A traditional way to feed a dog or a cat is to place a bowl of food and a bowl of water on the floor. More recently, pet feeding stations have been developed which elevate the food and water bowls off of the floor. This puts the food and water at a convenient height for the pet.
Dogs in particular can be messy eaters. The optimum pet feeding station or system is one that is easily accessible by the pet, is easy to clean and that generates a minimum of stray food and water. As a cat, or more particularly, a dog, eats, there may be a tendency for the food and water bowl to slide around; these quadrupeds usually do not hold their food or water bowls in place with their paws. A larger dog may be big enough to easily displace its food or water bowl with motions of its head alone. Because they are thus apt to be sources of stray food particles, pet feeding sites equipped with conventional containers sometimes attract unwanted pests.
Dogs in particular have elongated noses and mandibles. A traditional pet bowl has an interior surface that is shaped like a flattened hemisphere, providing a poor match to the shape of a typical dog's head. This makes eating incrementally more difficult for the dog and the mismatch in shape is apt to generate more stray food particles and water splashes. A need therefore exists for a pet feeding system that minimizes awkwardness or discomfort for the pet while at the same time contains and manages the detritus generated by a pet eating its dinner.
A pet feeding system according to one aspect of the invention has a stand and at least one bowl removably received in a respective bowl opening formed in the top surface of the stand. As so installed, an upper edge of the bowl resides substantially in a horizontal top plane. The bowl is elongated such that a first radius from a vertical bowl axis to the bowl upper edge, drawn in the top plane and toward the front of the stand, is greater than a second radius from that axis to the bowl upper edge, drawn in the top plane and toward the side of the stand.
Preferably, an angle of the bowl interior surface at a front portion thereof, and taken with respect to a vertical reference, is greater than a corresponding angle of the bowl interior surface at a side and/or rear portion thereof. The front elongation of the bowl and the gradualness of the draft of the bowl front section make access to the bowl more comfortable to a feeding pet, particularly a pet with a pronounced nose and mandible such as a dog.
In another aspect of the invention, a pet feeding system has a stand with a top surface that defines at least one bowl opening formed around a vertical axis. A bowl is removably received in the bowl opening. An upper edge of the bowl substantially resides in a top plane orthogonal to the axis. The bowl has a peripheral lip that extends radially outwardly in the top plane from the bowl's upper edge. This lip has a predetermined width. The top surface of the stand consists of two zones: a first zone, immediately surrounding the bowl opening, which has a width that is substantially no more than the bowl lip width, and a second zone, laterally spaced from the bowl opening by the first zone. All of the surface of the second zone is downwardly sloped, so as to better shed stray food and water particles. In embodiments providing first and second bowls, the first zone has a first portion immediately surrounding a first bowl opening and a second portion immediately surrounding a second bowl opening. A width of the second portion is substantially no more than the predetermined bowl lip width. The second, downwardly sloped zone of the top surface separates the first portion of the first zone from the second portion of the first zone.
In a further aspect of the invention, a pet feeding system has a stand with a top surface. First and second spaced-apart bowl openings are formed in the top surface of the stand. Each bowl opening has a curved perimeter. A front-to-back diameter of the opening, drawn at a right angle to an axis of the opening, is greater than a side-to-side diameter of the opening. A bowl is furnished for each bowl opening. Each bowl is adapted to be manually placed in the opening and removed from the opening and has an oblong shape that mates to the curved perimeter of its respective bowl opening.
In another aspect of the invention, a pet feeding system has a stand. A top surface of the stand defines at least first and second spaced-apart bowl openings. A bowl is removably received into each bowl opening. As so received, an upper edge of each of the bowls substantially resides in a horizontal top plane. For each bowl, a first radius, drawn from a vertical bowl axis to the upper edge of the bowl and toward the front of the stand, is greater than a second radius, drawn from the vertical bowl axis to the upper edge of the bowl and toward the side of the stand. In one embodiment, the longest radii of the bowls are parallel to each other. In one embodiment, a draft of a front portion of each bowl is more gradual than a draft of a side portion of each bowl, making pet access to the bowl easier.
