Sander with orbiting platen and abrasive

Information

  • Patent Grant
  • 5443414
  • Patent Number
    5,443,414
  • Date Filed
    Wednesday, June 15, 1994
    30 years ago
  • Date Issued
    Tuesday, August 22, 1995
    28 years ago
  • Inventors
  • Examiners
    • Rose; Robert A.
    Agents
    • Kolisch, Hartwell, Dickinson, McCormack & Heuser
Abstract
The invented Sander with Orbiting Platen and Abrasive includes a platen, an abrasive secured to the platen, and a motor connected to the platen to move the platen and abrasive in an orbit or circular pattern. The motor is connected to the platen by a belt that extends around at least one drive shaft, where the shaft includes two ends with a step between the ends so that when the shaft is rotated around one end's longitudinal axis, the step causes a portion of the shaft and the platen to orbit around that axis. The preferred embodiment of the invented sander includes a frame, a conveyor, first and second drive shafts that support a brace and that cause the brace to move in a first orbit, second and third drive shafts that are supported by the brace and connected to an orbit so that when the second and third drive shafts are rotated, the platen moves in a second orbit, and a plurality of rubber or synthetic rubber stabilizers positioned between the brace and platen. In the invented sander the conveyor feeds a product toward the platen and a rotating brush abrades and polishes the product after it has been sanded by the platen.
Description

TECHNICAL FIELD
This invention relates to a sanding machine and more particularly to a finishing sander with an orbiting platen and abrasive.
Background Art
A sander is a machine that uses an abrasive such as sandpaper to smooth or polish wood. Typically, the abrasive is moved back and forth across the product, abrading its surface and thereby smoothing it. Different abrasives can be used to achieve different results. For example, a coarse grit abrasive is used to abrade quickly and deeply. A fine grit abrasive is used to produce the final, desired smoothness. However, even sanding machines that use a fine grit abrasive can leave sanding patterns in the product. A sanding pattern is simply a collection of scratches in the product's surface. For wood products, cross-grain sanding patterns, or scratches running across the wood's grain can result. To remove sanding patterns, finish sanding is often done by hand with a hand-held sander or with steel wool.
The invented sander provides an alternative to hand-held finishing sanders while removing sanding patterns. In other words, the invented sander eliminates the need for finish sanding to be done by hand.
Disclosure of the Invention
The invented Sander with Orbiting Platen and Abrasive includes a platen, an abrasive secured to the platen, and a motor connected to the platen to move the platen and abrasive in an orbit or circular pattern. The motor is connected to the platen by a belt that extends around at least one drive shaft, where the shaft includes two ends with a step between the ends so that when the shaft is rotated around one end's longitudinal axis, the step causes a portion of the shaft and the platen to orbit around that axis. The preferred embodiment of the invented sander includes a frame, a conveyor, first and second drive shafts that support a brace and that cause the brace to move in a first orbit, second and third drive shafts that are supported by the brace and connected to a platen so that when the second and third drive shafts are rotated, the platen moves in a second orbit, and a plurality of rubber or synthetic rubber stabilizers positioned between the brace and platen. The invented sander also includes a conveyor to feed a product toward the platen and a rotating brush to abrade and polish the product after it has been sanded by the platen.
A product placed on the conveyor is fed toward the abrasive and platen, both of which are moving in a dual orbit. The first orbit is a high speed circular motion. As stated, the abrasive and platen are supported by a brace and the brace, platen and abrasive are all moved in a second orbit. The second orbit is also circular but at a much lower speed. Because of the orbiting movement of the abrasive and platen, virtually all sanding patterns are removed from the product. For hard surfaces or to remove deep scratches, the product may be fed through the machine multiple times. The product is then directed toward a rotating brush which removes any remaining surface scratches or sanding patterns.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front elevational view of the preferred embodiment of the invention.
FIG. 2 is a side elevational view of the preferred embodiment of the invention.
