Sanitary hydrant

Information

  • Patent Grant
  • 9228327
  • Patent Number
    9,228,327
  • Date Filed
    Tuesday, February 17, 2015
    9 years ago
  • Date Issued
    Tuesday, January 5, 2016
    9 years ago
Abstract
A freeze resistant sanitary hydrant is provided that employs a reservoir for storage of fluid under the frost line or in an area not prone to freezing. To evacuate this reservoir, a means for altering pressure is provided that is able to function in hydrant systems that employ a vacuum breaker.
Description
FIELD OF THE INVENTION

Embodiments of the present invention are generally related to contamination proof hydrants that employ a venturi that facilitates transfer of fluid from a self-contained water storage reservoir.


BACKGROUND OF THE INVENTION

Hydrants typically comprise a head interconnected to a water source by way of a vertically oriented standpipe that is buried in the ground or interconnected to a fixed structure, such as a roof. To be considered “freeze proof” hydrant water previously flowing through the standpipe must be directed away from the hydrant after shut off. Thus many ground hydrants 2 currently in use allow water to escape from the standpipe 6 from a drain port 10 located below the “frost line” 14 as shown in FIG. 1.


Hydrants are commonly used to supply water to livestock that will urinate and defecate in areas adjacent to the hydrant. It follows that the animal waste will leach into the ground. Thus a concern with freeze proof hydrants is that they may allow contaminated ground water to penetrate the hydrant through the drain port when the hydrant is shut off. More specifically, if a vacuum, i.e., negative pressure, is present in the water supply, contaminated ground water could be drawn into the standpipe and the associated water supply line. Contaminants could also enter the system if pressure of the ground water increases. To address the potential contamination issue, “sanitary” yard hydrants have been developed that employ a reservoir that receives water from the standpipe after hydrant shut off.


There is a balance between providing a freeze proof hydrant and a sanitary hydrant that is often difficult to address. More specifically, the water stored in the reservoir of a sanitary hydrant could freeze which can result in hydrant damage or malfunction. To address this issue, attempts have been made to ensure that the reservoir is positioned below the frost line or located in an area that is not susceptible to freezing. These measures do not address the freezing issue when water is not completely evacuated from the standpipe. That is, if the reservoir is not adequately evacuated when the hydrant is turned on, the water remaining in the reservoir will effectively prevent standpipe water evacuation when the hydrant is shut off, which will leave water above the frost line.


To help ensure that all water is evacuated from the reservoir, some hydrants employ a venturi system. A venturi comprises a nozzle and a decreased diameter throat. When fluid flows through the venturi a pressure drop occurs at the throat that is used to suction water from the reservoir. That is, the venturi is used to create an area of low pressure in the fluid inlet line of the hydrant that pulls the fluid from the reservoir when fluid flow is initiated. Sanitary hydrants that employ venturis must comply with ASSE-1057, ASSE-0100, and ASSE-0152 that require that a vacuum breaker or a backflow preventer be associated with the hydrant outlet to counteract negative pressure in the hydrant that may occur when the water supply pressure drops from time-to-time which could draw potentially contaminated fluid into the hydrant after shut off. Internal flow obstructions associated with the vacuum breakers and backflow preventers will create a back pressure that will affect fluid flow through the hydrant. More specifically, common vacuum breakers and backflow preventers employ at least one spring-biased check valve. When the hydrant is turned on spring forces are counteracted and the valve is opened by the pressure of the fluid supply, which negatively influences fluid flow through the hydrant. In addition an elongated standpipe will affect fluid flow. These sources of back pressure influence flow through the venturi to such a degree that a pressure drop sufficient to remove the stored water from the reservoir will not be created. Thus to provide fluid flow at a velocity required for proper functioning of the venturi, fluid diverters or selectively detachable backflow preventers, i.e., those having a quick disconnect capability, have been used to avoid the back pressure associated with the vacuum breakers of backflow preventers. In operation, as shown in FIG. 2, the diverter is used initially for about 45 seconds to ensure reservoir evacuation. Then, the diverter is disengaged so that the water will flow through the backflow preventer or vacuum breaker. The obvious drawback of this solution is that the diverter must be manually actuated and the user must allow water to flow for a given amount of time, which is wasteful.


Further, as the standpipe gets longer it will create more backpressure, i.e., head pressure, that reduces the flow of water through the venturi, and at some point a venturi of any design will be unable to evacuate the water in the reservoir. That is, the amount of time it takes for a hydrant to evacuate the water into the reservoir depends on the height/length of the standpipe as well as the water pressure. The evacuation time of roof hydrants of embodiments of the present invention, which has a 42″ standpipe, is 5 seconds at 60 psi. The evacuation time will increase with a lower supply pressure or increased standpipe length or diameter. Currently existing hydrants have evacuation times in the 30 second range.


Another way to address the fluid flow problem caused by vacuum breakers is to provide a reservoir with a “pressure system” that is capable of holding a pressure vacuum that is used to suction water from the standpipe after hydrant shut off. During normal use the venturi will evacuate at least a portion of the fluid from the reservoir. Supply water is also allowed to enter the reservoir which will pressurize any air in the reservoir that entered the reservoir when the reservoir was at least partially evacuated. When flow through the hydrant is stopped, the supply pressure is cut off and the air in the reservoir expands to created a pressure drop that suctions water from the standpipe into the reservoir. If the vacuum produced is insufficient, which would be attributed to incomplete evacuation of the reservoir, water from the standpipe will not drain into the reservoir and water will be left above the frost line.


Other hydrants employ a series of check valves to prevent water from entering the reservoir during normal operations. Hydrants that employ a “check system” uses a check valve to allow water into or out of the reservoir. When the hydrant is turned on, the check valve opens to allow the water to be suctioned from the reservoir. The check also prevents supply water from flowing into the reservoir during normal operations, which occurs during the operation of the pressure vacuum system. When the hydrant is shut off, the check valve opens to allow the standpipe water to drain into the reservoir. One disadvantage of a check system is that it requires a large diameter reservoir to accommodate the check valve. Thus a roof hydrant would require a larger roof penetration and a larger hydrant mounting system, which may not be desirable.