In a further aspect of the invention, a pet feeding system includes a stand, at least one bowl, and a mat. A top surface of the stand defines an opening into which the bowl is removably received. Structure in the mat cooperates with structure in the base of the stand to prevent displacement of the stand in any lateral direction, and to prevent rotation around a stand center relative to the mat. In one embodiment, this mat structure is laterally interior to the stand base and includes at least one raised feature, relative to a general upper surface of the mat. The raised feature cooperates with a nonhorizontal surface of the base. In an embodiment, the stand has first and second side walls that extend downwardly from the stand top surface and that each terminate in a foot. The mat has first and second raised features, laterally exterior surfaces of which cooperate with respective interior surfaces of the first and second walls. As assembled, the mat raised features are interior to the stand walls, preferably out of sight and sheltered from food particles and water. In one embodiment, an area of the mat that is forward of the stand is more extensive than is an area of the mat to the rear of the stand, accommodating the front paws of the pet.
In one aspect of the invention, the pet feeding system has enhanced resistance to shear forces that may be exerted (by the pet or otherwise) from the front, rear or sides. The bowl upper edges are inwardly displaced from a shoulder of the stand top surface, and this shoulder is in turn inwardly displaced from the stand base. The inclined front, back and side walls of the stand are braced against front, rear or side impacts.
In yet another aspect of the invention, a pet feeding system has a stand, at least one bowl receptacle formed in the top of the stand, and at least one bowl for removable installation in the bowl. A top surface of the top of the stand has first and second zones. The first zone is disposed to be adjacent the periphery of the bowl receptacle and has an upwardly convex ring that completely laterally surrounds the bowl receptacle. A second zone extends radially outwardly from the first zone and is disposed below an upper limit of the convex ring. A lower surface of a peripheral lip of the bowl is formed as a concave ring that fits over and is spaced over the convex ring of the stand top surface. In an embodiment, an edge of the peripheral lip of the bowl rests on the second zone of the top surface, such that it will be lower than the upper limit of the convex ring.
In one embodiment, a sidewall of the bowl receptacle slopes downwardly and inwardly from the convex ring. The slope of the sidewall varies as a function of the lateral angle around the bowl axis, and can be much gentler to the front of the bowl receptacle than it is to the rear. A slope of the bowl sidewall varies in the same way, with the slope of the bowl being substantially similar to, but a little steeper than, the slope of the bowl receptacle at any particular horizontal angle around the bowl axis and in any particular horizontal plane.
In an embodiment, a finger notch interrupts the second zone of the stand top surface, but not the upwardly convex ring. A floor of the finger notch is located below the elevation of the second zone of the stand top surface and proceeds inwardly until an inner wall, which is radially inward of a bowl edge when the bowl is installed in the bowl receptacle. The permits the easy removal of the bowl from the bowl receptacle for cleaning and filling.
In another aspect of the invention, a pet feeding system includes a mat and at least one bowl, but doesn't include a stand. Instead, a central pier or mesa is integrally molded with the mat to extend upward from a general and peripheral top surface of the mat. At least one bowl receptacle is formed in the pier top surface. The pier top surface has a first zone with an upwardly convex ring that laterally surrounds the bowl receptacle. A second zone of the pier top surface adjoins the first zone and extends radially outwardly therefrom. The second zone either may be flat or radially outwardly and downwardly sloped. A lower surface of a peripheral lip of the bowl is formed as a downwardly concave ring, so as to fit over and be spaced over the upwardly convex ring on the pier top surface. In one embodiment, a finger notch interrupts the second zone surrounding the bowl receptacle but not the convex ring, and has a floor that is disposed lower than the second zone. This permits the insertion of a finger so as to easily remove the bowl from the pier, as for cleaning and filling. In one embodiment the bowl receptacle is closed so that there is no opening to the bottom surface of the mat.
Further aspects of the invention and their advantages can be discerned in the following detailed description, in which like characters denote like parts and in which:
A pet feeding system is generally indicated by 100 in
The stand 106 has a front wall 110 that is joined by a continuous curved wall to a left side 112 and by a continuous curved wall to a right side 114. Front wall 110 is concavely curved at its center. A top 115 is integrally molded with, and spans across, the front wall 110, left side 112 and right side 114. The stand top 115 has a stand top surface 116. The stand 106 further has a back or a rear wall 118, shown for example in
Bowls 102, 104 and the alternative bowls described herein may be stamped or formed from a corrosion-resistant metal found safe for contact with food at room temperature. The bowls may be formed from stainless steel. More particularly, bowls 102, 104 and the other bowls described in the specification below may be stamped or formed from 300-series stainless steel, such as Type 301 or Type 304, and even more particularly may be formed from Type 304 stainless steel, used for containers and implements for food for human consumption. Bowls 102, 104 and the other bowls described herein preferably are polished, are thus easy to keep clean and won't harbor microbial contamination.