FIG. 3 is a view of the preferred embodiment of the invention similar to FIG. 2 but with parts of the invention broken away to show additional detail.
FIG. 4 is a top view of the preferred embodiment of the invention.
FIG. 5 is a simplified sectional view taken along the line 5--5 in FIG. 1.
FIG. 6 is a simplified sectional view taken along the line 6--6 in FIG. 1.
FIGS. 7 and 8 are simplified views of the drive shafts used in the preferred embodiment of the invention.
FIG. 9 is a simplified drawing of an embodiment of the invention having opposed orbiting platens.





DETAILED DESCRIPTION AND BEST MODE FOR CARRYING OUT THE INVENTION
The invented sander is shown generally at 10 in FIGS. 1-4. Sander 10 is housed in a protective casing 12 and it is controlled by a control panel 14, both of which are shown in dashed lines in FIG. 2. Casing 12 may be removed to allow for maintenance and repair of the invented sander. Casing 12 may also include ports or apertures to access the enclosed structure.
Inside of casing 12 the invented sander is supported by a frame 16, including a horizontal base support 18 and a plurality of vertical supports 20. In the embodiment shown in the drawings, there are three vertical supports 20 on each side of the sander.
Frame 16 also includes horizontal support plates 22, 23 and 24. Plates 22 and 23 are connected by vertical support plate 26 and plates 22 and 24 are connected by vertical support plate 28. Plates 26 and 28 are, in turn, connected to vertical supports 20 on their respective sides of the sander. A cross support 30 extends from one side of the sander to the other and connects two of the vertical supports 20.
Mounted to horizontal support plates 23 and 24, respectively, are two additional vertical supports 32 and 34. Supports 32 and 34 are positioned one on each side of the sander. Extending across the sander between supports 32 and 34 is a horizontal beam 36.
The above-described pieces of frame 16 may be welded together or joined by any known means. Of course, variations and modifications may be made to the frame depending on the desired size and configuration of the sander.
The invented sander also includes a conveyor belt assembly 40, including a conveyor belt 42 extending around rollers 44 and 46. The rollers are connected on one side by support 47 and on the other side by support 48. A plate 49, connected to supports 47 and 48, extends between rollers 44 and 46 and under the top surface of belt 42 to support the belt.
Supports 47 and 48 are mounted to screws 50 by threaded couplings 51. Screws 50 are mounted to frame 16 by bearings 52 which allow the screws to rotate. The screws are rotated by a motor 54 and a chain 56 driven by the motor which extends around toothed pulleys attached to the screws. By turning the screws 50, the conveyor belt assembly can be raised or lowered to any desired position. Alternatively, a hand operated mechanism may be used to raise and lower the conveyor assembly.
A gauge 58, shown attached to casing 12 in FIG. 2, is used to indicate the elevation or height of a product placed on the conveyor belt. For example, a wood product, such as a cabinet panel, is placed on the conveyor belt when it is lowered. Rotating screws 50 causes the conveyor belt and the panel to rise and contact the gauge which indicates when the conveyor and panel have reached the desired position. Gauge 58 may simply be an analogue dial with a spring-biased point that is pushed up when the conveyor belt assembly and wood panel is raised.
Conveyor belt 42 is powered by roller 44, which in turn is rotated by a motor 60 and a chain 62 extending between the motor and the roller. Motor 60 is mounted to support 48 of the conveyor belt assembly by a mount 63. Thus, motor 60 and chain 62 rise and lower with the conveyor belt when the belt assembly is raised and lowered. Idler or tensioning gears (not shown) may be positioned between motor 60 and roller 44 to maintain the appropriate tension on chain 62. Alternatively, a belt can be used to drive roller 44. Opposed and driven pinch rollers can also be used instead of a conveyor belt. For small applications, stationary guides can be used to hand feed the invented sander. "Conveyor means" is used herein to describe all these structures.