Another issue associated with both the pressure vacuum and check systems is that there must be a passageway or vent that allows air into the reservoir so that when a hydrant is turned on, the water stored in the reservoir can be evacuated. If the reservoir was not exposed to atmosphere, the venturi would not create sufficient suction to overcome the vacuum that is created in the reservoir.


SUMMARY OF THE INVENTION

It is one aspect of embodiments of the present invention to provide a sanitary and freeze proof hydrant that employs a venturi for suctioning fluid from a fluid storage reservoir. As one of skill in the art will appreciate, the amount of suction produced by the venturi is a function of geometry. More specifically, the contemplated venturi is comprised of a nozzle with an associated throat. Water traveling through the nozzle creates an area of low pressure at or near the throat that is in fluid communication with the reservoir. In one embodiment, the configuration of the nozzle and throat differs from existing products. That is, the contemplated nozzle is configured such that the venturi will operate in conjunction with a vacuum breaker, a double check backflow preventer, or a double check backflow prevention device as disclosed in U.S. Patent Application Publication No. 2009/0288722, which is incorporated by reference in its entirety herein, without the need for a diverter. Preferably, embodiments of the present invention are used in conjunction with the double check backflow prevention device of the '722 publication as it is less disruptive to fluid flow than the backflow preventers and vacuum breakers of the prior art.


While the use of a venturi is not new to the sanitary yard hydrant industry, the design features of the venturi employed by embodiments of the present invention are unique in the way freeze protection is provided. More specifically, current hydrants employ a system that allows water to bypass a required vacuum breaker. For example, the Hoeptner Freeze Flow Hydrant employs a detachable vacuum breaker and the Woodford Model S3 employs a diverter. Again, fluid diversion is needed so that sufficient fluid flow is achieved for proper venturi functions. The venturi design of sanitary hydrants of the present invention is unique in that the venturi will function properly when water flows through the vacuum breaker or double check backflow preventer—no fluid diversion at the hydrant head is required. This allows the hydrant to work in a way that is far more user friendly, because the hydrant is able to maintain its freeze resistant functionality without requiring the user to open a diverter, for example. Embodiments of the present invention are also environmentally friendly as resources are conserved by avoiding flowing water out of a diverter.


It is another aspect of the embodiments of the invention is to provide a hydrant that operates at pressures from about 20 psi to 125 psi and achieves a mass flow rate above 3 gallons per minute (GPM) at 25 psi, which is required by code. One difficult part of optimizing the flow characteristics to achieve these results is determining the nozzle diameter. It was found that a throat diameter change of about 0.040 inches would increase the mass flow rate by 2 GPM. That same change, however, affects the operation of the venturi. For example, hydrants with a nozzle diameter of 0.125 inches will provide acceptable reservoir evacuation but would not have the desired mass flow rate. A 0.147 inch diameter nozzle will provide an acceptable mass flow rate, but reservoir evacuation time was sacrificed. In one embodiment of the present invention a venturi having a nozzle diameter of about 0.160 inches is employed.


It is another aspect of the present invention to provide a nozzle having an exit angle that facilitates fluid flow through the venturi. More specifically, the nozzle exit of one embodiment possesses a gradual angle so that fluid flowing through the venturi maintains fluid contact with the surface of the nozzle and laminar flow is generally achieved. In one embodiment the exit angle is between about 4 to about 5.6 degrees. For example, nozzle exit having very gradual surface angle, e.g. 1-2 degrees, will evacuate the reservoir more quickly, but would require an elongated venturi. Thus, an elongated venturi may be used to reduce back pressure associated with the venturi, but doing so will add cost. The nozzle inlet may have an angle that is distinct from that of the exit to facilitate construction of the venturi by improving the machining process.


It is thus one aspect of the present invention to provide a sanitary hydrant, comprising: a standpipe having a first end and a second end; a head for delivering fluid interconnected to said first end of said standpipe; a fluid reservoir associated with said second end of said standpipe; a venturi positioned within said reservoir and interconnected to said second end of said standpipe, said venturi comprised of a first end, which is interconnected to said standpipe, and a second end associated with a fluid inlet valve with a throat between said first end and said second end of said venturi; a bypass tube having a first end interconnected to a location adjacent to said first end of said venturi and a second end interconnected to a bypass valve, said bypass valve also associated with said second end of said venturi, wherein when said bypass valve is opened, fluid flows from said inlet valve, through said bypass tube, through said standpipe, and out said hydrant head; and wherein when said bypass valve is closed, fluid flows through said venturi, thereby creating a pressure drop adjacent to said throat that communicates with said reservoir to draw fluid therefrom.


It is another aspect to provide a method of evacuating a sanitary hydrant, comprising: providing a standpipe having a first end and a second end; providing a head for delivering fluid interconnected to said first end of said standpipe; providing a fluid reservoir associated with said second end of said standpipe; providing a venturi positioned within said reservoir and interconnected to said second end of said standpipe, said venturi comprised of a first end, which is interconnected to said standpipe, and a second end associated with a fluid inlet valve with a throat between said first end and said second end of said venturi; providing a bypass tube having a first end interconnected to a location adjacent to said first end of said venturi and a second end interconnected to a bypass valve, said bypass valve also associated with said second end of said venturi, wherein when said bypass valve is opened, fluid flows from said inlet valve, through said bypass tube, through said standpipe, and out said hydrant head; and wherein when said bypass valve is closed, fluid flows through said venturi, thereby creating a pressure drop adjacent to said throat that communicates with said reservoir to draw fluid therefrom initiating fluid flow through said head by actuating a handle associated therewith; actuating a bypass button that opens the bypass valve such that fluid is precluded from entering said venturi; actuating said bypass button to close said bypass valve; flowing fluid through said venturi; evacuating said reservoir; ceasing fluid flow through said hydrant; and draining fluid into said reservoir.


The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. Moreover, references made herein to “the present invention” or aspects thereof should be understood to mean certain embodiments of the present invention and should not necessarily be construed as limiting all embodiments to a particular description. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present invention will become more readily apparent from the Detail Description, particularly when taken together with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.



