Sanitary napkins capable of taking complex three-dimensional shape in use

Information

  • Patent Grant
  • 8211078
  • Patent Number
    8,211,078
  • Date Filed
    Thursday, February 17, 2005
    19 years ago
  • Date Issued
    Tuesday, July 3, 2012
    11 years ago
Abstract
A catamenial device. The device comprises a topsheet having a body facing surface, a backsheet joined to said topsheet, and an absorbent core disposed between the topsheet and the backsheet, wherein the absorbent core comprises three zones differing in stiffness, at least one of the zones comprising laterally-oriented portions where material from the core has been removed, the portions defining slots.
Description
FIELD OF INVENTION

This application relates to catamenial devices such as sanitary napkins for the absorption of menses. More particularly, the present invention relates to catamenial devices having a hydrophobic lotion coating on the surface of an apertured topsheet, the lotion being transferable to the wearer's skin by normal contact and wearer motion and/or body heat.


BACKGROUND OF THE INVENTION

Disposable absorbent articles, such as diapers, training pants, and catamenial devices having lotioned topsheets are known. Lotions of various types are known to provide various skin benefits, such as prevention or treatment of diaper rash. These lotions can be applied to the topsheet of absorbent articles, for example, and can be transferred to the skin of the wearer during use.


Unlike many types of disposable absorbent articles, catamenial devices such as pads and pantiliners are specifically designed to acquire menstrual fluid. Menstrual fluid differs from other exudates, such as urine, in many important properties, such as viscosity. Therefore, catamenial devices should differ in their structural components from such devices as baby diapers to be optimized for the maximum absorption of menstrual fluid.


The addition of lotion to the topsheet of absorbent articles is known to provide benefits such as easier BM clean up on babies. Likewise, lotion on topsheets is known to provide for better skin health of babies, such as the reduction of diaper rash. For example, U.S. Pat. No. 3,489,148 to Duncan et al. teaches a baby diaper comprising a hydrophobic and oleophobic topsheet wherein a portion of the topsheet is coated with a discontinuous film of oleaginous material. A major disadvantage of the diapers disclosed in the Duncan et al. reference is that the hydrophobic and oleophobic topsheets are slow in promoting transfer of urine to the underlying absorbent cores. Since the viscosity of menses is considerably greater than urine, the problems associated with Duncan et al are more profound.


One successful attempt at overcoming the problems of Duncan is disclosed in Roe et al., U.S. Pat. No. 5,968,025. Roe et al. discloses an absorbent article in which a lotion is applied to a hydrophilic topsheet (or a topsheet rendered to be hydrophilic). The hydrophilic topsheet aids in ensuring urine gushes are adequately absorbed into the underlying core, rather than running off into the sides of a baby diaper, for example.


The known attempts at applying lotions to topsheets of absorbent products have been primarily directed to baby diapers, with the benefit provided being better skin health for the bottom of the baby. Little attention has been directed to the unique problems associated with the skin of an adult woman when wearing a catamenial pad. The skin of the vulvar area of an adult woman is very different than that of a baby's bottom (or buttock skin in general), and the lotion needs are very different. For example, rather than being concerned with diaper rash, a menstruating woman is more concerned about hygiene, that is, reducing the amount of menses remaining on the skin and hair after use of a sanitary pad.


The aforementioned attempts at providing a lotion on a topsheet of an absorbent article have focused on the lotion/topsheet characteristics necessary to handle a gush of urine in a relatively short amount of time. However, for catamenial devices, the fluid insult has very different characteristics, in the context of physio-chemical properties (e.g., viscosity, fluid dynamics, etc.) and in the volume and in the time to be absorbed. For example, menstrual flow typically consists of two patterns. One of these is “trickle” flow, which varies from 0.1 to 2 ml per hour. The second pattern is “gush” flow which varies from a few ml in volume delivered over a few seconds. Gush flow can result from an accumulation of menses pooling in the vagina which can then exit the body upon a change in position, such as a transition from sitting to standing. In any event, even with gush flow, the total amount of fluid required to be absorbed into the core in a given time is much less than that required by other absorbent products, such as baby diapers, for example. One practical result is that catamenial devices, rather than needing to be designed to handle gushing fluid, more typically handle fluid through a “blotting” effect.


Accordingly, there is a continuing need for a catamenial device having improved fluid handling such that more menses enter into and remain in the device, and less on the skin and hair of the wearer.


Additionally, there is a continuing need for a catamenial device that has improved body fit to better fit the body of the wearer.


SUMMARY OF THE INVENTION

A catamenial device. The device comprises a topsheet having a body facing surface, a backsheet joined to said topsheet, and an absorbent core disposed between the topsheet and the backsheet, wherein the absorbent core comprises three zones differing in stiffness, at least one of the zones comprising laterally-oriented portions where material from the core has been removed, the portions defining slots.





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention can be more readily understood from the following description taken in connection with the accompanying drawings, in which:



FIG. 1 is a plan view of a catamenial device having an apertured topsheet and a lotion composition.



FIG. 2 is a plan view of a catamenial device having an apertured topsheet and a lotion composition.



FIG. 3 is a perspective view of an absorbent core of the present invention in an in-use configuration.



FIGS. 4-6 are plan views showing features of an absorbent core of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a catamenial device 10, that can be a sanitary napkin or pantiliner, having a body-contacting surface 12 and a topsheet 14 at least a portion 20 of which has a plurality of apertures 24. Device 10 has a liquid impervious backsheet 16 joined to the topsheet 14, and an absorbent core 18 disposed between the topsheet and backsheet. The sanitary napkin 10 has a longitudinal axis L and may also be provided with additional features commonly found in sanitary napkins, including “wings” or “flaps” (not shown) as is known in the art, and/or a fluid acquisition layer between the topsheet and the absorbent core to promote fluid transport from the topsheet to the absorbent core 18. The topsheet 14 of the catamenial device 10 of the present invention has a lotion composition 22 disposed onto at least the body-contacting surface 12 thereof.


The terms “body-contacting surface” and “wearer-contacting surface” are used interchangeably herein and refer to one or more surfaces of any article component that is intended to be worn or positioned toward or adjacent the body of the wearer/user for contact between the wearer/user and the article's surface at some time during the use period. The term “garment surface” as used herein refers to the outer or exterior surface of any article component that is intended to be worn or positioned adjacent a wearer's undergarments, or in the case of an absorbent article which is not worn by the user, the garment surface is typically positioned adjacent a user's hand or other implement assisting in the use of the absorbent article. As used herein, the term “wearer” and “user” are used interchangeably as the present invention contemplates absorbent articles which may not be intended to be worn, but rather used to absorb bodily exudates while transferring the lotion compositions of the present invention.


In FIG. 1 the lotion composition (lotion) 22 is shown as applied in two parallel stripes or bands. Lotion 22 can be applied by means known in the art in any pattern known in the art. For example, lotion 22 can be applied as beads, bands, stripes, and continuous coatings. As shown in FIG. 2, lotion 22 can be applied in a discrete zone such as a centrally-disposed region of the body-contacting surface 12. The topsheet 14 of the sanitary napkin can comprise an apertured formed film as is known in the art of sanitary napkins, including Dri-weave® topsheets used on Always® sanitary napkins. Likewise, the topsheet 14 can be an apertured nonwoven web, for example an apertured nonwoven as disclosed in U.S. Pat. No. 5,628,097 issued May 13, 1997 to Benson et al., or U.S. Pat. No. 5,916,661 issued Jun. 29, 1999 to Benson et al. Topsheet 14 has apertures 24 therethrough on at least a portion 20 thereof to aid in fluid acquisition of viscous menstrual fluid, or sudden gushes of fluid. As shown in FIG. 1, a central portion overlying the absorbent core 18 has a plurality of apertures in a generally oval-shaped pattern. Apertures can be formed by any means known in the art, including by hydroforming (for both film and nonwoven topsheets), hot pin apertureing, slit and stretch, and the like.


The portion 20 of the topsheet 14 comprising a plurality of apertures 24 need not be limited to oval shapes or limited to being in a central portion overlying the absorbent core 18. For example, as shown in FIG. 2, the portion 20 of the topsheet 14 having a plurality of apertures can be disposed off center, nearer one end of device 10 than the other. Likewise, the plurality of apertures can form a pattern of any shape, including the substantially circular shape shown in FIG. 2.


In general the portion 20 comprising apertures 24 can be identified by the density of apertures that make up the portion 20. For example, apertures can be in relatively closely-spaced rows of closely-spaced apertures to form a region or zone of apertures as shown in FIGS. 1 and 2. Likewise, there may be more than one portion 20, i.e., more than one region or zone, of apertures 24 in topsheet 14.


In one embodiment, topsheet 14 was a 30 gsm hydrophobic bicomponent fibrous nonwoven purchased from Pegas and apertured according to the process as disclosed in U.S. Pat. No. 5,628,097 issued May 13, 1997 to Benson et al., or U.S. Pat. No. 5,916,661 issued Jun. 29, 1999 to Benson et al. Apertures 24 were on average 2.3 mm2 in area and the portion 20 comprising apertures 24 had an average percent open area of 23%. Aperture size and percent open area can be varied for each zone 20. For example, apertures can be from about 2 mm2 to about 5 mm2 and the percent open area can be from about 10% to about 50%.


Apertures 24 served the beneficial purpose of providing an open passageway for more viscous fluids or fluids having a solid particle content that do not absorb by ordinary capillarity principles. For example, menses is both relatively viscous (compared to urine or water) and contains a significant amount of solid components, as well as clumped, stringy, or otherwise difficult to absorb fluid components. Such components, as well as the less viscous components of menses can easily and quickly have access to the absorbent core of the device 10 by passing through apertures 24.


In the embodiment shown in FIG. 2 apertures 24 can serve the additional benefit of capturing fluid and fluid components that would otherwise tend to run off of the device 10 and possibly soil the garments of the wearer. For example, if fluid were to run off toward the longitudinal end of the device 10 shown in FIG. 2, the portion 20 of apertures 24 could intercept the fluid as it progressed, permitting a relatively unobstructed passage to an underlying absorbent core.