Positioned above the conveyor belt assembly, and mounted to the frame, are several pinch rollers 64. Products placed on conveyor belt 42 are held in place by pinch rollers 64 as they are fed through the invented sander.
The invented sander also includes a brace 70, shown best in FIG. 1. Brace 70 is connected to two drive shafts 72 and 74. Drive shaft 72 is shown isolated from other structure in FIG. 8. As can be seen, shaft 72 includes a step portion 73 that extends away from and then returns to the longitudinal axis 75 of the shaft. When shaft 72 is rotated around axis 75, section 73 orbits around the axis. In the preferred embodiment, the step in shaft 72 is 5/32nds-of-an-inch, creating an orbit with a diameter of 5/16ths-of-an-inch. Shaft 74 is similar to shaft 72 and brace 70 is mounted to the two shafts around the shafts' stepped portions. Thus, when the shafts are rotated, their stepped portions as well as brace 70 move in an orbit.
Eccentric cams may be used instead of stepped drive shafts 72 and 74.
Brace 70 is mounted to shaft 72 by bearings 76 bolted to the brace. Shaft 72 is mounted to frame 16 by bearings 78 connected to plate 23 and support 32, as shown in FIG. 1. Shaft 74 is mounted to plate 24 and support 34 in a similar fashion.
A motor 80, mounted to one of the vertical supports 20, rotates shaft 72 by a chain 82 extending around a pulley 84 mounted to the motor's drive shaft and a pulley 86 mounted to the lower end of shaft 72. A pulley 90 is mounted to the upper end of shaft 72 and a similar pulley 92 is mounted to shaft 74. A chain 94 extends around pulleys 90 and 92 and an idler or tensioning gear 96 (shown in FIG. 4 only) maintains tension in the chain. Motor 80 rotates shaft 72 which in turn rotates shaft 74 by chain 94 extending around pulleys 90 and 92. As stated, rotating shafts 72 and 74 causes brace 70 to move in an orbit or circular pattern.
The invented sander also includes an orbiting platen 100 shown best in FIGS. 1, 5 and 6. The platen is typically made of aluminum and, as seen in FIGS. 5 and 6, is generally U-shaped. The platen can be of varying widths and lengths. In the preferred embodiment, for example, its length ranges from 24-inches to 49-inches. Platen 100 is connected to two drive shafts 102 and 104 by standard flange mount bearings 106 which are bolted to the platen.
The use of standard flange mount bearings allows for self-alignment of the shafts when they are rotated. The invented sander can be constructed with only one shaft supporting the platen but the use of two or more shafts results in greater platen stability. Eccentric cams can be used instead of shafts 102 and 104.
Shaft 102 is shown in FIG. 7 isolated from other structure. As can be seen in FIG. 7, shaft 102 includes a step 108 that extends away from the longitudinal axis 110 of the shaft. Step 108 causes a portion 112 of shaft 102 to orbit around the shaft's longitudinal axis when the shaft is rotated. In the preferred embodiment, step 108 is 1/16th-of-an-inch, resulting in an orbit having a diameter of 1/8th-of-an-inch. Shaft 104 is identical to shaft 102. Shafts 102 and 104 are connected to brace 70 by bearings 114.
A motor 116 is also connected to brace 70 by a mount 118. A timing pulley 120 is mounted to the drive shaft of the engine, a similar timing pulley 122 is mounted to the upper end of shaft 102 and a timing pulley 124 is mounted to the upper end of shaft 104. A toothed timing belt 126 extends around pulleys 120, 122 and 124 and rotates shafts 102 and 104 when motor 116 rotates pulley 120. Shafts 102 and 104, in turn, cause platen 100 to orbit or move in a circular pattern. The toothed belt and timing pulleys allow for perfect timing between shafts 102 and 104. Motor 116 is centered between pulleys 122 and 124 to eliminate the need for idlers on belt 126.
