The present invention relates to a sandwich stacking device used in sandwich production lines, wherein two halves of transversely bisected sandwiches are stacked vertically, one half on top of the other with aligned edges for packaging. The invention further relates to a sandwich production line containing such a device.
Conventionally packaged sandwiches are processed in mass production lines, where a two-bread slice sandwich is first assembled as a top and bottom slice with the sandwich ingredients between. The two bread slice sandwich is then cut diagonally and each separated half manually stacked in a triangular deck with one triangular half lying flush on the other triangular half, with the diagonal edges aligned. The resulting stack is then wrapped for shipment and sale.
In the prior art, applicant is aware of published European Patent Application 1591013 A1 titled “Sandwich stacking device as well as sandwich production line comprising such device”, by Bosgraaf Apparaten B.V., published Nov. 2, 2005. A sandwich production line is described using a sandwich stacking device. The stacking device lifts and rotates both halves of the sandwich using slotted paddles. Applicant is also aware of UK Patent 2400536 (A) titled “Apparatus for the Automatic Production of Sandwiches”, which issued on Mar. 7, 2006. A sandwich production line is described that separates sandwich halves, rotates one half 180 degrees by use of a vacuum paddle and powered by a stepper drive, then stacks the halves in triangle formation.
The present stacker stacks sandwiches in a production line. The stacker provides the means to quickly grasp, rotate, and stack one half of a triangularly or diagonally bisected sandwich on the other half. The sandwich stacker is mountable to a variety of motion and positioning devices (collectively herein referred to as positioning devices) such as, for example, a robotic arm, delta robot, gantry or servo actuator array so as to obtain lifting of one sandwich half relative to the other. The present sandwich stacker then rotates and deposits the lifted sandwich half onto the lower sandwich half so as to align the edges of both sandwich halves
Thus in one embodiment the present sandwich stacker, in conjunction with a positioning device, stacks bisected square sandwiches using a catch-lift-rotate-release technique. The sandwich half (S1) to be lifted is picked up for rotation a gripping assembly by first lowering a hold down plate over sandwich half (S1), thereby securing sandwich half (S1) in position with a hold-down force applied by the hold down plate. The sandwich stacker then grips sandwich half (S1), readying it for lifting and rotation, by swinging a sandwich gripper assembly, which includes a pair of wings and spatulas, radially in to position the spatulas under sandwich half (S1), thereby, securing sandwich half (S1) laterally within the corresponding support wings. The spatulas extend substantially orthogonally from the support wings and are co-planar with one another. The pair of spatulas slide under sandwich half (S1) as the wings swing into their lateral support positions. With the sandwich stacker's lifting spatulas thus beneath sandwich half (S1), the positioning device then lifts the sandwich stacker, which lifts sandwich half (S1) to an elevation slightly above an uppermost surface of the remaining second bisected sandwich half (S2). Once sandwich half (S1) has been so lifted, sandwich half (S1) is carried on the pair of spatulas, additionally supported by a pair of lateral support wings on the spatulas and by the hold down plate to secure sandwich half (S1) during rotation. During the rotation, the bread slices and sandwich filler between the bread slices in the sandwich half (S1) is laterally supported by the lateral support wings, and rotated by a rotation assembly approximately 180 degrees to align sandwich half (S1) vertically above sandwich half (S2). The spatulas and support wings are then swung out and away from sandwich half (S1), which then drops vertically onto sandwich half (S2). Sandwich half (S1) is urged downwardly by the hold down plate to both suppress rebound of sandwich half (S1), and to hold sandwich half (S1) in place resting on sandwich half (S2).
The positioning device then lifts the sandwich stacker to clear the gripping assembly over the upper surface of sandwich half (S1). The gripping assembly rotates back to its ready position, ready for lowering over the next sandwich to be assembled.
In what follows, multiple embodiments of the sandwich stacker are described in conjunction with references to the drawings wherein like reference numerals denote corresponding parts in each view. The description of the embodiments is not intended to be limiting.
The sandwich stacker (X1) according to a first embodiment is intended for use in a sandwich production line, but the invention is not so limited. Stacker (X1) is for example mounted on the distal end of a positioning device such as a gantry or robotic appendage including a robotic arm. The gripping, elevating and rotating mechanism of stacker (X1) provides for automatic stacking of sandwich halves as better described below. The gripping assembly provides for stable lifting, rotating, and lowering of a sandwich half as better described below.
Sandwich stacker (X1) in one embodiment, not intended to be limiting, mounts onto the positioning device using a mounting plate (1). Mounting plate (1) is but one example as the mounting may be accomplished by, for example, tool changers, an angle bracket, suction plate, clip lock or other mounting apparatus that would be known to one skilled in the art.
As seen in
Linkage member (7) is mounted on the end of drive shaft (6a) so that it is also driven in direction B upon actuation of linear actuator (6). Linkage member (7) and a pair of linkage arms (9) form a scissor linkage such that, as linkage member (7) is driven in direction B, the ends of linkage arms (9) distal from linkage member (7) are pulled and drawn together, drawing with them a corresponding pair of support wings 12 pivotally mounted for butterfly folding together of wing 12 in directions C about axis A2. During folding rotation, wings 12 are supported on wing support arms (8d). In the illustrated embodiment, again not intended to be limiting, support bolts (16) and corresponding bearings (15) support wing flanges (12a) up under wing support arms (8d), and slidingly follow along and in arcuate channels (8e) formed along the lengths of wing support arms (8d).
