The embodiments described herein are generally directed to systems and methods for measuring and controlling the spooling and unspooling of a line from a spool. Specifically, exemplary embodiments of the present disclosure are directed to measuring and controlling the spooling and unspooling of a sandline in an oilfield servicing environment.
A sandline is an example of a type of line that is commonly run into or out of wellbores in an oilfield services environment. A sandline is a cable that can be run into a wellbore. A sandline includes a tool attached to the down-hole end. The tool can be used for cleaning the wellbore, removing fluids or solids, or any other down-hole tool. In certain cases, the sandline and tool need to be pulled out of well or raised to the top of the well or wellhead. The sandline is wound on a spool and the tool is raised and lowered by winding and unwinding the sandline from the spool. There are often one or more piece of equipment coupled to the wellhead or above the wellhead, such as blowout preventers (BOP), lubricators, and the like. Generally, the sandline passed through the equipment. However, the tools are too big to fit through the equipment. When the sandline and tool are being pulled out of well, the tool can be pulled too far up and hit the equipment at the wellhead. Consequently, in such cases, the tool is separated from the sandline and is dropped to the bottom of the well. The tool and/or wellhead equipment may also be damaged when this happens. Other possible consequences include well fluids escaping into the environment and other rig damage. Currently, the depth and position of the sandline or sandline tool is monitored through rudimentary method and lack accuracy. For example, a common method of depth measurement is through manual control, in which a rig operator counts the layers of sandline on the spool, leaving large error margins and such an increased likelihood of incidence.
These and other aspects, features and embodiments of the invention will become apparent to a person of ordinary skill in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode for carrying out the invention as presently perceived.
According to an aspect of the present disclosure, a spooling system includes a spool comprising a first spool end, a second spool end, and a spool body between the first spool end and the second spool end. The spooling system further includes a spool holder coupled to the spool, wherein at least a portion of the spool holder provides a rotational axis for the spool. The spooling system also includes a rotational detection system coupled to the spool, the spool holder, or both, wherein the rotational detection system detects rotation of the spool and outputs data regarding one or more rotational parameters of the spool.
According to an aspect of the present disclosure, a spooling control method includes detecting rotation of a spool, wherein the spool is coupled to a line. The line is further wound onto the spool when the spool rotates in a first direction and further unwound from the spool when the spool rotates in a second direction. The spooling method further includes generating a rotational data, and determining a length or position of an unwound portion of the line from the rotational data.
According to an aspect of the present disclosure, a spooling system includes a spool comprising a first spool end, a second spool end, and a spool body between the first spool end and the second spool end. The spooling system further includes a line comprising a first end and a second end, the first end coupled to the spool body and the second end coupled to a tool. The spooling system further includes a rotational detection system coupled to the spool, the spool holder, or both, wherein the rotational detection system detects rotation of the spool and outputs data regarding one or more rotational parameters of the spool.
For a more complete understanding of the claimed invention and the advantages thereof, reference is now made to the following description, in conjunction with the accompanying figures briefly described as follows. In the drawings, reference numerals designate like or corresponding, but not necessarily identical, elements.
The drawings illustrate only example embodiments of methods, systems, and devices for measuring and controlling the spooling and unspooling of wire, and are therefore not to be considered limiting of its scope, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Such method, systems, and devices may admit to other equally effective embodiments that fall within the scope of the present disclosure. In the disclosure, certain devices and/or systems are described as carrying out certain functions of the present invention. However, other functionally interchangeable devices may substitute such example devices in carrying out an implementation of the present invention, and certain devices can be combined or one may be inclusive of another.
The methods shown in the drawings illustrate certain steps for carrying out the techniques of this disclosure. However, the methods may include more or less steps than explicitly illustrated in the example embodiments. Two or more of the illustrated steps may be combined into one step or performed in an alternate order. Moreover, one or more steps in the illustrated methods may be replaced by one or more equivalent steps known in the art to be interchangeable with the illustrated step(s). In one or more embodiments, one or more of the features shown in each of the figures may be omitted, added, repeated, and/or substituted. Accordingly, embodiments of the present disclosure should not be limited to the specific arrangements of components shown in these figures.