Disks 130 and 132 are mounted to the lower portions of shafts 102 and 104, respectively, to counterbalance the motion of platen 100. Weights 134 are attached to the disks and positioned opposite the step in the shaft to create the necessary counterbalance weight. Weights 134 may be made from nuts, bolts and washers and are therefore adjustable. Holes may be drilled in disks 130 and 132 to accommodate any number of bolts.
As can be understood from the structure described so far, platen 100 moves in two orbits, one created by the rotation of shafts 102 and 104 and the other created by the rotation of brace 70. This dual rotation simulates the motion of sanding by hand. Shafts 102 and 104 typically rotate at 3,000 to 12,000 revolutions per minute while shafts 72 and 74 typically rotate at approximately 200 revolutions per minute. Shafts 102 and 104 may rotate in the same direction or in the opposite direction as shafts 72 and 74. Any structure capable of driving the platen and abrasive in one or more orbits may be used, such as the motor and drive shaft structure described above.
The invented sander may alternatively be constructed with only one orbit. One orbit allows for a smaller and less expensive machine.
Positioned between brace 70 and platen 100 are eight stabilizers 140. As best seen in FIGS. 1 and 5, each stabilizer is secured to brace 70 by a C-clamp 142. The C-clamp is made from two opposed, C-shaped parts, 144 and 146, one of which is welded to brace 70. A stabilizer is inserted between the two parts which are then bolted together by a bolt such as bolt 148.
As shown, the lower end of each stabilizer simply rests against the inner surface of platen 100. The pressure exerted by each stabilizer against platen 100 can be adjusted by elevator bolts 144. There is one elevator bolt for each stabilizer. Each elevator bolt is similar to a plunger and includes a threaded stud with a flat surface attached to one end. Each bolt is threaded through a tapped hole in brace 70. As seen in FIG. 5, a jam nut 146 and opposed nuts 148 are threaded onto the upper end of each elevator bolt. Loosening jam nut 146 allows for the elevator bolt to be tightened by nuts 148. Tightening the elevator bolt increases the pressure against stabilizer 140 which in turn increases the pressure against platen 100. When the desired pressure is obtained, jam nut 146 is tightened to secure the elevator bolts in position.
In this manner, the stabilizers are adjustable to level the platen, cause the platen to apply increased pressure at a certain point, or to compensate for wear. Additionally, the stabilizers maintain the platen level while still allowing it to move in two different orbits. In other words, because stabilizers 140 are made of rubber or synthetic rubber and are therefore partially deformable, platen 100 can remain level while moving in the orbit created by shafts 102 and 104 as well as in the orbit created by shafts 72 and 74.
As best seen in FIGS. 1, 5 and 6, a foam pad 150 is attached to the outer, bottom surface of platen 100. The pad is typically made from a deformable yet firm foam and is secured to the platen by an adhesive. For some applications, a sponge rubber or a rubber having a light durometer may be used.
An abrasive 152 is secured to the platen around foam 150. Clips 154 are used to secure the abrasive to the platen. Alternatively or additionally, the abrasive may be secured to the foam and platen by an adhesive. "Secured" means that the abrasive's motion is completely dependent on the platen's motion. Thus, when the platen moves the abrasive also moves.
The foam is positioned between the platen and the abrasive to provide a soft touch to prevent the abrasive's grit from scratching into a product too deeply. Without the foam, unwanted scratches would result from products that are not perfectly flat.
As shown in FIGS. 5 and 6, clips 154 are positioned on both sides of platen 100. A spring-biased rod 160 (shown best in FIGS. 4-6) is used to operate the clips on the back side of the platen. The rod includes a handle 162 and arms 164. When the handle is pushed down, the rod rotates and the arms contact the clips and cause them to open. The rod can then be locked in place by locking mechanism 166. The abrasive is then inserted between the clips and the platen. The clips close when the rod is released. In the preferred embodiment, the rod is secured to brace 70.