Each bowl 102, 104 has an upper edge 124 and, downwardly and inwardly extending therefrom, an interior surface 126. Each bowl 102, 104 further has a laterally extending lip 128 that, as received in the stand 106, will substantially reside in a horizontal or xy plane.
The stand 106, and stand 1200 as later described herein, are preferably integrally injection molded of a tough thermoplastic polymer compound such as polypropylene or ABS and may have a textured exterior surface. The compound and any adjuvants must be found safe for food contact applications excluding cooking and must meet the requirements of the Food and Drug Administration (FDA). FDA-compliant materials include certain grades of the following plastics: ABS, acetal, acrylic, ETFE, FEP, HDPE, high impact polystyrene (HIS), LDPE, Noryl®, nylon, PBT, PCTFE, PEEK, PET, PETG, PFA, polycarbonate, polypropylene, PPSU, PSU (polysulfone), PTFE, PVC, PVDF, UHMW and Ultern®. The compound may be an olefin-based copolymer as described by 21 CFR 177.1520(a)(3)(i) and (c)3.1a. The compound used to injection-mold stand 106 or stand 1200 may include one or more antimicrobial additives that are not toxic to mammals, such as one including silver-based antimicrobial particles. The additive may be a silver glass antimicrobial additive. The texturing preferably used creates a dulled or frosted surface. Water beads up and rolls off this finely textured finish more readily than it does off of a nontextured surface. Stands 106 and 1200 may be molded in any of a range of colors, but the colorants should meet FDA requirements in both kind and concentration, as found at 21 CFR 174.5, 175.105, 175.300, 176.170, 176.180, 177.1520(c) 3.1a and 178.3297. The compounds and adjuvants should be free of bisphenol A, phthalate plasticizers, phenol, food allergens such as those derived from milk, eggs, fish, shellfish, wheat, tree nuts, peanuts or soybeans, latex or intentionally-added heavy metals.
A zone 130 of the top surface 116 extends from the perimeter of the bowl lips 128 to a shoulder 132, at which point the top surface has curved transitions to exterior surfaces of the front 110, left side 112, right side 114 and back 118 of the stand 106. The zone 130 is downwardly sloped relative to the horizontal or xy plane, so that zone 130 will readily shed food particles and fluids onto a general top surface 134 of the mat 108. Peripheral zone 130 occupies all of the top surface 116 that is laterally exterior to the bowl lips 128, so that all of the open area of the top surface 116 will be sloped and will cascade food and water to the mat.
The left base or leg 120 and right base or leg 122 define an area between them that is considerably smaller than the area of the general top surface 134 of the mat 108. The shoulder 132 of the stand top surface 116 is laterally interiorly spaced from the positions of the left and right bases 120, 122. A wall 136 forming the left side 112 slopes downwardly and outwardly until it terminates in base 120, and a wall 138 forming the right side 114 slopes downwardly and outwardly until it terminates in base 122. Walls making up front 110 and rear 118 are likewise sloped downwardly and outwardly from top surface shoulder 132. This provides greater lateral stability and better resistance against lateral forces placed on stand 106 by the pet, as will be further described in conjunction with
The mat 108, and the alternative mats and integrated mats and stands described herein, may be injection-molded, preferably from a thermoplastic elastomer (TPE) compound. The compound used should be one that is safe for foot contact applications, excluding cooking. The compound should be food-grade and meet the FDA requirements found at 21 CFR 177.1520(a)(1)(i) and (c)1.1a. The TPE may be SEVRENE as sourced from Americhem, Inc. As molded, the mat 108 may have a Shore A hardness in the range of 60 to 85. The mat 108, and the other mats and integrated mats and stands described herein, may be manufactured with an antimicrobial additive (such as ionic or particulate silver that is nontoxic to mammals) that will inhibit the growth of bacteria. The antimicrobial additive may consist of or include silver glass. Further, the compound used to mold mat 108 and the other mats and integrated mats and stands described herein may include a fungicidal additive that is nontoxic to mammals, such as a zinc-based fungicidal additive. These additives are suitable for use in kitchen storage containers and are incorporated into mats and integrated mats and stands described herein to control the growth of microorganisms which may cause staining, odor or product degradation. As an alternative to injection molding and in one embodiment, mat 108 could be thermoformed from a sheet of material having a substantially uniform thickness. Mat 108 may be molded in any of a range of colors, but the adjuvants used to color the molding compounds should be FDA-approved per the above. The mat 108, and the other mats and integrated mats and stands described herein, may have surfaces that are minimally textured and are easy to clean. The mat 108 has a raised peripheral margin 140 that works to retain food particles and fluids.
The exploded view of
Details of a representative bowl 102 are shown in
One shape of each of bowls 102, 104 may be arrived at as follows.
The bottom 406 of the bowl is initially drawn as a circle (not shown) around bowl axis 400, at a radius that is smaller than S1. The sides of the bowl are then lofted from periphery 606 to the bottom bowl circle. The bowl shape is then radiused at a constant radius at its bottom to produce the curved transitions 426 and the shape that is seen in
As installed in the bowl openings 206, 208, in the illustrated embodiment the longest radii (r1) of bowls 102, 104 will be parallel to each other and to the x direction.
A bottom 406 of the bowl 102 may be flat, as shown, to aid in stability while filling. A front portion 408 of the curved interior surface 126 has a more gradual draft than does a side portion 410 or a rear portion 412. In the illustrated embodiment, an xz section of the front portion 408, as including the bowl axis 400, includes a straight segment 414. This straight segment 414 makes an angle α with respect to a vertical reference 416. An xz section of the rear portion 412, as including the bowl axis 408, includes a straight segment 418. Straight segment 418 makes an angle β with a vertical reference 420, with α>β. Turning momentarily to
Another technical advantage of the invention derives from the provision of noncircular bowls 102, 104 for removable installation into respective noncircular openings or receptacles 206, 208 in stand 106. Dogs in particular make extensive use of their tongues while feeding and little or no use of their paws. A dog often will lick the internal surface of the bowl 102, 104, often imparting a considerable amount of force to the bowl. If bowls 102, 104 and openings 206, 208 were circular, the licking action of the dog would cause the bowl to spin within the bowl receptacle, having a tendency to eject food and water particles and also tending to encourage the inadvertent separation of the bowl from the stand 106. The noncircularity of the bowls 102, 104 and their bowl receptacles 206, 208 prevents this, and keeps the extended front lobe of each bowl 102, 104 oriented toward the front of the stand 106 and toward the pet.
In the illustrated embodiment, the peripheral zone 130 is shown to be flat until it transitions, at shoulder 132, to a right sidewall 138 of the side 114. The peripheral zone 130 could take on a more convex shape, so long as every point on it is downwardly and outwardly sloped to optimally shed stray food and water.
Right wall 138 terminates in a right base or foot 122 that may be formed as a horizontally outwardly extending flange 706. Left wall 136 terminates in a left base or foot 120 that may be formed as a horizontally and outwardly extending flange 708.
The underside of stand 106 is not seen in normal use and is less likely to acquire food or water particles. It is therefore a good site for reinforcing ribs to stiffen the structure. In part because of shielding walls 110, 118, 136 and 138, these ribs are inaccessible to the tongue of the animal when the stand 106, or stand 1200 described below, is positioned for use on any of mats 108, 820 or 1500. In the illustrated embodiment, these include a center rib 710, disposed in an xz plane and on center 702 that extends from a front wall 712 to a rear wall 714. Three spaced-apart transverse ribs 716, 718 and 720, in yz planes, intersect rib 710 and connect to bowl opening walls 210 on both of their ends. A set of three yz stiffening gussets 722, 724 and 726 connect bowl opening wall 210 of opening 208 to right wall 138; a similar set of stiffening gussets (not all shown) are disposed between the bowl opening wall 210 of opening 206 and left wall 136. A triangular xz gusset 728 may connect wall 210 of opening 208 to back wall 714, and a similar gusset 730 may connect wall 210 of opening 206 to back wall 714. Similar gussets may connect the wall 210 of openings 208, 206 to front wall 712.