In one embodiment the topsheet can have a plurality of portions 20 in which the portions 20 differ in percent open area, and/or the plurality of apertures 24 of each respective portion 20 differ in area size. For example, a device 10 can have a central portion 20 as shown in FIG. 1 can have relatively small apertures, for example having an area of from 1 mm2 to about 3 mm2, and a longitudinally-displaced portion 20 as shown in FIG. 2 having relatively large apertures, for example having an area from about 2 mm2 to about 5 mm2. In general, in a device 10 of the present invention, the area size of apertures 24 can be varied, either randomly, or in a gradual gradient from one portion of the device to another. Area size can be varied with respect to device location by varying the length of the melt bond sites and/or amount of stretch in ring rolling when apertures are produced by the method as disclosed in U.S. Pat. No. 5,628,097 issued May 13, 1997 to Benson et al., or U.S. 5,916,661 issued Jun. 29, 1999 to Benson et al..


The topsheet 14 of a sanitary napkin can have various optional characteristics, as is known in the art. For example, the topsheet 14 can have channels embossed or other textured surfaces therein to direct fluid flow. Secondary topsheets, often called acquisition and/or distribution layers, can be bonded to the topsheet. Various visual signals, indicia, or other markings can be added, for example by ink jet printing.


The apertured topsheet 14 in combination with the lotion composition 22 of the present invention offer significant advantages over known topsheets and lotion combinations. The advantage can be appreciated with an understanding of the difference between menstrual fluid flow and urine flow in babies, for example. Topsheets of baby diapers are generally taught to be hydrophilic, with or without a lotion applied, such that sudden gushes of urine can be acquired through the topsheet and into the core with minimal runoff of fluid. However, it has been discovered that menstrual fluid, which has a much greater viscosity and much lower fluid flow, both in quantity and time, can be very effectively handled with a hydrophobic topsheet. Whereas urine may simply run off of a hydrophobic topsheet, particularly one that is treated with a hydrophobic lotion, it has unexpectedly been found that such a structure provides for superior benefits in a catamenial pad for menstruating women. However, the benefit observed by use of a relatively hydrophobic lotion and topsheet is much enhanced by having apertures that can better pass viscous fluid, or fluid that has relatively solid particle content, such as menses. Thus, for fluids that normally don't flow well in capillary structures anyway, the apertures, in addition to the hydrophobic nature of the lotion, aid in capturing and passing such fluid to an underlying absorbent core.


The benefit of the present invention can be optimized by tailoring the open area of the apertures 24 and the percent open area of the portion 20 with respect to the caliper (thickness) of the topsheet to be optimized for a given fluid, e.g., menses, to be absorbed into an underlying layer, such as a secondary topsheet or an absorbent core layer. It is believed that it is beneficial to use a hydrophilic absorbent core 18 and to keep the topsheet 14 in sustained intimate contact with the absorbent core 18. In this manner, there is a better likelihood that menses entering apertures 24 pass through and into the core 18, rather than being held in the apertures 24. In general, for a given fluid, topsheet and absorbent core system, it is believed beneficial to increase the percent open area with an increase in thickness (which can be an increase in basis weight). In one embodiment, a nonwoven topsheet having a relatively low caliper of about 1 mm can have a percent open area of about 20% to about 30%. A topsheet having a relatively high caliper of about 3 mm can have a percent open area of about 30% to about 50%.


An unexpected benefit of using the relatively hydrophobic lotion on the device 10 of the present invention is that coating of the skin and hair of the vulvar region during use of a the device of results in cleaner skin and hair of the vulvar region. Cleaner body benefits are further enhanced by better fluid acquisition of the fluid due to the apertures that are better at handling viscous fluids, particularly in gush events. The relatively hydrophobic topsheet 14 and lotion 22 each help prevent rewet of absorbed fluids back to the skin of the wearer. The apertures 24 help prevent run off of fluid from the pad onto the garments of the wearer. Thus, both clean body benefits and clean garment benefits can be achieved by the present invention.


In one embodiment, the apertured topsheet 14 is hydrophobic or rendered to be hydrophobic, and the lotion is also hydrophobic. The levels of hydrophobicity can be determined by standard techniques, such as measuring angles that a drop of water makes on a surface of material at equilibrium. In general, for the purposes of this invention, a material is considered hydrophobic if a drop of water exhibits an angle of about 60 degrees or greater. Fibers are considered to be hydrophobic if film sheets formed from the polymers of the fibers would exhibit contact angles with water greater than 75 degrees, and more preferably greater than about 90 degrees. Contact angles as a measure of hydrophobicity are well known in the art, and methods for measuring contact angles are equally well known. As is well known, contact angles greater than about 90 degrees are considered hydrophobic and contact angles less than 90 degrees are considered hydrophilic. As used herein, however, contact angles of 75 degrees or greater are considered hydrophobic.


The levels of hydrophobicity of the topsheet and lotion, respectively, can be equal, or the hydrophobicity of the lotion can be greater than the hydrophobicity of the topsheet. In use, the lotion can transfer from the topsheet to the skin of the wearer, which serves to make the skin and hair hydrophobic as well. In general it is desirable that the body/pad system exhibit a hydrophobicity gradient from the body skin and hair to secure storage in an absorbent core. Therefore, in general the body can be the most hydrophobic, exhibiting a contact angle with water of about 75 degrees to about 90 degrees, with topsheet, secondary topsheets, absorbent core materials exhibiting progressively less hydrophobicity.


The advantage of the present invention can be appreciated with an understanding of the difference between menstrual fluid flow and urine flow in babies, for example. Topsheets of baby diapers are generally taught to be hydrophilic, with or without a lotion applied, such that sudden gushes of urine can be acquired through the topsheet and into the core with minimal runoff of fluid. However, it has been discovered that menstrual fluid, which has a much greater viscosity and much lower fluid flow, both in quantity and time, can be very effectively handled with a hydrophobic topsheet. Whereas urine may simply run off of a hydrophobic topsheet, particularly one that is treated with a hydrophobic lotion, it has unexpectedly been found that such a structure provides for superior benefits in a catamenial pad for menstruating women. Another unexpected benefit is the coating of the skin and hair of the vulvar region during use of a catamenial device of the present invention that results in cleaner skin and hair of the vulvar region. Yet, another benefit is better fluid acquisition of the fluid due to transfer of the lotion to the skin of the wearer that minimizes fluid transport on the skin and hair of the wearer away from the point of exit.


Without being bound by theory, it is believed that the superior benefits of the present invention are best exhibited by the combination of a hydrophobic topsheet and a hydrophobic lotion. A lotion is considered hydrophobic, for example, if the hydrophilic/lipophilic balance (HLB) is less than or equal to 7.


The lotion compositions of the present invention can comprise a select combination of skin treatment agents such as hexamidine, zinc oxide, and niacinamide which are highly effective in the prevention and treatment of erythema, malodor, and bacterial skin disorders, especially when these lotion compositions are administered to the skin from application on absorbent articles.


The benefit of using the lotions described herein can be enhanced by having a device 10 that exhibits better fit with the body of the wearer. Better fit can be achieved by incorporating folding and bending features, as well as decoupling features such as those disclosed in co-pending, commonly assigned U.S. Ser. No. 10/613296, filed Jul. 3, 2003 in the name of Lavash. It is believed that having an absorbent core that can fold, bend, or otherwise conform to a preferred shape that better fits the body. Better fit is particularly important for devices 10 having an overall thickness of less than about 10 mm or less than about 5 mm, such as sanitary napkins marketed as “ultra” such as Always® Ultra sanitary napkins. One such sanitary napkin is described in U.S. Pat. No. 4,950,264, issued to Osborn on Aug. 21, 1990. Osborn '264 (the disclosure of which is incorporated by reference herein below) describes a thin and flexible sanitary napkin for wearing adjacent to the pudendal region (i.e., the externally visible female genitalia) and having a caliper of about 4.0 mm to about 5.0 mm, but preferably less than about 3.0 mm, or less than about 2.6 mm, or less than about 2.2 mm, or less than about 2.0 mm. In one embodiment, the caliper is 1.9 mm. Osborn discloses a method of measuring caliper which includes the use of a comparator gauge, using a circular foot made of aluminium and having a weight of 10.0 grams and a contact surface of 5.16 square cm. Osborn discloses Other suitable methods describing a process for treating the topsheet with a surfactant are disclosed in U.S. Pat. Nos. 4,988,344 and 4,988,345, both issued to Reising et al. on Jan. 29, 1991. The topsheet can comprise hydrophilic fibers, hydrophobic fibers, or combinations thereof.


Desirable fit of a device 10 used as a sanitary napkin can be described as having the shape shown in FIG. 3. That is, in use the device 10 can be cup-shaped in the front, “W” shaped in the middle, and “V” shaped in the back, as well as being generally concave from front to back. This complex shape is difficult to achieve when making and marketing devices such as sanitary napkins in generally flat or flat folded configurations.


Because many elements of a device 10, such as topsheets or backsheets, are inherently flexible and pliable, improved fit can be best facilitated by providing an absorbent core that is adapted to permit conformable fit when the product is in use. Such an absorbent core can have the features shown in FIG. 4.


An absorbent core can have discrete zones of varying flexibility that act as shaping elements. The zones can be defined by varying patterns of material modification. One material useful for such a core is a soft, absorbent foam, such as polyurethane foam or HIPE foam. In one embodiment, device 10 comprises a high capacity and highly absorbent core 18. Absorbent core 18 can be an airlaid core of the type disclosed in U.S. Pat. Nos. 5,445,777; or 5,607,414. Absorbent core 18 can be the type generally referred to as HIPE foams, such as those disclosed in U.S. Pat. Nos. 5,550,167; 5,387,207; 5,352,711; and 5,331,015. In a preferred embodiment, absorbent core 18 has a capacity after desorption at 30 cm of less than about 10% of its free absorbent capacity; a capillary absorption pressure of from about 3 to about 20 cm; a capillary desorption pressure of from about 8 to about 25 cm; a resistance to compression deflection of from about 5 to about 85% when measured under a confining pressure of 0.74 psi; and a free absorbent capacity of from about 4 to 125 grams/gram. Each of these parameters can be determined as set forth in U.S. Pat. No. 5,550,167. issued Aug. 27, 1996 to DesMarais. One advantage of utilizing the airlaid or HIPE foam cores as disclosed is that the absorbent core can be made very thin. For example, an absorbent core of the present invention can have an average caliper (thickness) of less than about 3 mm, or less than about 2 mm, and the thickness can be less than about 1 mm. Foams can be more easily modified than conventional absorbent core materials, such as nonwoven batts, airfelt, and coform materials. However, forming apertures or slots as disclosed below can be achieved in foams more easily with known die cutting equipment, including rotary die cutters as disclosed in U.S. Pat. No. 6,702,917, issued Mar. 9, 2004 to Venturino. Such rotary die cutters can be modified to cut slots 30 and cut the absorbent core to shape at the same time.


As shown in FIG. 4, the absorbent core 18 can be asymmetric about a transverse centerline T, and can have a shaping element being a lateral stiffener 34. Lateral stiffener 34 can increase stiffness along the longitudinal edges of absorbent core 18. Lateral stiffener 34 can be a band or strip from about 10 mm to about 25 mm wide, and generally extend the length of the core 18. By locating the lateral stiffener 34 at the edges of the core 18 it is located in an area that undergoes little width-wise deformation when device 10 is worn, and can transfer compressive forces applied by the legs to other areas of the device where cupping or bending is desired. Lateral stiffeners 34 can comprise adhesive applied to the absorbent core or additional relative stiff materials joined to the absorbent core. If adhesive is used for lateral stiffener 34, the adhesive can also adhere the absorbent core 18 to backsheet 16.


The absorbent core 18 can have a plurality of laterally-oriented slots 30 having an average gap width of at least about 1 mm prior to use. Slots 30 are considered laterally oriented if they have a major vector component at the longitudinal centerline L that is perpendicular to the longitudinal centerline. Thus, as shown in FIG. 4, slots 30 can be substantially parallel, generally linear slots that are each perpendicular to centerline L, and, therefore, have no vector component in the longitudinal direction. However, slots 30 can have other configurations, including generally curved orientations such as those shown in FIGS. 5 and 6. Absorbent core can have additional modifications and features to facilitate desired bending and folding. For example, absorbent core 18 can have additional slits, apertures, perforations, lines of weakness, and the like. In particular, in one embodiment a line of weakness such as perforations or a score line along at least a portion of the longitudinal centerline L can aid in proper formation of a raised hump or ridge along the centerline.


Slots can be completely surrounded by core material. That is, slots can be entirely interiorly disposed, each slot having two ends, such as ends 31 shown in FIG. 6. In general, an imaginary straight line shown as line 33 can connect the ends 31 of slots 30 and align with an edge formed by apertures 32 in a middle zone 42 of core 18. Imaginary line 33 can correlate with an edge of lateral stiffeners 34 so as to aid in lateral compressive formation of a complex three-dimensional shape, as disclosed more fully below.



FIG. 5, which shows a sanitary napkin having the topsheet removed so as to see the absorbent core 18 positioned over backsheet 16 of a sanitary napkin having a generally hourglass shape. FIG. 6 shows the absorbent core alone and shows the three zones of the absorbent core can be identified. A first zone 40 at the front of the core 18, which is the narrowest end of an asymmetric core can have only the lateral stiffeners and cup into a concave form when worn. A middle zone 42 can comprise apertures 32 that can both help fluid acquisition as well as reduce stiffness in the middle zone. In one embodiment, the apertures 32 each have a diameter of at least about 0.5 mm. Stiffness can be reduced as required or desired by making more or fewer apertures, or by varying the size and area density of the apertures 32. A third zone 42 at the rear of the core 18, which is intended to be the back of the device 10 when worn, can have the slots 30.


Slots 30 provide for a reduction in bending resistance when the device 10 is bent as shown in FIG. 3. That is, when the device is worn, and the rear portion including the third zone of the core 18 is bent about the wearer's buttocks, including the gluteal groove, device 10 can bend accordingly due to the slots 30 which allow compression of the core in this area. Thus, as device 10 bends in a concave form about the wearers anatomy, absorbent core 10 can bend and conform accordingly due to the lack of material where material has been removed for slots 30, permitting compression about that area.


Compression of slots 30 in bending accomplishes both ease of bending about the wearer's anatomy for better fit and comfort, and ease of bending into a substantially inverted “V” shape to fit into the gluteal groove of the wearer, thereby minimizing fluid runoff from the body in this region. Therefore, both longitudinal folding is accomplished in multiple axes, aiding in both fit and fluid handling advantages. It has been found that slots spaced so as to provide compression along about 12 mm of the longitudinal axis in the rear portion of the device 10 can be sufficient for the fit and fluid protection benefit. In one embodiment, 6 slots spaced about 10 mm apart and having a width of about 2 mm was found sufficient.


The absorbent core 18 of the present invention permits the device 10 to be produced as a two-dimensional, flat device for packaging, and yet to achieve a complex three dimensional shape when used by the wearer. To aid in taking the complex three dimensional shape, absorbent core 18 can have added to it an elastic member 36. Elastic member 36 can be a strand of elastic material that is attached or joined to core 18 at least at two ends thereof. Elastic member 36 can provide for 15 mm to 50 mm of contraction with a contractive force of about 40 grams to about 100 grams. In one embodiment, elastic member can provide for 20 mm to 30 mm of contraction, and the contractive force can be 50 grams to 60 grams. Elastic member can be Stretchrite® soft stretch elastic 3 mm wide (about 0.125 inch) available from Rhode Island Textile Co. of Pawtucket R.I. When packaged in a general flat condition, elastic 36 can be in a stretched position. Upon removing from the package and/or when worn, elastic 36 can contract, causing the third zone to compress in the region of slots 30. The contraction of an elastic strip or strand 36 aligned along longitudinal centerline L, as shown in FIG. 5, tends to draw the absorbent core into a more defined and stable inverted V-shape in the rear portion of device 10.


The term “skin treatment agent” as used herein refers to materials that when applied topically and internally to the skin are capable of preventing, reducing, and/or eliminating any occurrence of skin disorders, particularly skin disorders associated with erythema, malodor, and bacterial infections. The term “skin disorders” as used herein refers to symptoms associated with irritating, acute, or chronic skin abnormalities. Examples of such symptoms include, but are not limited to, itching, inflammation, rash, burning, stinging, redness, swelling, sensitivity, sensation of heat, flaking/scaling, malodor, and the like. The term “ambient conditions” as used herein refers to surrounding conditions at about one atmosphere of pressure, at about 50% relative humidity, and at about 25° C.


The lotion compositions of the present invention can comprise, consist of, or consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, or limitations described herein. All percentages, parts and ratios are by weight of the total composition, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the specific ingredient level and, therefore, do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.


The lotion compositions of the present invention comprise relatively low concentrations of a select combination of skin treatment agents that are capable of reducing and eliminating the occurrence of skin disorders that can result from contact between the skin and moisture-laden air, skin disorders resulting from prolonged moist human tissue that can occur from the skin being exposed to moisture or other body exudates, and/or skin disorders that are generated from contact between the skin and microbial or bacterial agents. The phrase “select combination of skin treatment agents” refers to the following combinations: a. hexamidine, zinc oxide, and niacinamide; b. hexamadine and zinc oxide; and c. hexamadine and niacinamide.


Surprisingly, the select combination of skin treatment agents can be included at low individual concentrations, relative to their use in the prior art, and still be effective. For example, the lotion compositions of the present invention can include hexamidine at a concentration of about 0.1% or less by weight, zinc oxide at a concentration of about 1% or less by weight, and niacinamide at a concentration of about 2% or less by weight to achieve equal or superior benefits in the prevention and/or treatment of skin disorders as compared to known lotion compositions that generally comprise these skin treatment agents at higher levels. Similarly, the total effective concentration of the select combination of skin treatment agents in the compositions of the present invention are also relatively low. The total concentration of the select combination of skin treatment agents ranges from about 0.002% to about 10%, preferably from about 0.01% to about 5%, more preferably from about 0.1% to about 2% by weight of the lotion composition.


The lotion compositions of the present invention comprise hexamidine skin treatment agent at concentrations ranging from about 0.001% to about 0.1%, from about 0.005% to about 0.1%, or even from about 0.01% to about 0.1% by weight of the composition. The hexamidine skin treatment agent suitable for use herein include those aromatic diamines which generally conform to the following formula:




embedded image


These aromatic diamines are referred to as 4,4′-[1,6-Hexanediylbis(oxy)]bisbenzenecarboximidamide; 4,4′-(hexamethylenedioxy)dibenzamidine; and 4,4′-diamidino-α,ω-diphenoxyhexane. The most popular employed form of hexamidine is the general category of hexamidine salts, which include acetate, salicylate, lactate, gluconate, tartarate, citrate, phosphate, borate, nitrate, sulfate, and hydrochloride salts of hexamidine. Specific nonlimiting examples of hexamidine salts include hexamidine isethionate, hexamidine diisethionate, hexamidine hydrochloride, hexamidine gluconate, and mixtures thereof. Hexamidine isethionate and hexamidine diisethionate are β-hydroxyethane sulfonate salts of hexamidine which are preferred for use herein as a skin treatment agent in the prevention and/or treatment of skin disorders. Hexamidine diisethionate is the most preferred hexamidine compound suitable for use as the skin treatment agent herein and is available from Laboratories Serolobilogiques (Pulnoy, France) and the Cognis Incorporation (Cincinnati, Ohio) under the tradename ELASTAB HP100.


Hexamidine compounds are known as effective skin treatment agents that can control microbial growth that can lead to irritating and itching skin disorders. Therefore, these skin treatment agents are often referred to as antimicrobial agents. As used herein the term “antimicrobial agents” refer to materials which function to destroy or suppress the growth or metabolism of microbes, and include the general classification of antibacterial, antifungal, antiprotozoal, antiparasitic, and antiviral agents.


It has been found, however, that a low concentration (about 0.1% or less by weight) of hexamidine provides for improved reduction and/or prevention of skin irritating infections, especially when a low amount of hexamidine is combined with a low concentration of other antimicrobial agents such as zinc oxide and/or niacinamide. This combination of hexamidine and zinc oxide and/or niacinamide can be administered topically and internally at a total concentration less than an effective amount of an applied dosage of these individual compounds. As used herein the term “effective amount” refers to an amount with provides a therapeutic benefit with minimal or no adverse reaction in the reduction and/or prevention of any noticeable or unacceptable skin abnormality which causes irritating, acute, or chronic symptoms including itching and inflammation.


Other aromatic diamines are also suitable for use as a skin treatment agent herein. Such compounds include butamidine and derivatives thereof including butamidine isethionate; pentamidine and derivatives thereof including pentamidine isethionate and pentamidine hydrochloride; dibromopropamidine and derivatives thereof including dibromopropamidine isethionate; stilbamidine and derivatives thereof including hydroxystilbamidine, stilbamidine dihydrochloride, and stilbamidine isethionate; diaminodiamidines and derivatives thereof; and mixtures thereof.


B. Zinc Oxide: The lotion compositions of the present invention comprise zinc oxide skin treatment agent at concentrations ranging from about 0.001% to about 10%, preferably from about 0.005% to about 5%, more preferably from about 0.005% to about 2%, most preferably from about 0.01% to about 1% by weight of the composition. The zinc oxide skin treatment agent can be included in the compositions as an individual zinc oxide compound or a combination of zinc oxides, provided that the individual or combined zinc oxide can readily combine with the hexamidine and niacinamide skin treatment agents to provide antimicrobial benefits.


The zinc oxide skin treatment agent suitable for use herein include those inorganic white and yellowish-white powders that conform to the formula ZnO, and that are more fully described in The Merck Index, Eleventh Edition, entry 10050, p. 1599 (1989). Some particularly useful forms of zinc oxide include those that are manufactured and commercially available in average particle size diameters that range from about 1 nm (nanometer) to about 10 μm (micrometer), alternatively from about 10 nm to about 1 μm or even from about 20 nm to about 500 nm. Surprisingly, the inventors have discovered that the use of the above mentioned, relatively small nanoparticle diameter size zinc oxide avoids undesirable skin or hair whitening that results from the transfer of the zinc oxide containing emollient from the topsheet of absorbent article to the wearer's body during product use. This is a particular benefit when the product is a panty liner, sanitary napkin, incontinence brief, or other absorbent article intended to be used by adults having hair in the region where the lotion composition will transfer.


Commercially available zinc oxides include the white zinc oxide powders sold under the tradename ULTRAFINE 350 which is commercially available from the Kobo Incorporation located in South Plainfield, N.J. Other suitable zinc oxide materials include a premix of zinc oxide and a dispersing agent such as polyhydroxystearic acid wherein this premix is available from the Uniqema Incorporation (Wilimington, Del.) under the tradename Arlecel® P100; and a premix of zinc oxide and an isononyl isononanoate dispersing agent which is available from the Ikeda Incorporation (Island Park, N.Y.) under the tradename Salacos® 99.


The lotion compositions of the present invention comprise niacinamide skin treatment agent as an individual niacinamide or as a combination of niacinamides at a total niacinamide concentration ranging from about 0.01% to about 10%, preferably from about 0.05% to about 5%, more preferably from about 0.2% to about 2% by weight of the lotion composition. The niacinamide skin treatment agent provides for skin conditioning benefits as well as providing for increased efficacy of the skin treatment agents in controlling skin disorders.


Nonlimiting examples of niacinamide skin treatment agents suitable for use in the lotion compositions of the present invention include those niacinamide compounds that are amide derivatives of nicotinic acid, and that generally conform to the following formula:




embedded image


Niacinamide and nicotinic acid are also known as Vitamin B3 and Vitamin B5, whereas niacinamide is the commonly used active form. Niacinamide derivatives including salt derivatives are also suitable for use herein as a skin treatment agent. Nonlimiting specific examples of suitable niacinamide derivatives include nicotinuric acid and nicotinyl hydroxamic acid.


The niacinamide skin treatment agent can also be included in the composition as acidified niacinamide compounds. The process of acidifying niacinamide compounds is within the gambit of those skilled in the art, wherein one such technique involves dissolving niacinamide in an alcohol solution, adding while stirring an equal molar amount of a fatty acid such as stearic acid (e.g., mixing 1 part niacinamide to 2.4 parts stearic acid), and then air drying the mixture until the alcohol evaporates. A suitable stearic acid compound that can be used in the process of acidifying niacinamide is stearic acid sold under the tradename Emersol® 150 which is available from the Cognis Corporation.


Examples of the above niacinamide compounds are well known in the art and are commercially available from a number of sources, for example, the Sigma Chemical Company (St Louis, Mo.); ICN Biomedicals, Incorporation (Irvin, Calif.); Aldrich Chemical Company (Milwaukee, Wis.); and Em Industries HHN (Hawthorne, N.Y.).


Nonlimiting examples of optional suitable skin treatment actives useful in the present invention include allantoin; aluminum hydroxide gel; calamine; cysteine hydrochloride; racemic methionine; sodium bicarbonate; Vitamin C and derivatives thereof; protease inhibitors including serine proteases, metalloproteases, cysteine proteases, aspartyl proteases, peptidases, and phenylsulfonyl fluorides; lipases; esterases including diesterases; ureases; amylases; elastases; nucleases; guanidinobenzoic acid and its salts and derivatives; herbal extracts including chamomile; and mixtures thereof. Guanidinobenzoic acid and its salts and derivatives are more fully described in U.S. Pat. No. 5,376,655, issued to Imaki et al. on Dec. 27, 1994. These other suitable skin treatment actives are typically included at concentrations ranging from about 0.001% to about 10% by weight of the lotion composition.


Where included, panthenol typically comprises from about 0.001% to about 10%, preferably from about 0.005% to about 5%, more preferably from about 0.05% to about 1% by weight of the lotion composition. The optional panthenol skin conditioning agent provides for skin emolliency benefits that can leave the skin feeling smooth, soothing, and soft during and after interaction of the skin tissues with the skin treatment agents. The lotion compositions of the present invention can include an individual panthenol compound or a mixture of panthenol compounds.


Where included, the lotion compositions comprise the preferred optional glycerine skin conditioning agent at concentrations ranging from about 0.01% to about 10%, preferably from about 0.02% to about 5%, more preferably from about 0.05% to about 2% by weight of the lotion composition. The optional glycerine skin conditioning agent also provides for skin emolliency benefits such as smooth, soothing, and soft feeling skin, as well as being a dispersing agent for the niacinamide skin treatment agent.


The lotion compositions comprise the preferred optional chamomile oil at concentrations ranging from about 0.0001% to about 10%, preferably from about 0.001% to about 5%, more preferably from about 0.005% to about 2% by weight of the lotion composition. The optional chamomile oil skin conditioning agent also provides for skin benefits such as soothing. Chamomile oil is commonly prepared as an oil extract of chamomile flowers. An example of a commercially available chamomile oil include Phytoconcentrol Chamomile which is available from Dragoco Incorporation (Totowa, N.J.).


The lotion compositions of the present invention comprise a carrier for the skin treatment agents. The carrier can be included in the compositions as an individual carrier or a combination of carrier ingredients, provided that the total carrier concentration is sufficient to provide transfer and/or migration of the skin treatment agents onto the skin. The carrier can be a liquid, solid, or semisolid carrier material, or a combination of these materials, provided that the resultant carrier forms a homogenous mixture or solution at selected processing temperatures for the resultant carrier system and at processing temperatures for combining the carrier with the skin treatment agents in formulating the lotion compositions herein. Processing temperatures for the carrier system typically range from about 60° C. to about 90° C., more typically from about 70° C. to about 85° C., even more typically from about 70° C. to about 80° C.


The lotion compositions of the present invention typically comprise the carrier at a total carrier concentration ranging from about 60% to about 99.9%, preferably from about 70% to about 98%, more preferably from about 80% to about 97% by weight of the lotion composition. Suitable carrier compounds include petroleum-based hydrocarbons having from about 4 to about 32 carbon atoms, fatty alcohols having from about 12 to about 24 carbon atoms, polysiloxane compounds, fatty acid esters, alkyl ethoxylates, lower alcohols having from about 1 to about 6 carbon atoms, low molecular weight glycols and polyols, fatty alcohol ethers having from about 12 to about 28 carbon atoms in their fatty chain, lanolin and its derivatives, glyceride and its derivatives including acetoglycerides and ethoxylated glycerides of C12-C28 fatty acids, and mixtures thereof. Alternatively or in combination with, the carrier may also be composed of polysiloxane compounds non-limiting examples include dimethicones (1-100,000,000 centistoke), cyclomethicones, alkylated silicones (hair conditioning agents), silicone gums, silicone gels, silicone waxes, copolymers of silicone (vinyl dimethicone polymers, phenyl vinyl dimethicone polymers, alkylated silicone polymers, polyethylene oxide/silicone copolymers, polyethylene oxide/alkyl silicone copolymers), and mixtures thereof.


Nonlimiting examples of suitable petroleum-based hydrocarbons having from about 4 to about 32 carbon atoms include mineral oil, petrolatum, isoparaffims, various other branched chained hydrocarbons, and combinations thereof. Mineral oil is also known as “liquid petrolatum”, and usually refers to less viscous mixtures of hydrocarbons having from about 16 to about 20 carbon atoms. Petrolatum is also known as “mineral wax”, “petroleum jelly”, and “mineral jelly”, and usually refers to more viscous mixtures of hydrocarbons having from about 16 to about 32 carbon atoms. An example of commercially available petrolatum include petrolatum sold as Protopet® 1S which is available from the Witco Corporation located in Greenwich, Conn.


Nonlimiting examples of suitable fatty alcohols having from about 12 to about 24 carbon atoms include saturated, unsubstituted, monohydric alcohols or combinations thereof, which have a melting point less than about 110° C., preferably from about 45° C. to about 110° C. Specific examples of fatty alcohol carriers for use in the lotion compositions of the present invention include, but are not limited to, cetyl alcohol, stearyl alcohol, cetearyl alcohol, behenyl alcohol, arachidyl alcohol, lignocaryl alcohol, and combinations thereof. Examples of commercially available cetearyl alcohol is Stenol 1822 and behenyl alcohol is Lanette 22, both of which are available from the Cognis Corporation located in Cincinnati, Ohio.


Nonlimiting examples of suitable fatty acid esters include those fatty acid esters derived from a mixture of C12-C28 fatty acids and short chain (C1-C8, preferably C1-C3) monohydric alcohols preferably from a mixture of C16-C24 saturated fatty acids and short chain (C1-C8, preferably C1-C3) monohydric alcohols. Representative examples of such esters include methyl palmitate, methyl stearate, isopropyl laurate, isopropyl myristate, isopropyl palmitate, ethylhexyl palmitate, and mixtures thereof. Suitable fatty acid esters can also be derived from esters of longer chain fatty alcohols (C12-C28, preferably C12-C16) and shorter chain fatty acids such as lactic acid, specific examples of which include lauryl lactate and cetyl lactate.


Nonlimiting examples of suitable alkyl ethoxylates include C12-C22 fatty alcohol ethoxylates having an average degree of ethoxylation of from about 2 to about 30. Nonlimiting examples of suitable lower alcohols having from about 1 to about 6 carbon atoms include ethanol, isopropanol, butanediol, 1,2,4-butanetriol, 1,2 hexanediol, ether propanol, and mixtures thereof. Nonlimiting examples of suitable low molecular weight glycols and polyols include ethylene glycol, polyethylene glycol (e.g., Molecular Weight 200-600 g/mole), butylene glycol, propylene glycol, polypropylene glycol (e.g., Molecular Weight 425-2025 g/mole), and mixtures thereof. A more detailed description of carrier ingredients including suitable hydrocarbons, polysiloxane compounds, and fatty alcohol ethoxylates can be found in U.S. Pat. No. 5,643,588, issued Jul. 1, 1997 to Roe et al. entitled “Diaper Having A Lotioned Topsheet”.


In one embodiment, the carrier comprises a combination of one or more petroleum-based hydrocarbons and one or more fatty alcohols described hereinabove. When one or more petroleum-based hydrocarbons having from about 4 to about 32 carbon atoms are used in combination with one or more fatty alcohols having from about 12 to about 22 carbon atoms, the petroleum-based hydrocarbons are included at total concentrations ranging from about 20% to about 99%, preferably from about 30% to about 85%, more preferably from about 40% to about 80% by weight of the lotion composition; wherein the fatty alcohols are included at total concentrations ranging from about 0.2% to about 65%, preferably from about 1% to about 50%, more preferably from about 2% to about 40% by weight of the lotion composition.


It is believed that a petroleum-based carrier system comprising C4-C32 hydrocarbons, C12-C22 fatty alcohols, and fumed silica provides a homogeneous mixture of the carrier, skin treatment agents, and any optional ingredients wherein this homogeneous mixture ensures sufficient contact between the skin and skin treatment agents to result in effective prevention and treatment of skin disorders. The fumed silica suitable for inclusion in the preferred petroleum-based carrier system, or with any other carrier described herein, includes colloidal pyrogenic silica pigments which are sold under the Cab-O-Sil® tradename, and which are commercially available from the Cabot Corporation located in Tuscola, Ill. These colloidal pyrogenic silica pigments are submicroscopic particulated pyrogenic silica pigments having mean particle sizes ranging from about 0.1 microns to about 100 microns. Specific examples of commercially available Cab-O-Sil® silica pigments include Cab-O-Sil® TS-720 (a polydimethylsiloxane treated fumed silica), Cab-O-Sil® TS-530 (a trimethyl silanized fumed silica), and Cab-O-Sil® TS-610 (a dimethyldisilanized fumed silica). The fumed silica provides the lotion compositions with desired viscosity or thickening properties, and is typically included at concentrations ranging from about 0.01% to about 15%, preferably from about 0.1% to about 10%, more preferably from about 1% to about 5% by weight of the lotion composition.


The fumed silica can be used alone or in combination with other optional viscosity or thickening agents such as talc, bentonites including treated bentonites, hectorites including treated hectorites, calcium silicates including treated calcium silicates, magnesium silicates, magnesium aluminum silicates, zinc stearates, sorbitol, colloidal silicone dioxides, spermaceti, carnuba wax, beeswax, candelilla wax, paraffin wax, microcrystalline wax, castrol wax, ceresin, esparto, ouricuri, rezowax, polyethylene wax, C12-C24 fatty acids, polyhydroxy fatty acid esters, polyhydroxy fatty acid amides, polymethacrylate polymers, polymethacrylate and styrene copolymers, and combinations thereof. These other optional viscosity modifying or thickening agents are also included at total concentrations ranging from about 0.01% to about 15% by weight of the lotion composition. A nonlimiting specific example of another suitable viscosity or thickening agent include bentonite sold as Bentone® 38 which is available from the Rheox Incorporation.


It is preferable that the carrier be hydrophobic. Further, it is preferable that the lotion composition of the present invention comprise no surfactant. Therefore, in a preferred embodiment of the present invention the lotion has a level of hydrophobicity at least as great as that of the topsheet, and the hydrophobicity of the lotion is primarily due to the lack of a surfactant component. If, under some condition, there is a need to raise the wettability of the hydrophobic carrier one may optionally add a wetting agent such as polyoxyethylene alkyl ethers, alkyl ethoxylates, alkylethoxylated amines, polyethylene glycol esters, and/or sorbitan fatty acid esters generally having a low degree of ethoxylation and HLB values below about 7. Suitable additives will be miscible with the carrier so as to form a homogenous mixture. Because of possible skin sensitivity of those using the catamenial device of the present invention, these wetting agents should also be relatively mild and non-irritating to the skin. Typically, these wetting agents are nonionic to be not only non-irritating to the skin, but also to avoid other undesirable effects on any underlying tissue laminate structure, e.g., reductions in tensile strength. Suitable wetting agents will typically have HLB values below 10, preferably below 9, more preferably below 8, and even more preferably below 7.


Non-limiting specific examples of a suitable wetting agents includes nonyl phenol or or polyoxyethylene nonyl phenyl ether (20 of ethoxylation; HLB of 5.7), octyl phenol or polyoxyethylene octyl phenyl ether (10 of ethoxylation; HLB of 3.5), stearyl alcohol or polyoxyethylene stearyl ether (20 of ethoxylation; HLB of 4.9), stearyl amine or polyoxyethylene stearyl amine (20 of ethoxylation; HLB of 4.9), polyethylene glycol 200 dilaurate (HLB 5.9), polyethylene glycol 200 distearate (HLB 4.8), sorbitan monostearate (‘Span 60’ having HLB 4.7), sorbitan tristearate (‘Span 65’ having HLB 2.1), sorbitan monooleate (‘Span 80’ having HLB 4.3), sorbitan trioleate (‘Span 85’ having HLB 1.8), each of which are available form Cell Chemical Company (Inchon, Korea) or Uniqema (New Castle, Del., USA).


The amount of wetting agent required to increase the wettability of the lotion composition to a desired level will depend upon its HLB value and HLB level of the carrier used, and like factors. The lotion composition can comprise from about 1 to about 50% of the wetting agent when needed to increase the wettability properties of the composition. Preferably, the lotion composition comprises from about 1 to about 25%, most preferably from about 10 to about 20%, of the wetting agent when needed to increase wettability.


Apertured film materials suitable for use as the topsheet include those apertured plastic films that are non-absorbent and pervious to body exudates and provide for minimal or no flow back of fluids through the topsheet. Nonlimiting examples of other suitable formed films, including apertured and non-apertured formed films, are more fully described in U.S. Pat. No. 3,929,135, issued to Thompson on Dec. 30, 1975; U.S. Pat. No. 4,324,246, issued to Mullane et al. on Apr. 13, 1982; U.S. Pat. No. 4,324,314, issued to Radel et al. on Aug. 3, 1982; U.S. Pat. No. 4,463,045, issued to Ahr et al. on Jul. 31, 1984; U.S. Pat. No. 5,006,394, issued to Baird on Apr. 9, 1991; U.S. Pat. No. 4,609,518, issued to Curro et al. on Sep. 2, 1986; and U.S. Pat. No. 4,629,643, issued to Curro et al. on Dec. 16, 1986. Commercially available formed filmed topsheets include those topsheet materials marketed by the Procter&Gamble Company (Cincinnati, Ohio) under the DRI-WEAVE® tradename.


Nonlimiting examples of woven and nonwoven materials suitable for use as the topsheet include fibrous materials made from natural fibers, modified natural fibers, synthetic fibers, or combinations thereof. These fibrous materials can be either hydrophilic or hydrophobic, but it is preferable that the topsheet be hydrophobic or rendered hydrophobic. As an option portions of the topsheet can be rendered hydrophilic, by the use of any known method for making topsheets containing hydrophilic components. One such method include treating an apertured film component of a nonwoven/apertured thermoplastic formed film topsheet with a surfactant as described in U.S. Pat. No. 4,950,264, issued to Osborn on Aug. 21, 1990. Other suitable methods describing a process for treating the topsheet with a surfactant are disclosed in U.S. Pat. Nos. 4,988,344 and 4,988,345, both issued to Reising et al. on Jan. 29, 1991. The topsheet can comprise hydrophilic fibers, hydrophobic fibers, or combinations thereof.


When the topsheet comprises a nonwoven fibrous material in the form of a nonwoven web, the nonwoven web may be produced by any known procedure for making nonwoven webs, nonlimiting examples of which include spunbonding, carding, wet-laid, air-laid, meltblown, needle-punching, mechanical entangling, thermo-mechanical entangling, and hydroentangling. Other suitable nonwoven materials include low basis weight nonwovens, that is, nonwovens having a basis weight of from about 18 g/m2 to about 25 g/m2. An example of such a nonwoven material is commercially available under the tradename P-8 from Veratec, Incorporation, a division of the International Paper Company located in Walpole, Mass.


The backsheet can be any known or otherwise effective backsheet material, provided that the backsheet prevents external leakage of exudates absorbed and contained in the catamenial device. Flexible materials suitable for use as the backsheet include, but are not limited to, woven and nonwoven materials, laminated tissue, polymeric films such as thermoplastic films of polyethylene and/or polypropylene, composite materials such as a film-coated nonwoven material, or combinations thereof.


The absorbent core is typically positioned between the topsheet and the backsheet. As used herein, the term “absorbent core” refers to a material or combination of materials suitable for absorbing, distributing, and storing aqueous fluids such as urine, blood, menses, and water found in body exudates. The size and shape of the absorbent core can be altered to meet absorbent capacity requirements, and to provide comfort to the wearer/user. The absorbent core suitable for use in the present invention can be any liquid-absorbent material known in the art for use in absorbent articles, provided that the liquid-absorbent material can be configured or constructed to meet absorbent capacity requirements. Nonlimiting examples of liquid-absorbent materials suitable for use as the absorbent core include comminuted wood pulp which is generally referred to as airfelt; creped cellulose wadding; absorbent gelling materials including superabsorbent polymers such as hydrogel-forming polymeric gelling agents; chemically stiffened, modified, or cross-linked cellulose fibers; meltblown polymers including coform; synthetic fibers including crimped polyester fibers; tissue including tissue wraps and tissue laminates; capillary channel fibers; absorbent foams; absorbent sponges; synthetic staple fibers; peat moss; or any equivalent material; or combinations thereof.


The present invention also relates to methods of treating the skin with the lotion compositions described herein. Generally, a safe and effective amount of the lotion composition is applied to an absorbent article described herein wherein such safe and effective amounts include applying from about 0.0015 mg/cm2 (0.01 mg/in2) to about 100.5 mg/cm2 (100 mg/in2), preferably from about 0.003 mg/cm2 (0.02 mg/in2) to about 12.4 mg/cm2 (80 mg/in2), more preferably from about 0.02 mg/cm2 (0.015 mg/in2) to about 7.75 mg/cm2 (50 mg/in2), of the lotion composition to the absorbent article.


Typically, a safe and effective amount of the lotion compositions of the present invention is applied to an absorbent article such that at least about 0.00015 mg/cm2 (0.001 mg/in2) to about 15.5 mg/cm2 (100 mg/in2), preferably from about 0.0006 mg/cm2 (0.004 mg/in2) to about 11 mg/cm2 (72 mg/in2), more preferably from about 0.005 mg/cm2 (0.03 mg/in2) to about 6.2 mg/cm2 (40 mg/in2), of the composition is transferred to the skin during a single use of an absorbent article which is typically about a three hour period. Absorbent articles are generally changed every three to six hours during the day and once for overnight protection, resulting in at least a safe and effective amount of from about 0.00045 mg/cm2 (0.003 mg/in2) to about 124 mg/cm2 (800 mg/in2), preferably from about 0.0018 mg/cm2 (0.012 mg/in2) to about 88 mg/cm2 (576 mg/in2), more preferably from about 0.015 mg/cm2 (0.09 mg/in2) to about 49.6 mg/cm2 (320 mg/in2), of the lotion composition being administered within a one day interval (24 hour period). However, the transfer of the lotion compositions of the present invention onto a wearer's skin via an absorbent article described herein can occur for one day, several days, weeks, months, or years at appropriate intervals provided that safe and effective amounts of the lotion compositions are administered to deliver the skin treatment benefits described herein.


The lotion compositions of the present invention can be applied to the absorbent articles by any known or otherwise effective technique for distributing a lotion composition onto an absorbent product such as a disposable absorbent article. Nonlimiting examples of methods of applying the lotion compositions onto an absorbent article include spraying, printing (e.g., flexographic printing), coating (e.g., contact slot coating and gravure coating), extrusion, or combinations of these application techniques. The application of the lotion compositions onto an absorbent article facilitates the transfer or migration of the lotion compositions onto the skin for administration and/or deposition of the lotion compositions, resulting in a safe and effective amount of the compositions being applied for improved prevention and reduction of skin disorders. Therefore, the safe and effective amount of the lotion composition that will transfer or migrate to the skin will depend on factors such as the type of lotion composition that is applied, the portion of the body contacting surface where the lotion composition is applied, and the type of absorbent article used to administer the lotion composition.


Any suitable method can be used in determining the amount of a lotion composition described herein that is transferred to the skin of a wearer during use of an absorbent article containing the composition. An example of specific methods for the calculation of transfer amounts of lotion compositions include Gas Chromatographic and other quantitative analytical procedures that involve the analysis of in vivo skin analog materials. A suitable Gas Chromatographic procedure is more fully described in WO 99/45973, Donald C. Roe et al, published Sep. 16, 1999.


The lotion compositions of the present invention may be prepared by any known or otherwise effective technique, suitable for providing a lotion composition comprising the essential skin treatment agents defined herein. In general, the lotion compositions are prepared by first making a carrier system comprising suitable carriers such as petrolatum and behenyl alcohol in combination with a fumed silica thickening agent. Next, a mixture comprising the skin treatment agents and any optional ingredients such as optional skin conditioning agents are added to the carrier system at a melt mix temperature of about 80° C. Although the carrier system, skin treatment agents, and any optional ingredients are typically processed at a temperature of about 80° C., these materials can be processed at temperatures ranging from about 60° C. to about 90° C., preferably from about 70° C. to about 90° C. The resultant lotion composition is subsequently applied to a topsheet component of an absorbent article using a contact applicator such as a Nordsen EP 11-12-02.


The lotion compositions of the present invention are prepared such that the compositions can be applied to an absorbent article to result in safe and effective amounts of the compositions being transferred onto the skin of a wearer of the absorbent article. Therefore, the lotion compositions preferably have a product consistency such that they are relatively immobile and localized on the wearer-contacting surface of the absorbent article at ambient conditions, are readily transferable to the wearer at body temperature, and yet are not completely liquid under extreme storage conditions. In other words, the lotion compositions are solids or semisolids at ambient conditions (about 25° C.) and/or body temperature (about 37° C.) so that the compositions are easily transferred onto the skin by way of normal contact, wearer motion, and/or body heat. The consistency of the lotion compositions can be measured according to ASTM D5 test method which involves the use of a penetrometer to measure consistency. Typically, the lotion compositions of the present invention have a consistency of from about 10 to about 300, preferably from about 20 to about 250, more preferably from about 30 to about 200, as measured at 40° C. according to the test procedure outlined in ASTM D5 test method.


The solid or semisolid consistency of the lotion compositions provide for relatively low levels of the compositions to be applied to the absorbent articles to impart the desired lotion benefits. By “semisolid” is meant that the compositions have a rheology typical of pseudoplastic or plastic liquids such that the compositions remain relatively stationary in a desired location on the absorbent article, and do not have a tendency to flow or migrate to undesired locations of the article. The solid lotion compositions of the present invention likewise can remain in a particular location and not flow or migrate to undesired locations of the article. These solid and semisolid lotion compositions have viscosities high enough to keep the compositions localized on an intended location of the article, but not so high as to impede transfer to the wearer's skin. Typically, final products of solid and semisolid lotion compositions have viscosities ranging from about 1.0×106 centipoise to about 1.0×1010 centipoise under shear stress conditions of about 3×103 dynes/cm2 at 40° C. (the shear stress applied to the compositions while the absorbent article is in storage or transported at temperature conditions of about 40° C.).


However, the solid and semisolid lotion compositions can be made flowable for transfer or migration of the compositions onto the skin by applying shear stress that results in deformation of the compositions. The shear stress applied at least once during wear of the absorbent article under temperature conditions of about 40° C. is typically at about 1.0×106 dynes/cm2, and this shear stress can result in the lotion compositions having a viscosity of from about 1.0×101 centipoise to about 1.0×105 centipoise. It is believed that the lotion compositions achieve the lower viscosity values under applied shear stress due to the fact that, while the compositions contain solid components, they also contain liquid materials. During wear of an absorbent article described herein, it is desirable to achieve a low viscosity for obtaining sufficient lubrication between the wearer's skin and the body contacting surface of the article to result in effective transfer of the lotion composition onto the wearer's skin. Viscosity at various shear stress can be measured using rheometers known in the art such as the Rheometer SR-2000 available from Rheometrics Incorporation.


The lotion compositions are typically applied to the topsheet of an absorbent article for delivery of the lotion composition onto an external or internal surface of the skin. The lotion composition can be applied to other areas of the absorbent article wherein these areas include wings, side panels, the absorbent core, any secondary layer intermediate the core and topsheet, or any other region of the absorbent article.


Processes for assembling absorbent articles such as the disposable absorbent articles described herein include conventional techniques known in the art for constructing and configuring disposable absorbent articles. For example, the backsheet and/or the topsheet can be joined to the absorbent core or to each other by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Adhesives which have been found to be satisfactory are manufactured by H. B. Fuller Company of St. Paul, Minn. under the designation HL-1258 or H-2031.


The lotion compositions of the present invention can also be delivered onto the skin by incorporating the compositions into aerosol dispensers, trigger spray dispensers, pump spray dispensers, jars, stick dispensers, cotton balls, patches, sponges, and any other type of known or otherwise effective delivery vehicle.


For catamenial devices the amount of lotion add on level can be significantly higher that that used in other absorbent articles, such as diapers. For example, while not being bound by theory, it is believed that lotion can be added on at levels of 3 mg/cm2, 4 mg/cm2, 5 mg/cm2, 6 mg/cm2, 7 mg/cm2, 8 mg/cm2,9 mg/cm2, or 10 mg/cm2. These levels refer to the area actually covered by lotion.