FIGS. 1A-1C are a depiction of the operation of a hydrant of the prior art;



FIGS. 2A-2C are a series of figures depicting the use of a flow diverter of the prior art;



FIG. 3 is a cross section of a venturi of the prior art;



FIG. 4 is a perspective view of a venturi system employed by the prior art;



FIG. 5 is a perspective view of one embodiment of the present invention;



FIG. 6 is a detailed view of the venturi system of the embodiment of FIG. 5;



FIG. 7 is a perspective view similar to that of FIG. 6 wherein the reservoir has been omitted for clarity;



FIG. 8 is a cross sectional view of a venturi system that employs a bypass tube of one embodiment of the present invention;



FIG. 9 is a cross sectional view of a bypass valve used in conjunction with the embodiment of FIG. 5 shown in an open position;



FIG. 10 shows the bypass valve of FIG. 9 in a closed position;



FIG. 11 is a top perspective view of one embodiment of the present invention showing a bypass button and an electronic reservoir evacuation button;



FIG. 12 is a graph showing sanitary hydrant comparisons;



FIG. 13 is a perspective view of a venturi system of another embodiment of the present invention;



FIG. 14 is a detailed cross sectional view of FIG. 13 showing the check valve in a closed position when the hydrant is on;



FIG. 15 is a detailed cross sectional view of FIG. 13 showing the check valve in an open position when the hydrant is off;



FIG. 16 is a cross sectional view showing a hydrant of another embodiment of the present invention;



FIG. 17 is a detail view of FIG. 16;



FIG. 18 is a detail view of FIG. 17



FIG. 19 is a cross section of another embodiment of the present invention; and



FIG. 20 is a table showing a comparison of various hydrant assemblies and the operation cycle of each.





It should be understood that the drawings are not necessarily to scale, but that relative dimensions nevertheless can be determined thereby. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.


To assist in the understanding of one embodiment of the present invention the following list of components and associated numbering found in the drawings is provided herein:













#
Component
















2
Hydrant


4
Head


5
Handle


6
Standpipe


10
Drain port


14
Frost line


18
Venturi


22
Diverter


26
Vacuum breaker


30
Siphon tube


34
Check valve


36
Outlet


37
Venturi vacuum inlet and drain port


38
Hydrant inlet valve


42
Bypass


46
Bypass button


50
Casing cover


54
Piston


56
Bypass valve


57
Control rod


58
Secondary spring operated piston


59
Bottom surface


60
EFR button


64
LED


68
Screen piston


72
Reservoir


76
Check valve piston


80
Vent


82
Inlet Check Valve


84
Outlet Check Valve


86
Fixed Inlet Volume


88
Fixed Outlet Volume


90
Valve Body


92
Inlet Check Body


94
Inlet Check Spring


96
Valve Cap









DETAILED DESCRIPTION

The venturi 18 and related components used in the hydrants of the prior art is shown in FIGS. 3 and 4 and functions when the hydrant issued in conjunction with a vacuum breaker and a diverter. The diverter is needed to allow the venturi to work properly in light of the flow obstructions associated with the vacuum breaker. A typical on/off cycle for this hydrant (see also FIG. 2) requires that the user open the hydrant to cause water to exit the diverter 22 and not the vacuum breaker 26. As the water flows out of the diverter 22, a vacuum is created that draws water through a siphon tube 30 and check valve 34, which evacuates the reservoir (not shown). Flowing water through the diverter 22 for about 30 to 45 seconds will generally evacuate the reservoir. Next, as shown in FIG. 2, the diverter 22 is pulled down to redirect the water out of the vacuum breaker 26. The vacuum breaker 26 allows the hydrant 2 to be used with an attached hose and/or a spray nozzle as the vacuum breaker 26 will evacuate the head when the hydrant 2 is shut off, thereby making it frost proof. When the water is flowing out of the vacuum breaker 26 the venturi 18 will stop working and the one-way check valve 34 will prevent water from entering the reservoir. Once the hydrant is shut off, the water in the standpipe 6 will drain through a venturi vacuum inlet and drain port 37 that is in fluid communication with the reservoir similar to that disclosed in U.S. Pat. No. 5,246,028 to Vandepas, which is incorporated by reference herein. The check valve 34 is also pressurized when the hydrant is turned off because the shut off valve 38 is located above the check valve 34.


A venturi assembly used in other hydrants that employ a pressurized reservoir also provides a vacuum only when water flows through a diverter. A typical on/off cycle for a hydrant that uses this venturi configuration is similar to that described above, the exception being that a check valve that prevents water from entering the reservoir is not used. When the diverter is transitioned so water flows through the vacuum breaker, the backpressure created thereby will cause water to fill and pressurize the reservoir, which prevents water ingress after hydrant shut off. As the reservoir is at least partially filled with water during normal use, the user needs to evacuate the hydrant after shut off by removing any interconnected hose and diverting fluid for about 30 seconds, which will allow the venturi to evacuate the water from the reservoir.


A hydrant of embodiments of the present invention shown in FIGS. 5-11 which may employ a venturi with an about ⅛″ diameter nozzle. To account for the decrease in mass flow and associated back pressure that affects the functionality of the venturi described above, a bypass 42 is employed. More specifically, the bypass 42 maintains the flow rate out of the hydrant head 4 and allows for water to be expelled from the head 4 at the expected velocity. Fluid bypass is triggered by actuating a button 46 located on the casing cover 50 as shown in FIG. 11. When the hydrant is turned on the user pushes the bypass button 46 that will in turn move a bypass piston 54 of a bypass valve 56 into the open position as shown in FIG. 9. This will allow water to bypass the venturi 2 and re-enter the standpipe above the restriction caused by the venturi. The increased flow rate is greater than could be achieved with a venturi alone, even if the diameter of the venturi nozzle was increased.