As seen in FIG. 4, the invented sander includes an upstream or front end 170 and a downstream or back end 172. Downstream from platen 100 is a rotating brush 180 positioned across conveyor belt 42. Brush 180 is supported by frame 16 and driven by a motor 182. Brush 180 removes any remaining streaks or scratches in products such as wood. Scratches removed by the brush are typically less than 0.0005-of-an-inch deep. Brush 180 is angled across conveyor belt 42 so that its bristles contact the wood product at an angle to any remaining cross-grain sanding patterns. Other embodiments of the invented sander may include two or more rotating brushes arranged at 90.degree. relative to each other. Alternatively, the invented sander can be operated without any rotating brush.
In the preferred embodiment, a vacuum 184 (shown only in FIG. 4) is positioned upstream and downstream from brush 180 to remove any dust resulting from the sanding. Vacuum 184 may be mounted to frame 16 and extend above conveyor belt 42.
FIG. 9 shows an alternative embodiment of the invented sander including two orbiting platens 190 positioned opposite each other. An abrasive 192 is secured to the opposed faces of each platen. A conveyor belt 194 feeds wood between the two platens, thereby allowing two surfaces of the wood to be abraded simultaneously. Alternatively, the platens may be arranged side-by-side in a row.
Operation
In operation conveyor belt 42 is lowered and a product such as a wood panel is placed thereon. The belt is then raised until the desired height is obtained. At this point, the wood is positioned between belt 42 and the first pinch roller 64.
The conveyor belt is then powered so that it feeds or drives the wood product toward platen 100. The area immediately beneath platen 100 may be thought of as an abrading area. As can be seen in FIGS. 5 and 6, the wood product, such as product 174 in FIGS. 5 and 6, is fed under platen 100 and abraded by abrasive 152. Abrasive 152 and platen 100 both move in at least one orbit, substantially eliminating all cross-grain sanding patterns.
The wood product is then fed past platen 100 where it contacts a second pinch roller. The wood product then contacts brush 180 and any remaining scratches or streaks are removed. The remaining pinch rollers 64 are supported by a brace (not shown) that extends over the conveyor belt. Those pinch rollers hold the wood product in position as it is conveyed under brush 180. The wood is finally emitted from the sander at downstream end 172.
Industrial Applicability
The invented sander is applicable in any situation where sanding patterns need to be removed from wood products. The invented sander is especially applicable for finish sanding applications such as desk and table tops, panels, doors and cabinets.
While the preferred embodiment and best mode for practicing the invention have been described, modifications and changes may be made thereto without departing from the spirit of the invention.
Claims
  • 1. A method of sanding wood products comprising:
  • placing a product on a conveyor belt;
  • securing an abrasive sheet onto an elongate platen that is positioned substantially across the conveyor;
  • mechanically moving the abrasive sheet and platen in a first motion and a second motion, wherein said first and second motions move simultaneously, so that the first motion and the second motion are superimposed on the abrasive sheet and the platen, and where the abrasive sheet's motion is solely dependent on and controlled by the platen's motion and where the first motion is a circular orbital motion and the second motion is a circular orbital motion;
  • conveying the product on the conveyor belt adjacent the abrasive sheet; and
  • abrading the product by the motion of the abrasive sheet.
  • 2. An orbital sander for abrading wood products comprising:
  • a frame,
  • a first motor mounted on the frame,
  • a first drive shaft rotatable by the first motor and extending from the first motor,
  • a movable brace supported by the frame and linked to the first drive shaft, so that the brace moves when the first drive shaft is rotated by the first motor,
  • a second motor mounted on the brace,
  • second and third shafts supported by the brace and rotatable by the second motor,
  • an elongate, movable platen having a flat bottom surface, where the platen is supported by the second and third shafts, and where the platen moves in a translational orbit when the second and third shafts are rotated by the second motor,
  • a sheet of sandpaper secured over the platen's flat bottom surface so that the sandpaper moves when the platen moves, and
  • a conveyor supported by the frame and positioned beneath the platen's flat bottom surface.
