Embodiments of the disclosure generally relate to a downhole system configured to prevent sand from settling on a downhole pump during pump shutdown.
Downhole pumps, such as progressive cavity pumps, are used for the production of hydrocarbons to surface from significant wellbore depths. A progressive cavity pump is typically attached to the bottom end of production tubing, and has a rubber stator having a helical internal profile which mates with a rotor having an external screw profile. The rotor is connected to a rotating pump rod, which extends through the production tubing and is driven by a surface motor.
Progressive cavity pumps are sensitive to sands and other abrasive solids commonly present in the production fluid. The amount of sand which is produced from a well depends on characteristics of the formation, and various methods are used to control sand production. Problems can arise when the pump is shut down after a period of pumping fluid up the production tubing to surface. On pump shutdown, flow ceases very quickly as the fluid levels in the production bore and the annulus equalize. Gravity acting on the sand particles present in the column of fluid above the pump (which could be several thousand meters) causes the sand and any other solids to fall back towards the pump.
Due to the complex configuration of the pump, there is no direct path for the sand to pass through, and therefore it tends to settle on top of the pump and/or fills up a helical path between the pump rod and the pump stator, potentially causing it to be unable to rotate. When production operations are resumed, a higher load is required to start the pump and push the sand up from the pump. In some cases this can cause breaking of the rotor shaft of the progressive cavity pump. Such failure requires work-over involving pull-out and reinstallation, which is an expensive and time-consuming operation.
Therefore there is a need for new and improved systems configured to prevent sand from settling on downhole pumps during pump shutdown.
In one embodiment, a sand guard system comprises an outer housing; a wedge assembly disposed in the outer housing, wherein the wedge assembly comprises a plurality of wedges coupled together by one or more flexible retaining members such that the wedges are movable radially outward and inward relative to the outer housing; and an inner tube disposed in the outer housing such that an annulus is formed between the inner tube and the outer housing, wherein the inner tube has a plurality of slots configured to filter out solids from fluids flowing from the annulus into the inner tube through the slots.
In one embodiment, a hydrocarbon production system comprises production tubing; a sand guard system coupled to the production tubing; and a downhole pump coupled to the production tubing below the sand guard system.
The appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of the scope of the disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized with other embodiments without specific recitation.
Embodiments of the disclosure relate to a hydrocarbon production system having a production tubing, a sand guard system coupled to the production tubing, and a downhole pump coupled to the production tubing below the sand guard system. The sand guard system is installed above the downhole pump, which may be a progressive cavity pump, to prevent solids, such as sand, from settling on the downhole pump during pump shutdown. The sand guard system is configured to filter, divert, and collect solids that are entrained in production fluids pumped to surface by the downhole pump. The sand guard system is also configured to allow a pump rod having enlarged couplings to be safely lowered through the sand guard. For example, a 1-inch diameter pump rod having 2-inch diameter couplings can be safely lowered through the sand guard system.
The sand guard 100 further includes a wedge assembly 40 that is located within the outer housing 20 and is coupled to one end of an inner tube 50. The wedge assembly 40 includes an upper seat 41 and a lower seat 48 coupled at opposite ends to a plurality of wedges 43. In particular, the upper seat 41 and the lower seat 48 are at least partially inserted into opposite ends of the wedges 43. The wedges 43 are held together by one or more flexible retaining members 44, which may be springs or bands. An elastomer 45 is coupled to the inner surfaces of the wedges 43. For example, the elastomer 45 may be bonded to the wedges 43 or may be spring mounted inside the wedges 43 so that it has a small amount of radial movement relative to the wedges 43. A plurality of guide fins 42 are coupled to the upper seat 41 on one side.
A first set of guide pins 46 are disposed through the upper seat 41 and the wedges 43 to support the upper end of the wedge assembly 40 within the outer housing 20. A second set of guide pins 47 are disposed through the lower seat 48 and the wedges 43 to support the lower end of the wedge assembly 40 within the outer housing 20. The wedges 43 can be moved radially outward and inward relative to the outer housing 20, as well as the upper and lower seats 41, 48, along the guide pins 46, 47 as further described below with respect to
The lower seat 48 is coupled to the upper end of the inner tube 50. The lower seat 48 has a plurality of slots 49 formed about its circumference. The inner tube 50 is at least partially inserted into the lower seat 48 and blocks fluid flow through the slots 49 of the lower seat 48 when the wedge assembly 40 is in the closed position shown in
An annulus 21 is formed between the outer surface of the inner tube 50 and the inner surface of the outer housing 20. The inner tube 50 has a plurality of slots 51 formed about the circumference that are configured to allow production fluids to flow between the interior of the inner tube 50 and the annulus 21. Although only one slot 51 is shown, the inner tube 50 may have any number, shape, and/or arrangement of slots 51 formed about the circumference of the inner tube 50. The slots 51 are also configured to filter out solids from production fluids by preventing solids from flowing into the interior of the inner tube 50 from the annulus 21.
A valve 60 is coupled to the lower end of the inner tube 50 near the bottom sub 30 and helps support the inner tube 50 within the outer housing 20. Although the valve 60 is shown as being formed as a single piece with the inner tube 50, the valve may be a separate component that is socket fit, e.g. pushed or press fit, onto the end of the inner tube 50. Although only a single valve is shown, the valve 60 may comprise one or more valves located about the circumference of the inner tube 50. The valve 60 is located between the inner tube 50 and the outer housing 20 and functions as a one-way valve, such as a check valve. The valve 60 allows fluid to flow into the annulus 21, while preventing fluid to flow out of the annulus 21 through the valve 60. According to one example, the valve 60 may comprise a housing having a plurality of fluid paths with ball valves located in each fluid path that open when fluid is flowing in one direction and close when fluid is flowing in the opposite direction.