All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A catamenial device, said device comprising: (a) a topsheet having a body facing surface;(b) a backsheet joined to said topsheet; and(c) an absorbent core disposed between said topsheet and said backsheet; wherein said absorbent core has a perimeter, a longitudinal centerline, and a transverse centerline; wherein said absorbent core comprises a first zone, a second zone, and a third zone that are perpendicular to the transverse centerline; wherein said first, second and third zones differ in stiffness; wherein said first zone is disposed in a front portion of said absorbent core between a front end and the transverse centerline, said second zone is disposed in a middle portion of said absorbent core that is intercepted by the transverse centerline, and said third zone is disposed in a rear portion between a rear end and the transverse centerline of said absorbent core; wherein said third zone comprises at least two discrete laterally-oriented apertured slots that intersect said longitudinal centerline of said absorbent core where material from the core has been removed to form said discrete laterally-oriented apertured slots; and wherein said absorbent core comprises lateral stiffeners within the perimeter and along the longitudinal edges of the first zone, second zone, and the third zone.
  • 2. The catamenial device of claim 1, wherein said absorbent core is asymmetric about a transverse centerline.
  • 3. The catamenial device of claim 1, wherein said absorbent core comprises a HIPE foam.
  • 4. The catamenial device of claim 1, wherein said slots have an average width of at least 1 mm
  • 5. The catamenial device of claim 1, wherein said second zone of said absorbent core comprises a plurality of apertures, said apertures each having a diameter of at least 0.5 mm
  • 6. The catamenial device of claim 5, wherein said second zone of said absorbent core comprising said plurality of apertures is disposed in a middle portion of said absorbent core.
  • 7. The catamenial device of claim 1, wherein said topsheet further comprises a lotion applied thereto.
  • 8. The catamenial device of claim 7, wherein said lotion exhibits an HLB value of less than or equal to 7.
  • 9. The catamenial device of claim 7, wherein said lotion is disposed on said topsheet non-uniformly.
  • 10. The catamenial device of claim 7, wherein said lotion is disposed on said topsheet in a stripe generally longitudinally oriented to said device.
  • 11. The catamenial device of claim 7, wherein said lotion is disposed on said topsheet in generally parallel stripes.
  • 12. The catamenial device of claim 1, further comprising an elastic member joined to one side of said absorbent core, said elastic member spanning at least a portion of said absorbent core comprising said slots, said elastic member being longitudinally oriented.
  • 13. The catamenial device of claim 1, wherein said first zone of said absorbent core is disposed in a front portion of said absorbent core and said lateral stiffener is adhesive.
  • 14. A catamenial device to be worn by a wearer having a gluteal groove, said device comprising: (a) a topsheet having a body facing surface;(b) a backsheet joined to said topsheet; and(c) an absorbent core disposed between said topsheet and said backsheet; wherein said absorbent core has a perimeter, a longitudinal centerline, and a transverse centerline; wherein said absorbent core comprises a first zone, a second zone and a third zone that are perpendicular to the transverse centerline; wherein said first, second and third zones differ in stiffness; wherein said first zone is disposed in a front portion of said absorbent core between a front end and the transverse centerline, said second zone is disposed in a middle portion of said absorbent core that is intercepted by the transverse centerline, and said third zone is disposed adjacent said gluteal groove of said wearer when said device is worn; wherein said third zone comprises at least two discrete laterally-oriented apertured slots that intersect said longitudinal centerline of said absorbent core where material from the core has been removed to form said discrete laterally-oriented apertured slots; andwherein said absorbent core comprises lateral stiffeners within the perimeter and along the longitudinal edges of the first zone, second zone, and the third zone.
  • 15. The catamenial device of claim 14, wherein said absorbent core is asymmetric about a transverse centerline.
  • 16. The catamenial device of claim 14, wherein said absorbent core comprises a HIPE foam.
  • 17. The catamenial device of claim 14, wherein said slots have an average width of at least 1 mm
  • 18. The catamenial device of claim 14, wherein said second zone of said absorbent core comprises a plurality of apertures, said apertures each having a diameter of at least 0.5 mm
  • 19. The catamenial device of claim 18, wherein said second zone of said absorbent core comprising said plurality of apertures is disposed in a middle portion of said absorbent core.
  • 20. The catamenial device of claim 14, wherein said topsheet further comprises a lotion applied thereto.
  • 21. The catamenial device of claim 20, wherein said lotion exhibits an HLB value of less than or equal to 7.
  • 22. The catamenial device of claim 20, wherein said lotion is disposed on said topsheet non-uniformly.
  • 23. The catamenial device of claim 20, wherein said lotion is disposed on said topsheet in a stripe generally longitudinally oriented to said device.
  • 24. The catamenial device of claim 20, wherein said lotion is disposed on said topsheet in generally parallel stripes.
  • 25. The catamenial device of claim 14, wherein said first zone of said absorbent core is disposed in a front portion of said absorbent core and said lateral stiffener is adhesive.
  • 26. A catamenial device, said device comprising: (a) a topsheet having a body facing surface;(b) a backsheet joined to said topsheet; and(d) an absorbent core disposed between said topsheet and said backsheet, wherein said absorbent core has a perimeter, a longitudinal centerline, and a transverse centerline; wherein said absorbent core comprises a first zone, a second zone, and a third zone that are perpendicular to the transverse centerline; wherein said first, second and third zones differ in stiffness; wherein said first zone is disposed in a front portion of said absorbent core between a front end and the transverse centerline, said second zone is disposed in a middle portion of said absorbent core that is intercepted by the transverse centerline, and said third zone is disposed in a rear portion between a rear end and the transverse centerline of said absorbent core; wherein at least one of said zones comprising laterally-oriented apertured slots where material from the core has been removed to form said laterally-oriented apertured slots; wherein said absorbent core is asymmetric about a transverse centerline; and wherein said absorbent core comprises lateral stiffeners within the perimeter and along the longitudinal edges of the first zone, second zone, and the third zone.
  • 27. The catamenial device of claim 26, wherein said absorbent core comprises a HIPE foam.
  • 28. The catamenial device of claim 26, wherein said slots have an average width of at least 1 mm
  • 29. The catamenial device of claim 26, wherein said second zone of said absorbent core comprises a plurality of apertures, said apertures each having a diameter of at least 0.5 mm
  • 30. The catamenial device of claim 29, wherein said second zone of said absorbent core comprising said plurality of apertures is disposed in a middle portion of said absorbent core.
  • 31. The catamenial device of claim 26, wherein said topsheet further comprises a lotion applied thereto.
  • 32. The catamenial device of claim 31, wherein said lotion exhibits an HLB value of less than or equal to 7.
  • 33. The catamenial device of claim 31, wherein said lotion is disposed on said topsheet non-uniformly.
  • 34. The catamenial device of claim 31, wherein said lotion is disposed on said topsheet in a stripe generally longitudinally oriented to said device.
  • 35. The catamenial device of claim 31, wherein said lotion is disposed on said topsheet in generally parallel stripes.
  • 36. The catamenial device of claim 26, wherein said first zone of said absorbent core is disposed in a front portion of said absorbent core and said lateral stiffener is adhesive.
US Referenced Citations (326)
Number Name Date Kind
810121 Green Jan 1906 A
810128 Green Jan 1906 A
2952259 Burgeni Sep 1960 A
2952260 Burgeni Sep 1960 A
3489148 Duncan et al. Jan 1970 A
3766922 Krusko Oct 1973 A
3858585 Chatterjee Jan 1975 A
4072150 Glassman Feb 1978 A
4252184 Appel Feb 1981 A
4258704 Hill Mar 1981 A
4263363 Buck et al. Apr 1981 A
4326528 Ryan Apr 1982 A
4355021 Mahl Oct 1982 A
4380450 Reich Apr 1983 A
4394930 Korpman Jul 1983 A
4449977 Korpman May 1984 A
4497435 Trobaugh Feb 1985 A
4616642 Martin Oct 1986 A
4638806 Bartlett Jan 1987 A
4662877 Williams May 1987 A
4673403 Lassen Jun 1987 A
4676871 Cadieux Jun 1987 A
4690679 Mattingly, III Sep 1987 A
4690681 Haunschild Sep 1987 A
4740528 Garvey Apr 1988 A
4758241 Papajohn Jul 1988 A
4762521 Roessler Aug 1988 A
4772282 Oakley Sep 1988 A
4773905 Molee et al. Sep 1988 A
4798603 Meyer Jan 1989 A
4804380 Lassen et al. Feb 1989 A
4837969 Demarest Jun 1989 A
4845922 Sweere Jul 1989 A
4848572 Herrera Jul 1989 A
4857044 Lennon Aug 1989 A
4886632 Van Iten Dec 1989 A
4891258 Fahrenkrug Jan 1990 A
4892598 Stevens Jan 1990 A
4992324 Dube Feb 1991 A
D316148 Cadieux Apr 1991 S
5092377 Krumberger Mar 1992 A
5133371 Sivess Jul 1992 A
5135521 Luceri Aug 1992 A
5154715 Van Iten Oct 1992 A
5164999 Shifflett Nov 1992 A
5165152 Kramer Nov 1992 A
5188625 Van Iten Feb 1993 A
5242435 Murji Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5295987 Widlund et al. Mar 1994 A
5296290 Brassington Mar 1994 A
5316238 Simonson May 1994 A
5360504 Fell Nov 1994 A
5389181 Vukos Feb 1995 A
5396138 Steiner Mar 1995 A
5401267 Couture-Dorschner et al. Mar 1995 A
5415640 Kirby May 1995 A
5423786 Fung et al. Jun 1995 A
5437653 Gilman Aug 1995 A
5451442 Pieniak et al. Sep 1995 A
5484430 Osborn, III Jan 1996 A
5506277 Griesbach, III Apr 1996 A
5507735 Van Iten Apr 1996 A
5514104 Cole May 1996 A
5516569 Veith May 1996 A
5536555 Zelazoski Jul 1996 A
5540827 Deacon Jul 1996 A
5545156 DiPalma Aug 1996 A
5557263 Fisher Sep 1996 A
5560794 Currie Oct 1996 A
5562649 Chauvette Oct 1996 A
5569231 Emenaker et al. Oct 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5591150 Olsen et al. Jan 1997 A
5599293 Orenga Feb 1997 A
5609588 DiPalma Mar 1997 A
5613961 DiPalma Mar 1997 A
5624423 Anjur Apr 1997 A
5643240 Jackson Jul 1997 A
5643244 Yamaki et al. Jul 1997 A
5649915 Chauvette Jul 1997 A
5667619 Alikhan Sep 1997 A
5667625 Alikhan Sep 1997 A
5674213 Sauer Oct 1997 A
5675079 Gilman Oct 1997 A
5678206 Ishii Oct 1997 A
5681301 Yang Oct 1997 A
5692939 DesMarais Dec 1997 A
5704101 Majors Jan 1998 A
5707468 Arnold Jan 1998 A
5713884 Osborn, III Feb 1998 A
5716337 McCabe Feb 1998 A
5722774 Hartz Mar 1998 A
5722967 Coles Mar 1998 A
5723197 Grund Mar 1998 A
5727055 Ivie Mar 1998 A
5785274 Johnson Jul 1998 A
5788684 Abuto Aug 1998 A
5790036 Fisher Aug 1998 A
5797894 Cadieux Aug 1998 A
5803920 Gilman Sep 1998 A
5807365 Luceri Sep 1998 A
5816560 Obser Oct 1998 A
5817394 Alikhan Oct 1998 A
5827256 Balzar Oct 1998 A
5837314 Beaton Nov 1998 A
5853402 Faulks Dec 1998 A
5865824 Chen Feb 1999 A
5891123 Balzar Apr 1999 A
5910137 Clark Jun 1999 A
5941863 Guidotti et al. Aug 1999 A
5948829 Wallajapet Sep 1999 A
5958321 Schoelling Sep 1999 A
5961505 Coe Oct 1999 A
5968025 Roe et al. Oct 1999 A
5980814 Roller Nov 1999 A
5981012 Pomplun Nov 1999 A
6022607 James Feb 2000 A
6039716 Jessup Mar 2000 A
6049916 Rajala Apr 2000 A
6120488 VanRijswijck et al. Sep 2000 A
6172276 Hetzler Jan 2001 B1
6177605 Trombetta et al. Jan 2001 B1
6180847 Ahr et al. Jan 2001 B1
6182412 Traxler Feb 2001 B1
6202717 Markey Mar 2001 B1
6240569 Van Gompel Jun 2001 B1
6245051 Zenker Jun 2001 B1
6245961 Roxendal et al. Jun 2001 B1
6258427 Kerins Jul 2001 B1
6261679 Chen Jul 2001 B1
6264776 DiPalma Jul 2001 B1
6277517 Thomas Aug 2001 B1
6284261 Tramontana Sep 2001 B1
6290686 Tanzer Sep 2001 B1
6293933 Ahlstrand Sep 2001 B1
6298610 Traxler Oct 2001 B2
6314617 Hastings Nov 2001 B1
6315765 Datta Nov 2001 B1
6316687 Davis Nov 2001 B1
6318555 Kuske Nov 2001 B1
6319238 Sartorio Nov 2001 B1
6347218 Fuhrmann Feb 2002 B1
6348253 Daley Feb 2002 B1
6393901 Levesque May 2002 B1
6395956 Glasgow May 2002 B1
6395957 Chen May 2002 B1
6409883 Makolin Jun 2002 B1
6410823 Daley Jun 2002 B1
6423884 Oehmen Jul 2002 B1
6447901 Du Sep 2002 B1
6453628 Traxler Sep 2002 B2
6458072 Zunker Oct 2002 B1
6465713 Gell Oct 2002 B1
6479061 Fontenot Nov 2002 B2
6479728 DiPalma Nov 2002 B1
6481801 Schmale Nov 2002 B1
6486379 Chen Nov 2002 B1
6487397 Fuhrmann Nov 2002 B2
6503233 Chen Jan 2003 B1
6503526 Krzysik Jan 2003 B1
6506961 Levy Jan 2003 B1
6524442 Tanner Feb 2003 B2
6527757 Jackson Mar 2003 B1
6530910 Pomplun Mar 2003 B1
6537414 Schoelling Mar 2003 B1
H2062 Blaney Apr 2003 H
6543843 Moilanen Apr 2003 B1
6546578 Steinmeier Apr 2003 B1
6562192 Hamilton May 2003 B1
6564942 Shiffler May 2003 B1
6566577 Addison May 2003 B1
6582389 Buzot Jun 2003 B2
6582714 Emmrich Jun 2003 B1
6586653 Graeme, III Jul 2003 B2
6588080 Neely Jul 2003 B1
6590138 Onishi Jul 2003 B2
6596920 Wehner Jul 2003 B2
6600085 Sun Jul 2003 B2
6600086 Mace Jul 2003 B1
6601706 McManus Aug 2003 B2
6603054 Chen Aug 2003 B2
6607160 Lewis Aug 2003 B2
6608236 Burnes Aug 2003 B1
6613955 Lindsay Sep 2003 B1
6617490 Chen Sep 2003 B1
6620144 Glasgow Sep 2003 B1
6632205 Sauer Oct 2003 B1
6641692 Reynolds Nov 2003 B2
6649099 Potts Nov 2003 B2
6652498 Glasgow Nov 2003 B1
6656168 Braverman et al. Dec 2003 B2
6663611 Blaney Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6673982 Chen Jan 2004 B1
6682512 Uitenbroek Jan 2004 B2
6689932 Kruchoski Feb 2004 B2
6689935 Chen Feb 2004 B2
6692603 Lindsay Feb 2004 B1
6695827 Chen et al. Feb 2004 B2
6700034 Lindsay Mar 2004 B1
6706944 Qin Mar 2004 B2
6708823 Cottingham Mar 2004 B2
6710477 Lau Mar 2004 B2
6713159 Blenke Mar 2004 B1
6736287 Sauer May 2004 B2
6740792 Waldroup May 2004 B2
6742646 Sowden Jun 2004 B2
6743212 Cole Jun 2004 B1
6749860 Tyrrell Jun 2004 B2
6756520 Krzysik Jun 2004 B1
6759567 Colman Jul 2004 B2
6761013 Tippey Jul 2004 B2
6767200 Sowden Jul 2004 B2
6783019 Zettle Aug 2004 B2
6786541 Haupt Sep 2004 B2
6787490 Shipp, Jr. Sep 2004 B2
6808801 George Oct 2004 B2
6822136 Niemeyer Nov 2004 B1
6828755 Iverson Dec 2004 B1
6837696 Sowden Jan 2005 B2
6838590 Colman Jan 2005 B2
6860874 Gubernick Mar 2005 B2
6861615 Wojcik Mar 2005 B2
6900450 Gimenez May 2005 B2
6902134 Green Jun 2005 B2
6908458 Sauer Jun 2005 B1
6911407 Sherrod Jun 2005 B2
6915621 Saraf Jul 2005 B2
6939553 Yahiaoui et al. Sep 2005 B2
6939914 Qin Sep 2005 B2
6945967 Drevik et al. Sep 2005 B2
6967178 Zhou Nov 2005 B2
6971981 Dobslaw Dec 2005 B2
6978123 Fuhrmann Dec 2005 B2
6982094 Sowden Jan 2006 B2
6986761 Hines et al. Jan 2006 B1
6986931 Ackerman Jan 2006 B2
6998164 Neely Feb 2006 B2
7015155 Zhou Mar 2006 B2
7067711 Kuroda et al. Jun 2006 B2
20010000796 Osborn et al. May 2001 A1
20010016721 Salerno Aug 2001 A1
20010037103 Onishi Nov 2001 A1
20020013567 Mishima et al. Jan 2002 A1
20020057792 Fuhrmann May 2002 A1
20020115978 Cole Aug 2002 A1
20020124313 Cook Sep 2002 A1
20020128615 Tyrrell Sep 2002 A1
20020133135 Gell Sep 2002 A1
20020142693 Buzot Oct 2002 A1
20020143315 Garrad et al. Oct 2002 A1
20020147436 Gell Oct 2002 A1
20020156443 Drevik et al. Oct 2002 A1
20030014031 Tanzer Jan 2003 A1
20030019971 Lewis Jan 2003 A1
20030023214 DiSalvo Jan 2003 A1
20030023217 McManus Jan 2003 A1
20030047366 Andrew Mar 2003 A1
20030075278 Schoelling Apr 2003 A1
20030083631 Chen May 2003 A1
20030083639 Killeen et al. May 2003 A1
20030086973 Sowden May 2003 A1
20030119396 Koenig Jun 2003 A1
20030125682 Olson Jul 2003 A1
20030125687 Gubernick Jul 2003 A1
20030135181 Chen Jul 2003 A1
20030138097 Fuhrmann Jul 2003 A1
20030143388 Reeves Jul 2003 A1
20030153890 Rosenfeld Aug 2003 A1
20030160127 Wojcik Aug 2003 A1
20030184136 Moilanen Oct 2003 A1
20030225385 Glaug et al. Dec 2003 A1
20040000503 Shah Jan 2004 A1
20040019339 Ranganathan Jan 2004 A1
20040031121 Martin Feb 2004 A1
20040054331 Hamilton Mar 2004 A1
20040064117 Hammons et al. Apr 2004 A1
20040064120 Berba et al. Apr 2004 A1
20040074052 Hlaban Apr 2004 A1
20040074053 Hlaban Apr 2004 A1
20040077473 Kubalek Apr 2004 A1
20040078019 Elmer Apr 2004 A1
20040087924 Sroda May 2004 A1
20040102752 Chen May 2004 A1
20040115419 Qin Jun 2004 A1
20040116014 Soerens Jun 2004 A1
20040120988 Masting Jun 2004 A1
20040122393 Morman Jun 2004 A1
20040126543 Potts Jul 2004 A1
20040127870 DiPalma Jul 2004 A1
20040127873 Varona Jul 2004 A1
20040183383 Strobl Sep 2004 A1
20040223667 Shah Nov 2004 A1
20040236294 Drzewiecki Nov 2004 A1
20040236297 Drzewiecki Nov 2004 A1
20040253894 Fell Dec 2004 A1
20040254549 Olson Dec 2004 A1
20040259707 Lochte Dec 2004 A1
20050014428 Zenker Jan 2005 A1
20050022955 Ward Feb 2005 A1
20050027277 Mizutani et al. Feb 2005 A1
20050038404 Takino et al. Feb 2005 A1
20050082947 Li Apr 2005 A1
20050085783 Komatsu et al. Apr 2005 A1
20050092869 Vandertol May 2005 A1
20050096614 Perez May 2005 A1
20050096619 Costa May 2005 A1
20050112338 Faulks May 2005 A1
20050113775 English May 2005 A1
20050121347 Hanson Jun 2005 A1
20050123398 Tam Jun 2005 A1
20050129897 Zhou Jun 2005 A1
20050130536 Siebers Jun 2005 A1
20050131362 Przepasniak Jun 2005 A1
20050131371 Fell Jun 2005 A1
20050137557 Swiecicki Jun 2005 A1
20050148971 Kuroda et al. Jul 2005 A1
20050148983 Doverbo et al. Jul 2005 A1
20050178788 Shannon Aug 2005 A1
20050182374 Zander et al. Aug 2005 A1
20050251082 Del Bono Nov 2005 A1
20050256437 Silcock Nov 2005 A1
20060098446 Barker May 2006 A1
20060178652 Miller, III Aug 2006 A1
20060276767 Ueminami et al. Dec 2006 A1
Foreign Referenced Citations (26)
Number Date Country
1063815 Aug 1992 CN
58-75558 May 1983 JP
59-190228 Dec 1984 JP
60-53144 Mar 1985 JP
11-226054 Aug 1999 JP
2002-35036 Feb 2002 JP
WO 9316670 Sep 1993 WO
WO 9516424 Jun 1995 WO
WO9515139 Jun 1995 WO
WO 9611107 Apr 1996 WO
WO 9640513 Dec 1996 WO
WO 9728773 Aug 1997 WO
WO 9816262 Apr 1998 WO
WO 9960912 Dec 1999 WO
WO 0028929 May 2000 WO
WO 0074476 Dec 2000 WO
WO 0074740 Dec 2000 WO
WO 0101909 Jan 2001 WO
WO 0143849 Jun 2001 WO
WO 0147459 Jul 2001 WO
WO 0238097 May 2002 WO
WO 02091964 Nov 2002 WO
WO 03051257 Jun 2003 WO
WO 03083433 Oct 2003 WO
WO 2004052414 Jun 2004 WO
WO 2004080362 Sep 2004 WO
Related Publications (1)
Number Date Country
20060184150 A1 Aug 2006 US