While the bypass allows the mass flow rate to increase greatly, it also causes the venturi to stop creating a vacuum that is needed to evacuate the reservoir. Before normal use, the bypass piston 54 is closed as shown in FIG. 10. Similar to the system described in FIG. 16 below, the venturi 18 and associated bypass 42 are associated with a control rod 57 that is associated with the hydrant handle 5. Opening of the hydrant transitions the control rod 57 upwardly, which pulls the venturi 18 and associated bypass 42 upwardly and opens the hydrant inlet valve 38 to initiate fluid flow. Conversely, transitioning the hydrant handle 5 to a closed position will move the venturi 18 and associated bypass 42 downwardly such that a secondary spring operated piston 58 of the bypass valve 56 well contact a bottom surface 59 of the reservoir. As the secondary spring piston 58 contacts the bottom surface 59, the bypass valve 54 moves to a closed position as shown in FIG. 10. Moving the handle 5 to an open position to initiate fluid flow through the hydrant head will separate the secondary spring operated piston 58 from the bottom surface 59 of the reservoir which allows the bypass piston 54 to move to an open position as shown in FIG. 9 when the bypass button 46 is actuated. When the bypass 42 is in the closed position, water is forced to flow through the venturi causing a vacuum to occur, thereby causing the reservoir to be evacuated each time the hydrant is used. After water flows from the vacuum breaker for a predetermined time, the user will actuate the bypass button 46 which opens the bypass valve 56 to divert fluid around the venturi 2. The secondary spring operated piston 58, which is designed to account for tolerances making assembly of the hydrant easier. The secondary spring operated piston 58 also makes sure the hydrant will operate properly if there are any rocks or debris present in the hydrant reservoir.


The venturi 18 of this embodiment can be operated in a 7′ bury hydrant with a minimum operating pressure of 25 psi. The other major exception is the addition of the aforementioned bypass valve 56 that allows the hydrant to achieve higher flow rates.


In operation with a hose, initially the hose is attached to the backflow preventer 26 or the bypass button is pushed to that the venturi will not operate correctly and the one way check valve 34 will be pressurized in such a way to prevent flow of fluid from the reservoir. After the hydrant is shut off, the hose is removed from vacuum breaker 26. Next the hydrant 2 is turned on and water flows through the vacuum breaker 26 for about 30 seconds. When there is no hose attached, and the bypass has not been activated, the venturi 18 will create a vacuum that suctions water from the reservoir 72 and making the hydrant frost proof. Thus when the hydrant is later shut off, the check valve piston will move up and force open the one way check valve 34 to allow water in the hydrant to drain into the reservoir. This operation will also reset the bypass valve 56 into the closed position.


Some embodiments of the present invention will also be equipped with an Electronic Freeze Recognition (EFR) device as shown in FIG. 11. The EFR includes a button 60 that allows the user to ascertain if the water has been evacuated from the standpipe 6 properly and if the hydrant is ready for freezing weather. The device uses a circuit board in concert with a dual color LED 64 as shown in FIG. 11 to warn the operator of a potential freezing problem. When the EFR button 60 is pushed and the LED 64 glows red it indicates that the hydrant has not been evacuated properly. This informs the operator that the water in the reservoir is above the frost line, and the hydrant needs to be evacuated by the method described above. A green LED 64 indicates the hydrant has been operated properly and the hydrant is ready for freezing weather.


Flow rates for hydrants of embodiments of the present invention compare favorably with existing sanitary hydrants on the market, see FIG. 12. The prior art models are compared with hydrants that use a vacuum breaker and hydrants that use a double check backflow preventer. The venturi and related bypass system will meet ASSE 1057 specifications.


Another embodiment of the present invention is shown in FIGS. 13-15 that does not employ a bypass. Variations of this embodiment employ an about 0.147 to an about 0.160 diameter nozzle, which allows for a flow rate of 3 gallons per minute at 25 psi and evacuation of the reservoir at 20 psi. As this configuration meets the desired mass flow characteristics, a bypass is not required to obtain the mass flow rate, and therefore this hydrant can be produced at a lower cost. This embodiment also employs a dual-use check valve. The check valve is closed by a spring when the hydrant is turned on as shown in FIG. 14 to prevent water from filling the reservoir. Again, when water is flowing through the double check backflow preventer a suction can still be produced to pull water from the reservoir through this check valve. When the hydrant is turned off, a screen piston 68 moves up when it contacts the bottom surface 59 of the reservoir which forces the check valve 34 into the open position as shown in FIG. 15. This allows the water in the hydrant to drain into the reservoir, thereby making the hydrant freeze resistant. Other embodiments of the present invention employ a venturi to evacuate a reservoir, but do not need a diverter to operate correctly. More specifically, a venturi is provided that will evacuate a reservoir through a double check backflow preventer.


The check valve 34 depicted in FIGS. 14 and 15 is a double check valve 34 comprising an inlet check valve 82 and an outlet check valve 84. A fixed inlet volume 86 and a fixed outlet volume 88 are at least partially defined within a valve body 90 of the double check valve 34. A valve cap 96 at least partially defines the fixed inlet volume 86 and secures the components of the inlet check valve 82, and the fixed inlet volume 86 provides space for components of the inlet check valve 82. Similarly, the fixed outlet volume 88 provides space for components of the outlet check valve 84.


In the embodiment depicted in FIGS. 14 and 15, the inlet check valve 82 comprises an inlet check body 92 and an inlet check spring 94. Other embodiments may optionally include an inlet check seal that is disposed about the inlet check body 92. The inlet check body 92 is disposed in the inlet check spring 94 such that the inlet check body 92 is biased downward. When the inlet check body 92 is fully biased downward, the inlet check body prevents fluid flow from the inlet check valve 82 into the outlet check valve 84, but allows fluid flow from the outlet check valve 84 into the inlet check valve 82. The outlet check valve 84 depicted in FIGS. 14 and 15 comprises a screen piston 68. The screen portion of the screen piston 68 filters any rocks or debris from the reservoir 72. FIG. 15 depicts the double check valve 34 in the closed position where the screen of the screen piston 68 contacts a bottom surface 59 of the reservoir 72. This drives the screen piston 68 upward into the inlet check body 92 such that a seal between the inlet check body 92 and the valve body 90 is broken and fluid may drain into the reservoir 72.



FIGS. 16-18 show a hydrant of another embodiment of the present invention that is simpler and more user friendly than sanitary hydrants currently in use. This hydrant is limited to a 5′ bury depth and a minimum working pressure of about 40 psi, which maximizes the venturi flow rate potential, while still being able to evacuate the reservoir as water flows through a double check. A one-way check valve 34 is provided that is forced open when the hydrant is shut off as shown in FIG. 17.