Once sandwich stacker (X1) is positioned over a sandwich half (S1) to be stacked by a positioning device such as robotic arm (R), seen by way of example in
As seen in
As seen in
As seen in
As seen in
As seen in
Although support wings (12) and lifting spatulas (13) are depicted as two separate components, with one mounted to the other to form the gripper assembly (X3), one skilled in the art will understand that they may be formed as a unitary component.
Possible other variations include but are not limited to: positioning means by various robot types, servos, gantry; rotational means by robot wrist, rotary servo, rotary actuators; support wings could be replaced with parallel linkage to bring lifters in parallel to edge faces of sandwich, static support wings with spatula lifters that rest behind the support wings, then actuate out beneath the sandwich once in place; hold down plate can be spring, pneumatic, solenoid, servo actuated; profile of hold down plate can be totally enclosed, radiused edged (large), profiled with a step to engage the body and the crust of the bread at different elevations. As seen in
In some situations, it has been found that the filler in a sandwich (S1, S2), when it is for example of particulate matter or viscous matter, may be flung from between the slices of bread in the sandwich during rotation of sandwich half (S1), especially where, due for example to the speed of the conveyor, that the rotation speed rotating half sandwich (S1) is necessarily relatively high. Where the sandwich filler has a propensity to be driven out centripetally from between the slices of bread, and in particular where the rotation speed for rotating sandwich half (S1) is high, it has been found useful to alter the geometric arrangement of sandwich stacker (X1) so that the axis of rotation A3 intersects sandwich half (S1) through its centre of mass rather than intersect the sandwich cut line (C1). As seen in
The illustrations of the second embodiment of sandwich stacker (X1) seen in
Thus mounting plate 1 in the second embodiment incorporates upper and lower halves releasably coupled together by a removable collar (1A) which provides for a quick release of sandwich stacker (X1) from, for example, the robotic wrist of robotic arm (R).
Rotary actuator (3) in the second embodiment may be a hydraulically driven actuator, which replaces the pneumatically driven actuator of the first embodiment. An electrically driven actuator may also be used. Alternatively, a robotic wrist may provide all of the rotation so as to give adequate torque, so that a separate rotary actuator 3 is not required. The rotational movement may be implemented using a combination of a robotic joint or wrist (R1) rotation, and rotation by a rotary actuator 3. The rotary actuator motion may be damped at its limits by shock absorbers (not shown) to assist deceleration of the end effector to prevent shock and centripetal flinging of the sandwich ingredients between the slices of bread upon completion of rotation.
In the second embodiment, hold down plate (14) is resiliently downwardly urged by a piston, or pair of pistons (22) as seen in
The scissor linkage actuated by linear actuator (6) via linkage number (7) in the first embodiment is replaced by the operation of a pair of linear actuators (26) mounted horizontally on opposite sides of housing (24). Actuators (26) simultaneously drive a yoke (28) which converts the linear translation from the linear actuators (26) to the rotational butterfly-folding of wings (12) about axis A2. In particular, yoke (28) engages the upright stub shafts (30) and (32) of corresponding crank arms (34) and (36) respectively so as to drive rotation of the pair of wings (12) about axis A2. Thus yoke (28) pushing or pulling on stub shaft (30) thereby actuates crank arm (34) on which stub shaft (30) is mounted to rotate the corresponding wing (12), being the left hand wing (12) in the cross-sectional view of
Wings (12) are of a modified design in the second embodiment as compared to the first embodiment in that, instead of the use of plates which extend upwardly from spatulas (13), each wing (12) instead has a fence (12C). Each fence (12C) includes a plurality of uprights (12D), the illustrated embodiment including five uprights (12D) interspersed between relatively large apertures (12E). The use of fences (12C) reduces the sticking of the sandwich filler to wings (12) when in their closed position gripping, sandwich half S1.
Upon activating the rotary actuator, the gripping assembly and sandwich half (S1) experiences rotational acceleration up until either a peak velocity of the rotary actuator is reached or until a shock absorber mounted inside the rotary actuator is activated. The shock absorber will be activated upon rotation of a preset angle of the gripping assembly and the negative acceleration it applies on the gripping assembly and sandwich half (S1) allow the rotational velocity to diminish before impacting the end of the rotary actuation. By using a shock absorber, the rotational acceleration at the end of the cycle is spread out over a longer time frame and does not peak as high. This allows for a softer, less damaging grip on the sandwich half (S1), as well as increases the lifespan of the end effector.
By way of example, during testing applicant has achieved 180 degree rotation of sandwich half (S1) in gripping assembly (x3) in 0.14 seconds. Analysis determined that angular acceleration by the rotating actuator occurred the first 0.11 seconds (covering an arc of 134 degrees) and that deceleration due to resistance caused by the damper or shock absorber occurred during the remaining 0.03 seconds (covering the remaining arc from 134 degrees to 180 degrees).
A corresponding representation of the rotation of gripping assembly (x3) is illustrated in
This process is duplicated in reverse when returning the end effector to its original state, only without the bisected sandwich half (S1). By implementing electrical servo control of the rotation as is the case with joint (R1) of a six degree of freedom robotic wrist, the acceleration and deceleration profiles can be controlled and thereby eliminate the need for further shock absorption. Ideally the acceleration and deceleration profiles enable rotating the sandwich half (S1) in the shortest period of time that minimizes the centripetal acceleration and deceleration that would cause the sandwich ingredients; i.e. filling, to become dislodged or to be flung from the sandwich half (S1).
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof.