive operating conditions. As hydrocarbon fluid is released from the naturally occurring in situ formation, sand, rock and other abrasive particles are drawn with it. In deeper wells where the in situ pressures are extremely high, the production pressure drop between the formation and the flow bore of the production tube is correspondingly high. Such high pressure differentials in the presence of a highly abrasive fluid rapidly erodes the production control tools. Fluid velocity through and over the tool surfaces, elements and apertures is an exponential function of the pressure differential drive. Hence, high pressure differentials translate to high fluid velocities. High velocity fluids entrained with abrasives translates to high rates of erosion, wear and failure.




Earth formation pressures and fluid production are not, however, fixed properties. Both of these properties change over time. Moreover, the changes are not necessarily linear or in predictable directions. The changes may be abrupt, irregular and/or fluctuating. In cases of an elongated production zone, often horizontal, the production properties may change in one section of the producing zone differently than those in another section of the same producing zone.




Although downhole tools for limiting the production rate of a production zone are known to the prior art, such tools have a fixed configuration. Production flow rate adjustments are usually made at the surface. Downhole flow rate adjustment is accomplished by removing the production tools from the well bore and replacing a first fixed flow rate tool with a second fixed flow rate tool of different capacity.




It is, therefore, an object of the present invention to provide active flow control, from the surface, over production from gravel pack installations through sand control screens down to an individual screen.




Another object of the invention is provision of means to regulate the inflow of fluids from a long, horizontal petroleum reservoir to maximize production.




Also an object of the present invention is provision of means to terminate production flow from a production screen or to divert flow from one screen to another within the screen assembly.




A further object of the invention is provision of means to adjust the production flow rate of a well.




SUMMARY OF THE INVENTION




These and other objects of the invention are served by a tool that is associated with a production sand screen to channel the screened production flow through a flow control zone. Within the flow control zone is a static flow control device that reduces the fluid pressure differential over an extended length of flow restrictive channel. At either end of the flow control device are transverse flow apertures disposed between the flow control zone and the internal flow bore of the primary production tube.




The apertures are flow controlled as either opened or closed completely. This operational set allows three flow states. When the apertures upstream of the flow control device are closed and those downstream are open, all production flow from the associated screen must pass through the flow control device. In doing so, the flow stream is required to follow a long, helical path. Traversal of the flow control device dissipates the pressure of state within the fluid thereby reducing the pressure differential across the production tool. The energy potential of the pressure is converted to heat.




When apertures upstream of the flow control device are open and those downstream are closed, production flow is shunted directly from the flow control zone into the internal flow bore of the primary production tube. This operational state permits the particular tool to run “open choke” but not necessarily all tools in the formation.




The third flow state closes both apertures to terminate all production flow from the associated screen.




A preferred embodiment of the invention provides a cylindrical tool mandrel within the internal bore of a production tube that forms an annular flow channel along the tube axis. Axially displaced from the screen inflow area, is a circumferential band of longitudinal stator columns that span radially across the flow channel annulus to funnel the annulus flow through gates between the stator columns. Further displaced axially along the flow channel annulus is a helically wound wall that also spans radially across the flow channel annulus. This helically wound wall is one embodiment of a static flow control device.




Two sets of flow apertures through the mandrel wall section link the annular flow channel with the internal bore of the production tube. A first aperture set is positioned axially displaced from the static flow control device opposite from the band of stator columns. A second aperture set is positioned axially displaced from the band of stator columns opposite from the flow control device. An axially slideable ring substantially encompasses the mandrel at an axial location adjacent to the stator columns opposite from the static flow control device. The ring is axially displaced by one or more hydraulic cylinders. From one annular edge of the ring projects a number of gate plugs. The number of plugs corresponds to the number of gates. The gate plugs overlie the second set of flow apertures at all positions of axial displacement but one.




At a first, axially stroked extreme position of the ring, the second flow aperture set is open to facilitate direct and unrestricted flow of production flow from the channel annulus into the internal bore.




At an intermediate axial position of the ring, the plugs close the gates between the stator columns thereby blocking flow to the first flow aperture set. Also at this intermediate setting, the gates block flow through the second set of apertures by their lapped, overlay location. Consequently, at the intermediate setting, no flow from the channel annulus is admitted into the inner bore.




At a second axial extreme position, the plugs are withdrawn from the gates to allow flow through the static flow control device and into the first set of flow apertures. Hoewever, at the second axial extreme position the plugs continue to block flow through the second set of flow apertures. Consequently, the flow stream is required to traverse the static flow control device to reach the inner production tube bore.