The wedge assembly 40 is biased inward by the flexible retaining members 44 so that the elastomer 45 remains in contact with the pump rod 70 as it is being lowered through the sand guard 100 and during operation to minimize or prevent any metal to metal contact with the remaining components of the sand guard 100, which may cause undue wear when the pump rod 70 is rotated. The force of the wedge assembly 40 on the pump rod 70 is an amount that does not unduly restrict rotation of the pump rod 70 relative to the sand guard 100. The pump rod 70 may include a string of rods that are connected end to end by coupling. As shown, the pump rod 70 has a coupling 75 that has a diameter greater than the diameter of the main body of the pump rod 70. Although only one coupling 75 is shown, the pump rod 70 may have multiple couplings 75 uniformly distributed along the length of the pump rod 70.
Production fluids initially flow into the bottom sub 30, and then flow up into the interior of the inner tube 50 and out into the annulus 21 through the slots 51 formed in the inner tube 50. The flexible retaining members 44 are configured to keep the wedges 43 together and the elastomer 45 in contact with the pump rod 70 with an amount of force sufficient to prevent production fluids from flowing up between the elastomer 45 and the pump rod 70. Production fluids may also flow directly into the annulus 21 through the valve 60. The production fluids in the annulus 21 flow into the top sub 10 and up to the surface.
During this downward fluid flow, the flexible retaining members 44 continue to keep the wedges 43 together and the elastomer 45 in contact with the pump rod 70 with a sufficient amount of force to prevent the production fluids from flowing down between the elastomer 45 and the pump rod 70. The production fluids are diverted by the wedge assembly 40 into the annulus 21. From the annulus 21 the production fluids flow back into the interior of the inner tube 50 through the slots 51 formed in the inner tube 50. The slots 51 filter out any solids from the production fluids, and the solids are contained in the annulus 21. The valve 60 prevents fluid flow out of the annulus 21 and similarly diverts fluid flow into the slots 51.
When the fluid column is at rest and no longer flows through the sand guard 100, solids continue to fall through the production fluids by gravity acting on the solids. The solids are collected in the annulus 21 on top of the valve 60 as indicted by collected solids 80. Solids may also be collected in the upper area of the wedge assembly 40, specifically in the area above where the elastomer 45 and the pump rod 70 are in contact with each other as also indicated by collected solids 80.
After operation of the downhole pump has been resumed, production fluids may again freely flow upwards through the sand guard 100 and the collected solids 80 do not generate any significant back pressure on the fluid flow through the sand guard 100. Production fluids flowing up through the valve 60 into the annulus 21, as well as production fluids flowing through the slots 51 of the inner tube into the annulus 21, help lift and carry the collected solids 80 from the annulus 21 out through the top sub 10 and up to the surface. Similarly, the production fluids flow from the annulus 21 into the top sub 10 help lift and carry the collected solids 80 from the upper area of the wedge assembly 40. In this manner, the collected solids 80 are washed and cleaned out of the sand guard 100 when pumping is resumed.
In the event of a blockage, the sand guard 100 has two emergency features to help resume pumping or safe retrieval of the pump rod 70. A blockage may occur when an amount of fluid flowing up through the sand guard 100 exceeds the amount that the slots 51 in the inner tube and the fluid paths in the valve 60 can allow to pass through, such as by solids that accumulate in the annulus 21 and/or in the upper area of the wedge assembly 40 that partially or completely blocks fluid flow through the sand guard 100.
First, as shown in
Second, if enough pressure builds within the inner tube 50 and cannot flow out through the valve 60, the slots 51 of the inner tube 50, and the slots 49 of the lower seat 48, the pressure can apply enough force to wedges 43 radially outward (such as when the coupling 75 is being moved the wedge assembly 40 as shown in
These two emergency features helps prevent the sand guard 100 from being over pressurized to a point of failure and open alternative fluid paths that can help wash and clean out the solids from the sand guard 100 to resume pumping and or retrieve the pump rod 70.
The sand guard 100 as described herein provides a filter system which prevents solids in production fluids from settling on, or passing downwards through, a downhole pump. The sand guard 100 filters the solids in a way which does not provide a significant backpressure or resistance to subsequent operation of the downhole pump. In addition, the solids are collected in a manner which allows them to be lifted and carried with production fluid flow when pumping is resumed and therefore allows them to be washed and cleaned out of the sand guard 100. Lastly, the sand guard 100 has two emergency features to help continue pumping operations and/or retrieval of the pump rod 70 in the event of a blockage. This allows the sand guard 100 to be used for extended periods.
While the foregoing is directed to some embodiments, other and further embodiments may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4431963 | Walkow | Feb 1984 | A |
4522264 | McNeer | Jun 1985 | A |
4702313 | Greenlee | Oct 1987 | A |
9441435 | Leitch | Sep 2016 | B2 |
20160341026 | Leitch | Nov 2016 | A1 |
20170152724 | Cote et al. | Jun 2017 | A1 |
Entry |
---|
PCT International Search Report/Written Opinion dated Feb. 19, 2019 for Application No. PCT/US2018/060276 (FETI/0196PC). |
Number | Date | Country | |
---|---|---|---|
20190153847 A1 | May 2019 | US |