An area mat 108 for use with the invention is shown in
Ribs 200, 202 thus are raised features that cooperate with or mate with nonhorizontal surfaces of stand bases 120, 122 to prevent movement of the stand 106 in any lateral direction; a vector component of at least one of arcuate surfaces 800, 802 will resist movement in +x, −x, +y or −y directions or a direction which is any combination thereof. Structure alternative to that shown could do the same job. For example, instead of independent ribs 200, 202, mat 108 could have a mesa that stretches between them but that still has lateral exterior arcuate surfaces 800, 802. The ribs 200, 202 could be of shapes other than arcs, which then would cooperate with internal wall surfaces 700, 704 that would have complementary shapes. It is also possible to break up each rib 200, 202 into spaced-apart segments or individual columns.
One advantage of ribs 200, 202 as they appear in the illustrated embodiment is that it is easy to clean them and the area in between them. Another advantage is that, once the stand walls 136, 138 have been lowered in place on top of them, they will not be easily visible (they are short enough, as seen in
In a preferred embodiment, the arc subtended by rib exterior surface 800 should be only slightly less than the arc subtended by inner wall surface 700. This insures maximum contact for support, but also minimizes gaps that could cause food particle trapping. A smaller arc for rib 800 would create more of a gap between wall inner surface 700 and the general top surface of mat 108, where food may trap. The arc of rib exterior surface 802 likewise should be only slightly shorter than the arc of inner wall surface 704.
An alternative embodiment of a mat 820 for use with the invention is shown in
The assembled pet feeding system in a yz elevational section is seen in
The bottoms of bowls 102, 104 reside in a bottom plane 404 that, in this embodiment, is elevated by a considerable distance above the mat 108. Pet feeding systems 100 can be made in various sizes, in which the size of the food and water bowls 102, 104, and their height from the mat 108, can be individually altered.
The illustrated embodiment includes two spaced-apart bowls 102, 104. The peripheral zone 130 of the top surface 116 includes a concave valley 900 in between the lips 128 of the bowls 102, 104. The bottom of this valley 900 is itself sloped in a +x and in a −x direction from a central point, providing sloped paths for stray food particles and water to cascade downward and off of stand 106. In multiple-bowl embodiments, all portions of the third zone of the stand surface are downwardly and outwardly sloped relative to the nearest bowl axis 400.
The stand 106 is outwardly splayed in +x, −x and +y, −y directions to give it greater stability and resistance against lateral forces. A radius r4 from axis 400 of bowl 102 to the top surface shoulder 132 is greater than bowl radius r2. A radius I's from axis 400 to base 120, and in the −y direction, is greater than radius r4. The mass of the preferably stainless steel bowl 102 and its contents will be well inward from left wall 136. Similar relationships obtain for bowl 104. Inclined walls 136, 138 are braced to withstand shear forces in the yz plane. In the xz plane shown in
As best seen in
The stand top 1208 spans from the back 1210 to the front and from side 1204 to side 1206. Top 1208 has formed therein at least one, and in the illustrated embodiment two, bowl receptacles 1212 and 1214. As in the previously described embodiment the bowl receptacles preferably are oblong. Each bowl receptacle 1212, 1214 is adapted to receive a similarly oblong-shaped bowl 1216 (one shown). As measured in a horizontal plane at its upper periphery, a major axis of bowl 1216, in a front-to-back direction, is longer than a minor axis disposed in a side-to-side or transverse direction.
The stand top 1208 has a top surface 1218 that, in the illustrated embodiment, has first, second and third zones 1220, 1222 and 1224. A respective first zone 1220 and a respective second zone 1222 are provided for each bowl receptacle 1212, 1214. The first zone 1220 is disposed to be adjacent an upper periphery 1228 of bowl receptacle 1212 or 1214 and includes an upwardly convex ring 1226 that completely laterally surrounds bowl receptacle 1212 or 1214. Extending laterally outwardly (relative to vertical axis Z of the receptacle and bowl) from the first zone 1220 is the second zone 1222. The second zone 1222 of the top surface is either horizontal (perpendicular to axis Z) or is radially outwardly and downwardly sloped. In the illustrated embodiment, second zone 1222 is flat and horizontal. The flatness of second zone 1222 may be held to a tolerance of plus or minus 0.010 in.
The second zone 1222 completely laterally surrounds the first zone 1220 for any particular bowl receptacle 1212 or 1214, except where zone 1222 is interrupted by a finger notch 1230. The elevation of the top surface 1218 of stand top 1208 within second zone 1222 is less than an upper limit 1232 of the upwardly convex ring 1226.