In operation, this venturi system operates similar to those described above with respect to FIGS. 5-11. More specifically, the venturi is interconnected to a movable control rod 57 that is located within the standpipe 6. The handle 5 of the hydrant is thus ultimately interconnected to the venturi 18 and by way of the control rod 57. To turn on the hydrant, the user moves the handle 5 to an open position, which pulls the control rod 57 upwardly and opens the inlet valve 38 such that water can enter the venturi 18. Pulling the venturi upward also removes the check valve 34 upwardly such that the screen piston 68 moves away from the bottom surface 59 of the hydrant 2. To turn the hydrant off, the handle 5 is moved to a closed position which moves the control rod 57 downwardly to move the venturi 18 downwardly to close the inlet valve 38. Moving the venturi downwardly also transitions the screen piston 68 which opens the check valve 34. To allow for evacuation reservoir a vent 80 may be provided on an upper surface of the hydrant.


Generally, this hydrant functions when a hose is attached to the backflow preventer. When the hose is attached, the venturi will not operate correctly and the pressure acting on the one way check valve 34 will prevent water ingress into the reservoir 72. After the hydrant is shut off, the hose is removed from vacuum breaker, the hydrant must be turned on so that the water can flow through the double check vacuum preventer for about 15 seconds. That is, when there is no hose attached, the venturi will create a vacuum sufficient enough to suction water from the reservoir 72, and making the hydrant frost proof. When the hydrant is later shut off, the check valve piston 26 will move up and force the one way check valve to an open position which allows the water in the hydrant to drain into the reservoir 72.



FIG. 19 shows yet another hydrant of embodiments of the present invention that is designed specifically for mild climate use (under 2′ bury) and roof hydrants. The outer pipe of the roof hydrant is a smaller 1½ diameter PVC, instead of the 3″ used in some of the embodiments described above. This hydrant uses a venturi without a check valve in concert with a pressurized reservoir, a diverter is not used. The operation is the same as described above with respect to hydrant with a pressurized reservoir, with the evacuation of the reservoir being completed after the user detaches the hose.



FIG. 20 is a table comparing the embodiments of the present invention, which employ an improved venturi of that employ a bypass system, with hydrants of the prior art manufactured by the Assignee of the instant application. The embodiment shown in FIG. 7, for example, provides an increased flow rate, has an increased bury depth, and can operate at lower fluid inlet pressures. The evacuation time is discussed over the prior art.


While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims. Further, the invention(s) described herein is capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. For example, aspects of inventions disclosed in U.S. Patent and Published Patent Application Nos. 5,632,303, 5,590,679, 7,100,637, 5,813,428, and 20060196561, all of which are incorporated herein by this reference, which generally concern backflow prevention, may be incorporated into embodiments of the present invention. Aspects of inventions disclosed in U.S. Pat. Nos. 5,701,925 and 5,246,028, all of which are incorporated herein by this reference, which generally concern sanitary hydrants, may be incorporated into embodiments of the present invention. Aspects of inventions disclosed in U.S. Pat. Nos. 6,532,986, 6,805,154, 6,135,359, 6,769,446, 6,830,063, RE39,235, 6,206,039, 6,883,534, 6,857,442 and 6,142,172, all of which are incorporated herein by this reference, which generally concern freeze-proof hydrants, may be incorporated into embodiments of the present invention. Aspects of inventions disclosed in U.S. Patent and Published Patent Application Nos. D521,113, D470,915, 7,234,732, 7,059,937, 6,679,473, 6,431,204, 7,111,875, D482,431, 6,631,623, 6,948,518, 6,948,509, 20070044840, 20070044838, 20070039649, 20060254647 and 20060108804, all of which are incorporated herein by this reference, which generally concern general hydrant technology, may be incorporated into embodiments of the present invention.

Claims
  • 1. A hydrant, comprising: a pipe having a first end and a second end;a head for delivering fluid interconnected to said first end of said pipe;a fluid reservoir associated with said second end of said pipe;a means for altering pressure positioned within said reservoir and interconnected to said second end of said pipe, said means for altering pressure comprised of a first end, which is interconnected to said pipe, and a second end associated with a fluid inlet valve with a throat between said first end and said second end of said means for altering pressure;a bypass tube having a first end interconnected to a location adjacent to said first end of said means for altering pressure and a second end interconnected to a bypass valve, said bypass valve also associated with said second end of said means for altering pressure;wherein when said bypass valve is opened, fluid flows from said inlet valve, through said bypass tube, through said pipe, and out said hydrant head; andwherein when said bypass valve is closed, fluid flows through said means for altering pressure, thereby creating a pressure drop adjacent to said throat that communicates with said reservoir to draw fluid therefrom.
  • 2. The hydrant of claim 1, further comprising a check valve associated with said means for altering pressure that selectively allows access to the internal volume of said reservoir.
  • 3. The hydrant of claim 1, further comprising a freeze recognition button that allows the user to ascertain if the water has been evacuated from the pipe after flow of fluid from the hydrant is ceased.
  • 4. The hydrant of claim 3, wherein said freeze recognition button is associated with a visual indicator.
  • 5. The hydrant of claim 1, wherein a double check valve is associated with said head of said hydrant.
  • 6. The hydrant of claim 5, wherein said double check valve is comprised of: a valve body with threads that are adapted to receive a hose, said valve body also having an inlet volume and an outlet volume separated by an internally-disposed wall, a lower surface of said wall defining a valve seat, the valve body further including a vent that provides a flow path between the outside of the valve body and said inlet volume; a seal positioned within said valve body in a volume located adjacent to said inlet volume, said seal adapted to selectively block said vent;a valve cap interconnected to said valve body that is positioned within said volume that maintains the seal against said valve body, said valve cap having threads for interconnection to a sill cock of a faucet;an inlet check valve comprising: an inlet check spring positioned within said inlet volume, wherein said spring contacts an upper surface of said wall, an inlet check body positioned within said inlet check spring, an inlet check seal interconnected to said inlet check body that is adapted to selectively engage said seal, thereby opening and closing an aperture of said seal to control fluid flow from the valve cap into the inlet volume;a drain spring positioned within said outlet volume that contacts said seat and a plunger that is adapted to engage a hose;an outlet check valve comprising: an outlet check body positioned within said drain spring, an outlet check seal interconnected to said outlet check body that is adapted to selectively engage said seat to either open a flow path between the inlet volume and outlet volume, or isolate the outlet volume from said inlet volume, thereby preventing fluid from flowing from an interconnected hose into the sill cock; andan outlet check spring positioned about said outlet check body that contacts a portion of said outlet check body and a hub of said plunger.
  • 7. A hydrant, comprising: a standpipe having a first end and a second end;a head for delivering fluid interconnected to said first end of said standpipe, said head comprising a handle translatable between an open position and a closed position;a fluid reservoir associated with said second end of said standpipe;a venturi comprising a first end which is interconnected to said second end of said standpipe, a second end associated with a fluid inlet valve;a double check valve associated with said venturi that selectively allows fluidic communication with said reservoir;a control rod disposed within said standpipe, said control rod comprising a first end operatively connected to said handle and a second end operatively connected to said venturi, wherein when said handle is in said open position, said control rod translates said venturi upward, and wherein when said handle is in said closed position, said control rod translates said venturi downward;wherein when said handle is in said open position, said double check valve is in a closed position which prevents fluid flowing from said venturi into said reservoir; andwherein when said handle is in said closed position, said double check valve is in an open position which allows fluid to drain from said venturi into said reservoir.
  • 8. The hydrant of claim 7, wherein when said handle is in said open position, fluid flowing through said venturi creates a pressure drop that pulls fluid from said reservoir through said double check valve.
  • 9. The hydrant of claim 7, wherein said double check valve comprises: a valve body with a fixed inlet volume and a fixed outlet volume, wherein said inlet volume and said outlet volume are separated by a wall;a valve cap, wherein the valve cap at least partially defines said fixed inlet volume;an inlet check valve positioned within said inlet volume; andan outlet check valve positioned within said outlet volume.
  • 10. The hydrant of claim 9, wherein said inlet check valve comprises: an inlet check spring positioned within said inlet volume;an inlet check body positioned within said inlet check spring; andan inlet check seal interconnected to said inlet check body that is adapted to prevent fluid flow from said inlet check valve into said outlet check valve when said double check valve is in said open position.
  • 11. The hydrant of claim 9, wherein said outlet check valve comprises: a screen piston;a screen disposed on one end of said screen piston, wherein said screen filters out any rocks or debris present in said reservoir.
  • 12. The hydrant of claim 11, wherein the internal volume of said reservoir comprises a bottom surface, wherein said screen of said screen piston extends outward from said valve body toward said bottom surface, and wherein contact between said screen and said bottom surface forces said double check valve into said open position.
  • 13. The hydrant of claim 7, further comprising a freeze recognition button that allows a user to ascertain if fluid has been evacuated from said standpipe after flow of fluid from said hydrant is ceased.
  • 14. The hydrant of claim 13, wherein said freeze recognition button is associated with a visual indicator.
  • 15. The hydrant of claim 7, wherein a double check valve is associated with said head of said hydrant.
  • 16. A sanitary hydrant, comprising: a standpipe having a first end and a second end;a head for delivering fluid interconnected to said first end of said standpipe, said head comprising a handle translatable between an open position and a closed position;a fluid reservoir associated with said second end of said standpipe;a venturi comprising a first end which is interconnected to said second end of said standpipe, a second end associated with a fluid inlet valve;a double check valve associated with said venturi that selectively allows fluidic communication with said reservoir;wherein when said handle is in said open position, said double check valve is in a closed position which prevents fluid flowing from said venturi into said reservoir;wherein when said handle is in said closed position, said double check valve is in an open position which allows fluid to drain from said venturi into said reservoir;wherein said double check valve comprises: a valve body with a fixed inlet volume and a fixed outlet volume, wherein said inlet volume and said outlet volume are separated by a wall;a valve cap, wherein the valve cap at least partially defines said fixed inlet volume;an inlet check valve positioned within said inlet volume; andan outlet check valve positioned within said outlet volume; andwherein said outlet check valve comprises: a piston; anda disposed on one end of said piston, wherein said filters out any rocks or debris present in said reservoir.
  • 17. The hydrant of claim 16, wherein the internal volume of said reservoir comprises a bottom surface, wherein a screen of said piston extends outward from said valve body toward said bottom surface, and wherein contact between said screen and said bottom surface forces said double check valve into said open position.
  • 18. The hydrant of claim 16, further comprising a freeze recognition button that allows a user to ascertain if fluid has been evacuated from said standpipe after flow of fluid from said hydrant is ceased.
  • 19. The hydrant of claim 16, wherein when said handle is in said open position, fluid flowing through said venturi creates a pressure drop that pulls fluid from said reservoir through said double check valve.
  • 20. The hydrant of claim 16, wherein said inlet check valve comprises: an inlet check spring positioned within said inlet volume;an inlet check body positioned within said inlet check spring; andan inlet check seal interconnected to said inlet check body that is adapted to prevent fluid flow from said inlet check valve into said outlet check valve when said double check valve is in said open position.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 13/933,264, filed Jul. 2, 2013, now U.S. Pat. No. 8,955,538, which is a continuation of U.S. patent application Ser. No. 13/048,445, filed Mar. 15, 2011, now U.S. Pat. No. 8,474,476, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/313,902, filed Mar. 15, 2010, and U.S. Provisional Patent Application Ser. No. 61/313,918, filed Mar. 15, 2010, the entire disclosures of which are incorporated by reference herein. This application is also related to U.S. Pat. Nos. 8,042,565, 7,472,718, and 7,730,901, the entire disclosures of which are incorporated by reference herein.

US Referenced Citations (243)
Number Name Date Kind
21858 Swan Oct 1858 A
53944 Biggs et al. Apr 1866 A
244804 Gillespie Jul 1881 A
556500 Fox Mar 1896 A
610470 Buehler Sep 1898 A
616542 Koehne Dec 1898 A
695147 Denney Mar 1902 A
695311 Hickey Mar 1902 A
926185 Hayes Jun 1909 A
934188 Kirby Sep 1909 A
962294 Armington Jun 1910 A
1021537 Lawnin Mar 1912 A
1069003 Haennig Jul 1913 A
1310521 Crall Jul 1919 A
1426407 Pennington Aug 1922 A
1433110 Buckler Oct 1922 A
1556241 Mueller Oct 1925 A
1570180 Pulliam Jan 1926 A
1621905 Russell Mar 1927 A
1774307 Willig Aug 1930 A
1828763 Carnes Oct 1931 A
1936669 Heeter Nov 1933 A
2025067 Miller Dec 1935 A
2072427 O'Brien Mar 1937 A
2077021 Sites Apr 1937 A
2097733 Miller Nov 1937 A
2140829 Child Dec 1938 A
2306012 Campbell Dec 1942 A
2329960 Verheul Sep 1943 A
2429940 McDaniel Oct 1947 A
2484063 Ackley Oct 1949 A
2498395 Coss Feb 1950 A
2574625 Coss Nov 1951 A
2580199 Schmid Dec 1951 A
2583956 Lindsay et al. Jan 1952 A
2598488 Bart May 1952 A
2599325 Fritzberg Jun 1952 A
2605781 Schmid et al. Aug 1952 A
2629402 Cook Feb 1953 A
2652224 Noland Sep 1953 A
2664096 Murdock et al. Dec 1953 A
2675825 Hobbs et al. Apr 1954 A
2688976 Baker Sep 1954 A
2708449 Keithley May 1955 A
2730326 Staben Jan 1956 A
2893418 Leventhal Jul 1959 A
2949933 Moen Aug 1960 A
2986341 Goodrie May 1961 A
2997054 Woodford Aug 1961 A
3014667 McLean et al. Dec 1961 A
3017896 Papacek Jan 1962 A
3023767 Woodford Mar 1962 A
3029603 Ackroyd Apr 1962 A
3056418 Adams et al. Oct 1962 A
3070116 Noland et al. Dec 1962 A
3146142 Maly Aug 1964 A
3150383 Reich Sep 1964 A
3162407 Yax Dec 1964 A
3244192 Noland Apr 1966 A
3283093 Bishop Nov 1966 A
3348862 Leopold, Jr. et al. Oct 1967 A
3380464 Arterbury Apr 1968 A
3384113 Pennisi May 1968 A
3390898 Sumida Jul 1968 A
3392745 Noland Jul 1968 A
3407837 Fulton et al. Oct 1968 A
3414001 Woodford Dec 1968 A
3416555 Chapou Dec 1968 A
3424189 Woodford Jan 1969 A
3429596 Marshall Feb 1969 A
3480027 Noland Nov 1969 A
3543786 Woodford Dec 1970 A
3612584 Taylor Oct 1971 A
3638680 Kopp Feb 1972 A
3679241 Hoffmann Jul 1972 A
D227365 Woodford Jun 1973 S
D227366 Woodford Jun 1973 S
3818874 Tria Jun 1974 A
3885585 Carpentier May 1975 A
D236892 Carlson Sep 1975 S
3905382 Waterson Sep 1975 A
3913602 Yoon Oct 1975 A
3952770 Botnick Apr 1976 A
3983896 Harrington Oct 1976 A
4008732 Fichter et al. Feb 1977 A
4013088 Gocke et al. Mar 1977 A
D244605 Ratnik Jun 1977 S
4034174 McCord Jul 1977 A
4093280 Yoshizawa et al. Jun 1978 A
4103941 Stoll Aug 1978 A
4109671 Hughes et al. Aug 1978 A
4112966 Carlson Sep 1978 A
4117856 Carlson Oct 1978 A
4134424 Zeyra et al. Jan 1979 A
4158366 Van Meter Jun 1979 A
4178956 Fillman Dec 1979 A
4182356 Woodford, Sr. Jan 1980 A
4209033 Hirsch et al. Jun 1980 A
4212319 Krablin Jul 1980 A
4266813 Oliver May 1981 A
4281857 Randall Aug 1981 A
4286616 Botnick Sep 1981 A
4300593 Ritter Nov 1981 A
4316481 Fillman Feb 1982 A
4429422 Wareham Feb 1984 A
D275512 Shaw Sep 1984 S
4483361 Jungbert, Sr. Nov 1984 A
4503877 Ward et al. Mar 1985 A
4577653 Marty Mar 1986 A
D284302 Hammarstedt Jun 1986 S
4609006 Parkison et al. Sep 1986 A
4619287 Hama et al. Oct 1986 A
4649959 Wadleigh Mar 1987 A
4653521 Fillman et al. Mar 1987 A
4653522 Fillman et al. Mar 1987 A
4655486 Tarnay et al. Apr 1987 A
4700732 Francisco Oct 1987 A
4703956 Keech Nov 1987 A
4712575 Lair Dec 1987 A
4712812 Weir, III Dec 1987 A
D297971 Kiyota et al. Oct 1988 S
4776362 Domingue et al. Oct 1988 A
4784303 Ahad et al. Nov 1988 A
4790573 Cardozo Dec 1988 A
4798221 Crawford et al. Jan 1989 A
4821762 Breneman Apr 1989 A
4821763 Ackroyd et al. Apr 1989 A
4854339 Hoeptner, III Aug 1989 A
4884725 Ahad et al. Dec 1989 A
4909270 Enterante, Sr. et al. Mar 1990 A
4937559 Meacham et al. Jun 1990 A
4946434 Plaisted et al. Aug 1990 A
4964657 Gonzales Oct 1990 A
4976279 King, Sr. et al. Dec 1990 A
4984306 Sumerix Jan 1991 A
5024419 Mulvey Jun 1991 A
5029603 Ackroyd Jul 1991 A
5033500 Hoeptner, III Jul 1991 A
5045836 Nobles, Jr. Sep 1991 A
5050632 Means, Jr. Sep 1991 A
5054517 Liesenhoff et al. Oct 1991 A
5058627 Brannen Oct 1991 A
5109929 Spears May 1992 A
5135028 Rickenbach et al. Aug 1992 A
5160179 Takagi Nov 1992 A
5195785 Jellison Mar 1993 A
5205325 Piper Apr 1993 A
5217040 Hochstrasser Jun 1993 A
5226629 Millman et al. Jul 1993 A
5228470 Lair et al. Jul 1993 A
5241981 Ahern Sep 1993 A
5246028 Vandepas Sep 1993 A
5261441 Anderson Nov 1993 A
5284582 Yang Feb 1994 A
5366257 McPherson et al. Nov 1994 A
5392805 Chrysler Feb 1995 A
5394572 Humphreys Mar 1995 A
5399173 Parks et al. Mar 1995 A
5402815 Hoch, Jr. et al. Apr 1995 A
5437481 Spears et al. Aug 1995 A
5482329 McCall et al. Jan 1996 A
5496076 Lin Mar 1996 A
5551473 Lin et al. Sep 1996 A
5555907 Philipp Sep 1996 A
5590679 Almasy et al. Jan 1997 A
5603347 Eaton Feb 1997 A
5632303 Almasy et al. May 1997 A
5649723 Larsson Jul 1997 A
5653254 Condon et al. Aug 1997 A
5690141 Creaghe Nov 1997 A
5701925 Mulligan et al. Dec 1997 A
5740831 DeNardo et al. Apr 1998 A
5752542 Hoeptner, III May 1998 A
5788443 Cabahug Aug 1998 A
5813428 Almasy et al. Sep 1998 A
5890241 Ball Apr 1999 A
5906341 Brown May 1999 A
5911240 Kolar et al. Jun 1999 A
5961095 Schroff Oct 1999 A
5964246 Meeker Oct 1999 A
D421092 Martin Feb 2000 S
6041611 Palmer Mar 2000 A
6047723 Hoeptner, III Apr 2000 A
6132138 Haese Oct 2000 A
6135359 Almasy et al. Oct 2000 A
6142172 Shuler et al. Nov 2000 A
6186558 Komolrochanaporn Feb 2001 B1
D439311 Martin Mar 2001 S
6206039 Shuler et al. Mar 2001 B1
6247491 Petryna Jun 2001 B1
6338364 Mendenhall Jan 2002 B1
6363960 Gauss Apr 2002 B1
6427716 Hoeptner, III Aug 2002 B1
6431204 Ball Aug 2002 B1
6447017 Gilbreath et al. Sep 2002 B1
6464266 O'Neill et al. Oct 2002 B1
6467752 Woods Oct 2002 B2
D470915 Ball Feb 2003 S
6513543 Noll et al. Feb 2003 B1
6517124 Le Quere Feb 2003 B1
6526701 Stearns et al. Mar 2003 B2
6532986 Dickey et al. Mar 2003 B1
D473631 Lai Apr 2003 S
6550495 Schulze Apr 2003 B1
6631623 Ball Oct 2003 B1
D482431 Ball Nov 2003 S
6678903 Rhodes Jan 2004 B1
6679473 Ball Jan 2004 B1
6769446 Ball et al. Aug 2004 B1
6805154 Dickey et al. Oct 2004 B1
6816072 Zoratti Nov 2004 B2
6830063 Ball Dec 2004 B1
6857442 Ball et al. Feb 2005 B1
6860523 O'Neill et al. Mar 2005 B2
6880573 Berkman et al. Apr 2005 B2
6883534 Ball et al. Apr 2005 B2
6948509 Ball et al. Sep 2005 B1
6948518 Ball Sep 2005 B1
7013910 Tripp Mar 2006 B2
D521113 Ball May 2006 S
7059937 Brown Jun 2006 B2
RE39235 Shuler et al. Aug 2006 E
7100637 Ball Sep 2006 B1
7111875 Ball Sep 2006 B2
7143779 Parker Dec 2006 B2
7234732 Ball Jun 2007 B2
7314057 Parker Jan 2008 B2
D574065 Ball Jul 2008 S
7434593 Noll et al. Oct 2008 B2
7472718 Ball Jan 2009 B2
7730901 Ball Jun 2010 B2
8042565 Ball et al. Oct 2011 B2
8474476 Ball Jul 2013 B2
8955538 Ball Feb 2015 B2
20010003350 Gandy et al. Jun 2001 A1
20020189674 Meeder Dec 2002 A1
20060117734 Larkin et al. Jun 2006 A1
20060254647 Ball Nov 2006 A1
20070039649 Ball Feb 2007 A1
20070044838 Ball Mar 2007 A1
20070044840 Ball et al. Mar 2007 A1
20070240765 Katzman et al. Oct 2007 A1
20080047612 Ball Feb 2008 A1
Non-Patent Literature Citations (10)
Entry
MPH-24 Pedestal Hydrant, MAPA Products, May 2002, 2 pages.
MPH-24D Pedestal Hydrant, MAPA Products, Apr. 2007, 1 page.
MPH-24FP Pedestal Hydrant, MAPA Products, Jan. 2004, 1 page.
MPH-24 Pedestal Hydrant, MAPA Products, Jan. 2004, 1 page.
“VB-222 Self-Draining Hose Connection Vacuum Breaker,” A.W. Cash Value Company Model VB-222, Mar. 12, 2008, pp. 1-2.
Official Action for Canada Patent Application No. 2,734,529, dated Jul. 20, 2012 2 pages.
Notice of Allowance for U.S. Appl. No. 13/048,445 mailed Mar. 6, 2013, 8 pages.
Official Action for U.S. Appl. No. 13/933,264 mailed Apr. 11, 2014, 17 pages.
Final Action for U.S. Appl. No. 13/933,264 mailed Jul. 25, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/933,264 mailed Oct. 16, 2014, 5 pages.
Related Publications (1)
Number Date Country
20150176260 A1 Jun 2015 US
Provisional Applications (2)
Number Date Country
61313902 Mar 2010 US
61313918 Mar 2010 US
Continuations (2)
Number Date Country
Parent 13933264 Jul 2013 US
Child 14623730 US
Parent 13048445 Mar 2011 US
Child 13933264 US