BRIEF DESCRIPTION OF THE DRAWINGS




The advantages and further aspects of the invention will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements through the several figures. Briefly:





FIG. 1

is an environmental schematic of the invention;





FIG. 2

is a cross-sectional view of the invention in a flow restrictive setting;





FIG. 3

is a cross-sectional view of the invention in a flow obstructing setting;





FIG. 4

is a cross-sectional view of the invention in a free-flow setting;





FIG. 5

is a plan view of the invention mandrel in the restrictive flow setting;





FIG. 6

is a plan view of the invention mandrel in a flow obstructing setting;





FIG. 7

is a plan view of the invention mandrel in a free-flow setting;





FIG. 8

is a solenoid valve controlled embodiment of the invention;





FIG. 9A

is a cross-sectional view of a special case solenoid valve pintle in a normal operating mode;





FIG. 9B

is a cross-sectional view of a special case solenoid valve pintle in a normal operating mode;





FIG. 10A

is a hydraulic control schematic in the hydraulic fluid flow blocking mode due to production flow temperature;





FIG. 10B

is a hydraulic control schematic in the hydraulic fluid flow open mode due to production flow temperature;





FIG. 11A

is a production valve control system responsive to a shape memory alloy driver to open a production flow transfer aperture;





FIG. 11B

is a production valve control system responsive to a shape memory alloy driver to close a production flow transfer aperture; and,





FIGS. 12A through 12D

illustrate the operational sequence of an automatic, thermally controlled valve pintle.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




With respect to the environmental schematic of

FIG. 1

, a production tube


10


is positioned within a wellbore casing


12


to provide a continuous flow conduit to the surface for a flow of fluids extracted from a subterranean earth formation. Along a formation fluid production zone, the casing is perforated by apertures


14


for facilitation of formation fluid flow into an outer production annulus


18


between the interior wall of the casing and the exterior wall of the production tube. Longitudinally, the production annulus


18


may be delimited by an outer packer


16


.




Below the outer packer


16


, the production tube


10


includes one or more sand screens


20


linked by flow control housings


21


. Internally of the screens and flow control housings is a flow control mandrel


22


. A flow control annulus


23


is accommodated between the interior walls of the flow control housings


21


and the exterior walls of the mandrel


22


. The continuity of the flow control annulus


23


may be interrupted between sand screens


20


by an inner packer


29


.




Referring now to the partial cross-section of FIG.


2


and the schematic plan of

FIG. 5

, it is seen that the wall of mandrel


22


is penetrated by two circumferential sets of flow apertures


24


and


26


. Between the apertures


24


and


26


, the outer mandrel surface is profiled by surfaces that extend radially out to juxtaposition with the interior surface of the housing thereby substantially confining all fluid flow along the flow control annulus


23


.




A first exterior profile on the flow control mandrel


22


is a circumferential band of substantially uniformly spaced stator columns


30


. Between the stator columns


30


are flow gates


32


. A second exterior profile on the flow control mandrel


22


is a static flow control device


28


comprising a helically wound channel between parallel walls.




Proximate of the first circumferential set of flow apertures


24


is a circumferential set of gate plugs


36


extending from one edge of a base ring


34


. The opposite base ring


34


edge is attached to one or more hydraulic, for example, struts


38


. Representatively, a strut


38


may comprise a cylinder


40


secured to the surface of mandrel


22


and a piston rod


41


secured to the opposite edge of the base ring


34


. The rod


41


may be extended axially from the cylinder


40


to axially reposition the base ring


34


and gate plugs


36


by manipulations of pressurized hydraulic fluid in one or two hydraulic fluid conduits


42


and


43


. Extensions of the conduits


42


and


43


to the surface enable these manipulations from the surface if required. Downhole hydraulic fluid power control may also be accomplished by numerous other means and methods known to the active practitioners of the art.




As may be observes from a comparison of

FIGS. 5

,


6


, and


7


, the rod


41


is stroked to provide the base ring


34


and projecting gate plugs


36


an intermediate position (

FIG. 6

) between two extreme positions (FIGS.


5


and


7


). At the

FIG. 5

position, production flow may travel along the control annulus


23


, around the gate plugs


36


, through the gates


32


between stator columns


30


, and along the helically wound flow channel of the static control device


28


into the apertures


26


. From the apertures


26


, the fluid enters the inner bore


11


of the production tube to be lifted or driven by expanding gas to the surface. To be noted from

FIG. 5

is the overlaid relationship of the apertures


24


by the gate plugs


36


thereby effectively blocking fluid flow into the apertures


24


.




When the gate plugs


36


are shifted to the intermediate position shown by

FIG. 6

, the plugs


36


fill the flow channel space


32


between the stator columns


30


thereby blocking flow into the static flow control device


28


. Consequently, no flow reaches the apertures


26


for flow into the inner bore


11


. Moreover, gate plugs


36


continue to overlie the aperture set


24


and block fluid flow therethrough.





FIG. 7

illustrates the alternative extreme position whereat the gate plugs


36


enter the gates


32


fully thereby continuing the blockage of flow into the apertures


26


. However, as the gate plugs


36


move deeper into the gates


32


, the apertures


24


are uncovered. At this arrangement, only a minimum of flow resistance is imposed as the production flow stream finds its way to the surface.




The alternative embodiment of the invention depicted by

FIG. 8

controls the opening and closing of apertures


24


and


26


with electrically actuated solenoid valves


44


and


46


. For unrestricted flow, valves


44


would be opened and valves


46


closed. For maximum flow resistance, Valves


44


would be closed and valves


46


opened to force the production flow through the static flow restriction device


28


. For zero flow, of course, both valves


44


and


46


are closed.




As a permutation of the

FIG. 8

embodiment,

FIGS. 9A and 9B

illustrate a solenoid valve


48


having an electrically energized winding


50


secured in the housing


21


for selectively translating a pintle


52


into or out of a flow aperture


24


or


26


. Distinctively, the pintle


52


is centrally hollow. The hollow core


54


of the pintle stem is closed by plug


58


at the end that penetrates into the inner flow bore


11


. However, the hollow core is open to the control flow annulus


23


by apertures


56


when the pintle


52


is at the closed aperture


24


position. In the event of power or control failure of a nature that prevents a desired opening of a closed valve


48


, a restricted by-pass flow may be obtained by deployment of a shear dart from the surface along the inner bore


11


to mechanically break the end of the pintle stem and expose the hollow core


54


.




As the flow of the production fluid transfers energy to the flow control equipment, frictional heat is generated. Consequently, the equipment temperature bears a functional relationship to the production flow rate. Based on the fact that operating temperatures of flow control devices change as a function of flow rates, automated downhole control of such devices may be accomplished with valves that respond operationally to the temperature changes.

FIGS.11A and 11B

illustrate one embodiment of this principle wherein a valve pintle element


60


is operatively driven by a shape memory alloy


62


into cooperative engagement with a valve seat


64


to directly control production flow through an aperture


24


.

FIG.12A

schematically illustrates the valve elements in a production flow condition wherein the flow rate through the flow aperture


24


is insufficient to generate heat at a rate that is sufficient to expand the shape memory alloy valve driver


62


. In contrast,

FIG.11B

schematically illustrates a non-flow condition wherein the shape memory alloy driver


62


has expanded due to excessive heating and pushed the pintle


60


into engagement with the aperture


24


seat


64


.




The invention embodiment of

FIGS. 12A-12D

modifies the foregoing control structure further with a mechanically controlled override. In this design, the valve pintle


60


includes, for example, an engagement tab


66


that cooperates with shift fingers


72


and


74


that depend from a selectively stroked hydraulic strut.

FIG. 12A

schematically illustrates the production flow condition in which the shape memory alloy driver


62


is contracted and the pintle


60


is withdrawn from the valve seat


64


. The strut


70


is at an intermediate position with the shift finger


74


in close proximity with the engagement tab


66


.

FIG. 12B

schematically illustrates a condition change wherein flow generated heat has expanded the alloy driver


62


and caused the pintle


60


to be translated into closure contact with the valve seat


64


.




Represented by

FIG. 12C

is a disfunction condition wherein the alloy driver


62


has cooled and contracted but the pintle


60


has not drawn away from the seat


64


to open the aperture


24


.

FIG. 12D

schematically illustrates the override of the shape memory alloy


62


with an engagement of the pintle tab


66


by the strut finger


72


to forceably push the pintle


60


away from the valve seat


64


.




The inventive concepts represented by

FIGS. 10A and 10B

apply the concepts of automatic flow regulation with shape memory alloy control elements to the hydraulic control lines


42


and/or


43


in the

FIG. 2

embodiment.

FIG. 10A

represents a check valve control


80


in the hydraulic strut power line


42


. A ball closure element


82


is pressure differentially biased against the valve seat


84


to block flow through the conduit


42


into the strut


38


. The closure condition prevails while the shape memory alloy driver


86


is cool and contracted. When the flow control elements are sufficiently heated by excessive flow velocity, the memory alloy driver


86


expands against the disengagement probe


88


to push the ball


82


off the seat


84


and allow hydraulic flow into the strut


38


. Resultantly, the strut rod


41


and gate plug


36


are displaced in a direction to restrict or terminate the excessive flow.




Modifications and improvements may be made to these inventive concepts without departing from the scope of the invention. The specific embodiments shown and described herein are merely illustrative of the invention and should not be interpreted as limiting the scope of the invention or construction of the claims appended hereto.