Disposed radially outwardly from the second zones 1222 (there is one per bowl receptacle) is a single third zone 1224. The slope of third zone 1224 varies from point to point, but any point on it slopes radially outwardly and downwardly relative to the closest bowl/receptacle axis Z, so that food and water particles are easily shed off of zone 1224 and not retained. The third zone 1224 separates the second zones 1222 and completes the top surface 1218 of the stand top 1208. Stand sides 1206, 1208 and connecting back 1210 (and the opposed front) each make a preferably curved shoulder with a lower end of third zone 1224.
Relative to a vertical reference, and at any particular point P at a horizontal angular location θ as measured around receptacle and bowl axis Z, and in a given horizontal plane, the slope of sidewall 1234 will subtend an angle φR. At this horizontal angular location and in the same horizontal plane, a sidewall 1238 of the bowl 1216 will subtend an angle φB relative to a vertical reference that is substantially similar to, but slightly gentler than, angle φR at that location. Said another way, the draft of the bowl sidewall 1238 is slightly more pronounced than a corresponding draft of the bowl receptacle sidewall 1234. The difference between φB and φR may be chosen to be in the range of ½ to 2 degrees and in one embodiment is about 1 degree.
As taken in any given horizontal plane, the slopes of bowl sidewall 1238 and bowl receptacle sidewall 1234 vary as a function of horizontal angle θ from the axis.
A peripheral lip 1240 of the bowl 1216 has a lower surface 1242 that is finished in a downwardly concave ring 1244. A radius of the concave ring 1244 is chosen to be slightly larger than a radius of the upwardly convex ring 1226 of the stand top surface first zone 1220. In this way, the concave ring 1244 fits over and is slightly spaced from the convex ring 1226. The radius of the concave ring 1244 is also chosen to be large enough to be cleaned with a finger, a finger-backed cloth or a sponge, and may be about 3/16 in. (0.187 in.) The peripheral lip 1240 of the bowl is finished in a way that is different from conventional bowls, which typically are fully folded back on themselves and crimped. While this creates a smooth-feeling edge, it also creates un-cleanable trapped regions where food may collect and bacteria may form. This conventional folded edge geometry also allows the manufacturer to use lighter gauge (less expensive) materials as the folded edge is more rigid yet the remainder of the bowl may be flimsy, easy to dent. In contrast, the inventors use an easy to clean open edge design and heavier gauge stainless steel.
An outer edge 1246 of peripheral lip 1240 preferably contacts or rests on a second zone 1222 throughout the entire circumferential length of second zone 1222, that is, throughout most of the circumference of the lip 1240. This supports the entire weight of bowl 1216 and its contents. The outer edge 1246 conforms to a horizontal plane to a tolerance of 0.010 in. In combination with the tight tolerance of the planarity of second zone 1222, this assures that bowl 1216 will not rock in its receptacle 1212 or 1214. The nominal spacing (e.g., 0.020″) of the concave ring 1244 from the convex ring 1226 ensures that lip edge 1246 will contact second zone 1222, minimizing any gaps between them. As installed, the outer edge 1246 is lower than an upper limit 1232 of the convex ring 1226. The interaction of the lower surface of the downwardly concave ring 1244 with the upwardly convex ring 1226 aids in centering and seating the bowl, and makes harder the possible dislodgment of the bowl 1216 from the bowl receptacle 1212 or 1214 by the pet. Outer edge 1246 is deburred, finished and polished to prevent cutting either humans or pets.
As best seen in
The finger notch 1230 permits a pet owner to insert a second, third or fourth finger of the hand underneath edge 1246 of the bowl 1216, such that bowl lip 1244 may be grasped between the inserted finger and the thumb of the owner and the bowl 1216 lifted from the bowl receptacle 1212 or 1214. Finger notch 1230 is dimensioned so as to accomplish this purpose; the spacing between a top end of right sidewall 1252 from a top end of left sidewall 1254 may be about one inch. The floor and all walls of the finger notch 1230 are radially outwardly and downwardly sloped for drainage. Importantly, the notch 1230 does not open onto or continue into the interior of the bowl receptacle 1212 or 1214; the notch inner wall 1250 joins to the convex ring 1226 to provide a fluid-obstructing barrier all of the way around the periphery of the bowl receptacle 1212, 1214.