  • 3. The sander of claim 2, where the brace moves in a circular orbit when the first drive shaft is rotated.
  • 4. The sander of claim 2 further comprising two timing pulleys, one on the second shaft and one on the third shaft, and a timing belt driven by the second motor and extending around the two timing pulleys so that when the second and third shafts are rotated by the second motor, the shafts move in time.
  • 5. An orbital sander for abrading wood products comprising:
  • a frame,
  • a first motor mounted on the frame,
  • a first drive shaft extending from the first motor,
  • a brace supported by the frame and linked to the first drive shaft,
  • a second motor mounted on the brace,
  • second and third shafts supported by the brace,
  • a belt connecting the second and third shafts with the second motor,
  • an elongate platen having a flat bottom surface, where the platen is supported by the second and third shafts,
  • a sheet of sandpaper secured over the platen's flat bottom surface, and
  • a conveyor supported by the frame and positioned beneath the platen's flat bottom surface.
  • 6. The sander of claim 2 further comprising at least one rotating brush adjacent the conveyor.
  • 7. The sander of claim 4 further comprising at least one rotating brush adjacent the conveyor.
  • 8. The sander of claim 5 further comprising at least one rotating brush adjacent the conveyor.
  • 9. The sander of claim 2 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 10. The sander of claim 4 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 11. The sander of claim 5 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 12. The sander of claim 6 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 13. The sander of claim 7 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 14. The sander of claim 8 further comprising first and second bearings mounted on the brace and third and fourth bearings mounted on the platen, where the first and third and second and fourth bearings support the second and third shafts, respectively.
  • 15. The sander of claim 2 where the sheet of sandpaper is secured over the platen's flat bottom surface by an adhesive.
  • 16. The sander of claim 5 where the sheet of sandpaper is secured over the platen's flat bottom surface by an adhesive.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of application Ser. No. 08/006,379 filed Jan. 19, 1993 which will issue as U.S. Pat. No. 5,321,913 on Jun. 21, 1994, which is a continuation of application Ser. No. 07/787,897, filed Nov. 5, 1991, now issued as U.S. Pat. No. 5,181,342 on Jan. 26, 1993, which is a divisional of application Ser. No. 07/558,902 filed Aug. 17, 1990, now issued as U.S. Pat. No. 5,081,794 on Jan. 21, 1992.

US Referenced Citations (90)
Number Name Date Kind
67240 Weissenborn Jul 1867
296585 Laughton Apr 1884
346680 Perry Aug 1886
449686 Malevez Apr 1891
513618 Oppermann Jan 1894
577582 Lane et al. Feb 1897
676487 Brown Jun 1901
714899 Hayes Dec 1902
1143725 Reed Jun 1915
1494895 Foldessy May 1924
1909902 Amsler May 1933
1962766 Crowley et al. Jun 1934
1962767 Crowley et al. Jun 1934
1963357 Filley Jun 1934
2192486 Lockhart Mar 1940
2195065 Wallace Mar 1940
2234109 Culpepper Mar 1941