In the following detailed description of the example embodiments, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure herein. However, it will be apparent to one of ordinary skill the art that the example embodiments herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description
Example embodiments of the present disclosure are directed to measurement and control systems and methods of improved spooling accuracy. Specifically, the systems and method disclosed herein provide techniques for accurately monitoring the depth of a sandline in a wellbore through sensing spool rotation, and controlling certain aspects of the spooling and/or producing certain notifications when the depth is above or below a certain threshold. Thus, the spool can be operated with increased diligence when it gets close to the wellhead. In certain example embodiments, the depth of the sandline is measured based at least partially on the number of spool rotations, compensating for decreasing length of sandline per layer of sandline on the spool. Thus, a more accurate position of the sandline tool can be determined. The terms wire, rope, line, and sandline are used interchangeably in the present disclosure and are representative of a class of lines compatible for use with the techniques provided herein.
Turning to the figures,
In certain example embodiments, the rig also includes a tubing drum 106 and a sandline drum 108. The tubing drum 106 includes a tubing line 110, and the sandline drum 108 houses a spool of sandline wire 112. The sandline wire 112 is a wire rope which extends from the sandline drum 108 to the top 118 of the mast 102 and down the front of the mast 102, and into the wellbore. In certain example embodiments, one or more sandline tools are attached to the end of the sandline wire 112 and are suspended down-hole via the sandline wire 112 and the mast 102. As the sandline wire 112 is suspended from the top 118 of the mast 102, the sandline wire 112 and sandline tools are aligned with the wellbore. As the sandline drum 108 unspools or unwinds more sandline wire 112, the sandline tools are lowered further down-hole. Conversely, as the sandline drum 108 spools or winds more sandline cable 112, the sandline tools are lifted upward. In certain example embodiments, the sandline tools include tools for removing fluid and/or solids from the wellbore, cleaning the wellbore, or a variety of other functions. In certain example embodiments, a sinker bar is attached to the end of the sandline cable 112 and is used to check the depth of the well.
In certain example embodiments, the well is topped with a blowout preventer (BOP) 120 and/or a lubricator 116. In certain example embodiments, the sandline wire 112 is disposed through the BOP 120 and/or the lubricator 116 with the sandline tools downhole below the BOP 120 and/or the lubricator 116. Thus, as the sandline wire 112 is spooled and the sandline tools are raised, it is advantageous to slow down the spooling of the sandline wire 112 when the sandline tools get close to the surface, decreasing the likelihood of the sandline tools hitting parts of the BOP 120 or lubricator 116. In certain example embodiments, spooling of the sandline wire 112 is slowed as the sandline tools reach the top of the mast 118 to prevent the sandline tools from hitting the mast 102. The present disclosure provides systems and methods for measuring the distance, speed, and location of the sandline tools such that it can be detected when the sandline tools pass a threshold point, such as being within a certain distance from equipment such as the BOP 120, the lubricator 116, the mast 102, and the like. Furthermore, in certain example embodiments, the system controls the spooling or unspooling of the sandline wire 112 depending on the measured location of the sandline tools or the distance of the sandline wire 112. In certain example embodiments, such measurements are made with an instrumented sandline spool 200.
The spool 200 is instrumented with rotational detection devices. In certain example embodiments, the spool 200 is instrumented with an inductive proximity detection system. Specifically, in certain example such embodiments, the perimeter 207 of the first flange body 204 is instrumented with one or more targets 208. In certain example embodiments, the targets 208 are fixed to the flange body 204 or spool 200 in areas other than the perimeter 207. In certain example embodiments, the targets 208 are evenly spaced around the perimeter 207, and the number of targets 208 fixed to the perimeter 207 is selected in accordance with the size or diameter of the perimeter 207. In certain example embodiments, the targets 208 are made of metal. The targets 208 are fabricated from a metal material appropriate for detection by a sensor module 300.
In certain example embodiments, the targets 208 and the sensor module 300 have compatible configurations or shapes.
In certain example embodiments, the instrumented spool 200 includes other rotational detection devices rather than the example inductive proximity system discussed above. For example, in certain embodiments, the spool 200 includes an encoder-based rotational detection device. Specifically, in certain such embodiments, the spool 200 includes an optical encoder or a magnetic encoder. In another example embodiment, the spool 200 includes a hall effect rotational detection device. In certain example embodiments, the rotation detection device produces a quadrature signal as an output, from which rotational data, such as the amount, direction, and speed of revolution, can be derived. In certain example embodiments, different portions of the spool 200 or spool drum 108 can be instrumented with various sensors to generate rotational data.