Referring now to
Each rib 1502, 1504 has a top surface 1508 and an outer wall 1510. Relative to the embodiment shown in
The mat 1500 preferably is injection-molded and its various parts are formed by walls that at least roughly conform to a nominal thickness for ease in molding. In such an embodiment, ribs 1502, 1504 are hollow and a web 1518 of the central area 1512 is propped up into a vaulted condition by spaced-apart, downwardly extending ribs 1520. In the illustrated embodiment, the ribs 1520 are parallel to each other and run in a longitudinal or front-to-back direction.
A further embodiment of the invention is illustrated in
This embodiment is particularly suited to dogs with short legs, very small dogs and cats. For these pets, the bowls 1600 do not need to be elevated off of the peripheral top mat surface 1614 by more than the depth of the bowl receptacles 1602, 1604, and little more than the depth of the bowls 1600 themselves.
The central pier or mesa 1606 is integrally molded with the rest of the mat 1608. Pier 1606 is located so as to be spaced from any lateral edge 1618 of the mat 1608. Preferably, more of the peripheral top mat surface 1614 is disposed toward the front of the pier 1606 than is disposed to the rear of it. An upstanding wall 1616 of the pier 1606 upwardly extends from the general, peripheral mat surface 1614 and preferably is rounded or convexly curved as it transitions to a top surface 1620 of the pier 1606.
The top surface 1620 of the pier 1606 has a first zone 1622 that is immediately adjacent each bowl receptacle 1602, 1604, a respective second zone 1624 for each bowl receptacle that extends radially outwardly from the first zone 1622, and a third zone 1626 that laterally surrounds and spaces apart the second zones 1624. Each first zone includes an upwardly convex ring 1628 that completely surrounds a respective one of the bowl receptacles 1602, 1604. The second zone 1624 (one is accorded for each receptacle 1602, 1604) is either flat (as shown) or is downwardly and radially outwardly sloped relative to central vertical axis Z, and its elevation is less than an upper limit 1630 of the convex ring 1628. All points on the third zone 1626 are downwardly and outwardly sloped relative to the nearest bowl/receptacle axis Z, so that food and water particles will not accumulate on any part of third zone 1626 of the pier top surface 1618.
Each receptacle 1602, 1604 is provided with a finger notch 1632 that is similar in shape, position, dimensions and function to finger notches 1230 of the embodiment shown in
Preferably, and as shown in
Unlike the embodiments including a mat, stand and bowls, each bowl receptacle 1602, 1604 is closed to prevent the spillage of food or water on the floor. Each receptacle 1602, 1604 has a lower surface 1640 that rests directly on the floor or other supporting surface, and is in the same plane as the lowest plane of the rest of the mat 1608. This provides support and structural stiffness. A draft of a bowl receptacle sidewall 1642 substantially matches the draft of a bowl sidewall 1644, and both of these drafts change in a uniform fashion, within a given horizontal plane, as a function of the lateral angle of the point being considered. As shown in
In summary, an improved pet feeding station incorporates bowls with forwardly extending portions and gradual drafts to easily accommodate the heads of feeding pets. A top surface of the stand is crowned to shed stray food particles and water. A mat of the system has structure that locates the stand and holds it in place against lateral shear and torsional forces. Convex rings surrounding bowl receptacles of the stand allow for easier indexing and location of the bowls to the stand, create barriers to food and water particles and make harder the dislodgement of the bowls from the stand by the pet. A finger notch is provided adjacent each bowl receptacle so that a user may more easily remove the bowl from the stand for filling or cleaning.
While illustrated embodiments of the present invention have been described and illustrated in the appended drawings, the present invention is not limited thereto but only by the scope and spirit of the appended claims.
This application is a continuation in part of copending U.S. patent application Ser. No. 15/467,160 filed Mar. 23, 2017, which in turn is a continuation in part of U.S. patent application Ser. No. 15/089,863, filed Apr. 4, 2016, now abandoned. The foregoing patent applications are owned by the Applicant. The entire disclosure and drawings of the foregoing applications are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 15467160 | Mar 2017 | US |
Child | 15723456 | US | |
Parent | 15089863 | Apr 2016 | US |
Child | 15467160 | US |