2269197 Hamilton Jan 1942
2286208 Kirchner Jun 1942
2294064 Amstuz Aug 1942
2405328 Robinson, Jr. Aug 1946
2412141 Ford Dec 1946
2447102 Strand Aug 1948
2485295 Larson Oct 1949
2553254 Hays May 1951
2606947 Happe Aug 1952
2641878 Radabaugh Jun 1953
2644280 O'Neil, Jr. Jul 1953
2690036 Baldridge Sep 1954
2700259 Dreyfus Jan 1955
2729037 Soccoli Jan 1956
2751725 Champayne Jun 1956
2787100 Peyches Apr 1957
2842904 Ralys Jul 1958
2909871 Heymes et al. Oct 1959
2926465 Sommers Mar 1960
2945330 Peyches Jul 1960
2949707 Staelin Aug 1960
2983083 Weesner May 1961
2984051 Monnet et al. May 1961
2989823 Bernstein Jun 1961
3079734 Eschenburg Mar 1963
3094815 Pendergast Jun 1963
3104503 Yelpo et al. Sep 1963
3106806 Hutchins Oct 1963
3107456 Walters et al. Nov 1963
3203074 Monaghan Aug 1965
3263376 Walters et al. Aug 1966
3267623 Block Aug 1966
3339319 Schuster et al. Sep 1967
3353304 Chaumont Nov 1967
3400501 Chaumont Sep 1968
3416261 Sherman et al. Dec 1968
3522680 Sarofeen Aug 1970
3533193 Dudek et al. Oct 1970
3608245 Fair, Jr. et al. Sep 1971
3654738 Sternal Apr 1972
3701219 Sternal Oct 1972
3704559 Morgan Dec 1972
3708817 Rhine et al. Jan 1973
3734700 Gutierrez et al. May 1973
3754354 Franlinna Aug 1973
3832807 Kiser et al. Sep 1974
3859758 Fair, Jr. Jan 1975
3892091 Hutchins Jul 1975
3893265 Elm et al. Jul 1975
3906678 Roth Sep 1975
4277915 Hausermann et al. Jul 1981
4344113 van der Linden Aug 1982
4375738 Bando Mar 1983
4399637 Steinback Aug 1983
4475317 Dicke Oct 1984
4557075 Ullmann et al. Dec 1985
4622783 Konig et al. Nov 1986
4627195 Greenleaf Dec 1986
4635405 Stump Jan 1987
4651474 David Mar 1987
4656788 Rhoades et al. Apr 1987
4667447 Barton May 1987
4720940 Green Jan 1988
4733500 David Mar 1988
4742650 Sauder, Jr. et al. May 1988
4787178 Morgan et al. Nov 1988
4788798 DeFranco et al. Dec 1988
4798025 Lokken et al. Jan 1989
4837984 David Jun 1989
4864775 David Sep 1989
4878317 Ovens Nov 1989
4891916 Rhoades et al. Jan 1990
4969296 Seki et al. Nov 1990
Foreign Referenced Citations (7)
Number Date Country
597948 Dec 1925 FRX
1085718 Feb 1955 FRX
1556287 Mar 1972 DEX
2740696 Mar 1979 DEX
8808679 Dec 1988 DEX
8912042 Jan 1990 DEX
8802627 May 1990 NLX
Non-Patent Literature Citations (7)
Entry
Appeal Decision, Haney v. Timesavers, Inc. et al., Appeal No. 94-1287 (Fed. Cir. Feb. 10, 1995).
Abrasive, Orbital Sander Improve Finish Sand Quality, Wood Digest, Jun. 1990.
Declaration of Paul S. Petersen in Support of Timesavers' Motion for Summary Judgement of Non-Infringement, Haney v. Timesavers, Inc., Case No. CV-92-270-FR (D. Or. Mar. 25, 1993).
Amended Opinion, Haney v. Timesavers, Inc., Civ. No. 92-270-FR (D. Or. Oct. 13, 1993).
Declaration of Paul S. Petersen in Support of Timesavers' Motion for Summary Judgment of Non-Infringement, Haney v. Timesavers, Inc., Case No. CV-93-151-FR (D. Or. Oct. 29, 1993).
Opinion, Haney v. Timesavers, Inc., Civ. No. 93-151-FR (D. Or. Mar. 2, 1994).
Brief of Appellees, cover page and pp. 24-26, Haney v. Timesavers, Inc., 94-1287 (Fed. Cir. Jul. 22, 1994)(prepared by Attorneys for Defendants-Appellees Timesavers, Inc. et al.).
Divisions (1)
Number Date Country
Parent 568902 Aug 1990
Continuations (2)
Number Date Country
Parent 6379 Jan 1993
Parent 787897 Nov 1991