In order to obtain data regarding the depth or extended length of the sandline, the rotational data collected by the rotational detection device is translated into depth data. Specifically, in order to do so, in certain example embodiments, a mathematical relationship between the number of revolutions of the spool 200 and the depth of the sandline 112 is derived.
dspool (602)=diameter of the spool with rope
drope (604)=diameter of the rope strand
nw./l (606)=wraps per layer
nnf (608)=total wraps beyond last full layer
countsrev=number of spool revolutions
counts=number of sensor/target counts
In certain example embodiments, such as those with multiple targets 208 disposed around the spool 200, the “counts” parameter refers to number of times a target is sensed, and the “countsrev” is determined by dividing the “counts” value by the total number of targets 208 on the spool.
Given these parameters, the depth of the sandline can be determined from the following equations:
By applying these algorithms, the depth of the sandline can be plotted against the number of revolutions of the spool. The depth algorithm takes into consideration layer compensation, in which the length of the sandline per layer on the spool 200 decreases as the layer comes closer to the spool body 202. Thus, the depth to revolution relationship determined through the depth algorithm above provides a more accurate measurement of the depth of the sandline 108.
In certain example embodiments, after the curve 706 is derived and plotted from the depth algorithm, a simplified relationship between the depth 704 and the number of revolutions 702 is determined. In certain example embodiments, the simplified relationship is a quadratic equation having the form ax2+bx+c, in which parameter a, b, and c are derived from the depth algorithm. In certain example embodiments, the simplified relationship is determined by applying a best-fit curve analysis to the curve 706 derived from the depth equation. In certain example embodiments, once the simplified relationship is derived, it can be used to determine the depth of the sandline from the number of revolutions of the spool using less computational resources and time. Thus, as the sandline 112 is being run into or out of hole, the depth of the sandline can be accurately monitored in real time. In certain example embodiments, the direction and velocity of the sandline can also be measured based on the disparity between the first and second inductive proximity sensors 302, 304.
In certain example embodiments, the measured depth of the sandline is used to determine and execute a number of control commands. For example, in certain embodiments, in a running out of hole sandline operation, when the measured depth of the sandline is determined to be less than a threshold value, a number of notification outputs or controls can occur. In certain example embodiments, the notification outputs include a visual indication, an audible indication, a message or indication delivered to a remote device, or any combination of these. In certain example embodiments, the controls include slowing down the running speed of the sandline, disabling the user-controls in favor of automated controls, limiting the running speed, stopping the running of the sandline, or any other desired or preprogrammed control scheme. Such notifications and controls allow for increased diligence in lifting the sandline and sandline tools to the top of the well or out of the well.
In certain example embodiments, it is determined if the current sandline operation is a running into hole operation (step 817). If it is not a running into hole operation, meaning it is a running out of hole operation, then depth control logic is performed (Step 818). Depth control logic is performed based on the abovementioned calculated and measured parameters and continuously checking them against threshold values. The depth control logic process, which produces notifications or control signals based on these parameters, is further detailed in
Although specific embodiments of the invention have been described above in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects of the invention were described above by way of example only and are not intended as required or essential elements of the invention unless explicitly stated otherwise. Various modifications of, and equivalent steps corresponding to, the disclosed aspects of the example embodiments, in addition to those described above, can be made by a person of ordinary skill in the art, having the benefit of this disclosure, without departing from the spirit and scope of the invention defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/760,552, titled “SANDLINE SPOOLING MEASUREMENT AND CONTROL FOR OIL FIELD SERVICE UNITS,” filed on Feb. 4, 2013, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4156467 | Patton | May 1979 | A |
4334217 | Nield | Jun 1982 | A |
4387295 | Minichiello | Jun 1983 | A |
7518526 | Newman | Apr 2009 | B2 |
20080037368 | Newman | Feb 2008 | A1 |
20110251803 | Teurlay et al. | Oct 2011 | A1 |
20120267466 | Tracey | Oct 2012 | A1 |
Entry |
---|
Copenheaver, Blaine R., International Search Report and Written Opinion of the International Searching Authority for PCT/US2014/014692, dated May 12, 2014, pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
20140216735 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61760552 | Feb 2013 | US |