Claims
  • 1. A method of regulating the flow of hydrocarbon fluid from a producing zone into a production well, said method comprising the steps of:a. providing a fluid production tube in a wellbore having a formation fluid production zone, said production tube having a production flow bore therein; b. providing an intermediate fluid flow channel within said production tube between said production zone and said production flow bore; c. providing a static flow restriction within said intermediate channel; d. providing a first flow aperture between said intermediate channel and said production flow bore downstream of said flow restriction; e. providing a second flow aperture between said intermediate channel and said production flow bore upstream of said flow restriction; and, f. selectively obstructing fluid flow through either or both of said flow apertures.
  • 2. A method as described by claim 1 wherein said flow apertures are selectively opened and closed.
  • 3. A method as described by claim 1 wherein fluid flow through said first aperture is obstructed by a selective obstruction of flow through said flow restriction.
  • 4. A well tool for regulating the flow rate of fluid from an earth producing zone, said tool comprising:a. a well fluid production tube having a production flow channel therein and a production fluid flow screen for passing fluid from said producing zone into said production flow channel; b. an intermediate flow channel between said flow screen and said production flow channel; c. a static flow restriction in said intermediate channel; d. a first fluid flow aperture between said intermediate flow channel and said production flow channel disposed downstream of said static flow restriction; e. a second fluid flow aperture between said intermediate flow channel and said production flow channel disposed upstream of said static flow restriction; and f. a selectively positioned flow obstruction for substantially preventing fluid flow through either or both of said flow apertures.
  • 5. A well tool as described by claim 4 wherein said selectively positioned obstruction is driven by a shape memory alloy.
  • 6. A well tool as described by claim 4 wherein said selectively positioned obstruction is a solenoid valve operator respective to said flow apertures.
  • 7. A well tool as described by claim 6 wherein said valve operator comprises a flow by-pass element.
  • 8. A well tool as described by claim 7 wherein said by-pass element comprises a valve stem conduit having an open entry aperture in said intermediate flow channel and a plugged exit aperture in said production flow channel.
  • 9. A well tool as described by claim 4 wherein said flow obstruction comprises a fluid flow gate within said intermediate flow channel for obstructing fluid flow into said flow restriction.
  • 10. A well tool as described by claim 9 wherein fluid flow through said fluid flow gate is controlled by a selectively positioned plug.
  • 11. A well tool as described by claim 10 wherein said selectively positioned plug also obstructs fluid flow through said second flow aperture.
  • 12. A method of regulating the flow of production fluid from a fluid producing zone into a production conduit comprising the steps of:(a) providing first and second fluid flow routes for production fluid from a producing zone into a production conduit; (b) providing greater resistance to flow along said second flow route relative to flow along said first flow route; and, (c) providing a first selectively engaged flow obstruction along said first flow route.
  • 13. A method as described by claim 12 further providing a second selectively engaged flow obstruction along said second flow route.
  • 14. A method as described by claim 12 wherein said first and second flow routes extend from an intermediate fluid flow channel between said fluid producing zone and said production conduit.
  • 15. A method as described by claim 12 wherein said first flow obstruction is manually engaged.
  • 16. A method as described by claim 12 wherein said first flow obstruction is automatically engaged.
  • 17. A method as described by claim 12 wherein said first flow obstruction is automatically engaged as a function of a production fluid flow rate.
CROSS REFERENCED TO RELATED APPLICATIONS

This application claims priority from the USPTO provisional patent application entitled “Sand Screen with Active Flow Control” by Edward Joseph Zisk, Jr., filed on Jan. 26, 2001, serial No. 60/264,358.

US Referenced Citations (25)
Number Name Date Kind
4577691 Huang et al. Mar 1986 A
4619320 Adnyana et al. Oct 1986 A
4684947 Zimmer Aug 1987 A
4808996 Zimmer Feb 1989 A
4821801 Van Laar Apr 1989 A
4858691 Ilfrey et al. Aug 1989 A
5203414 Hromas et al. Apr 1993 A
5259452 Wittrisch Nov 1993 A
5346014 Ross Sep 1994 A
5377750 Arterbury et al. Jan 1995 A
5461594 Mougenot et al. Oct 1995 A
5476143 Sparlin et al. Dec 1995 A
5481502 Cretin et al. Jan 1996 A
5550785 Laurent et al. Aug 1996 A
5597042 Tubel et al. Jan 1997 A
5721538 Tubel et al. Feb 1998 A
5873049 Bielak et al. Feb 1999 A
5896928 Coon Apr 1999 A
5906238 Carmody et al. May 1999 A
5959547 Tubel et al. Sep 1999 A
6012015 Tubel Jan 2000 A
6220345 Jones et al. Apr 2001 B1
6321845 Deaton Nov 2001 B1
6371210 Bode et al. Apr 2002 B1
6481494 Dusterhoft et al. Nov 2002 B1
Foreign Referenced Citations (5)
Number Date Country
2169018 Jul 1986 GB
2314866 Jan 1998 GB
2351748 Jan 2001 GB
2361017 Oct 2001 GB
306127 Sep 1999 NO
Provisional Applications (1)
Number Date Country
60/264358 Jan 2001 US