The present invention relates to a sanitizing device for attachment to a face mask and which utilizes ultraviolet light to sterilize the wearer's exhalations as they are emitted from the mask.
The respiratory system represents a closed air system with a self-contained cavity, much smaller than a car cabin, or room. Unlike man-made rooms or vehicles in which air ducts and fans are used to circulate air, the human body uses inhalation and expiration as a mechanism to fill the respiratory system, thereby providing needed oxygen to the blood supply.
The respiratory system is also a pathway into the body for viruses, bacteria and other harmful pathogens. Inhalation can bring such organisms into the person and exhalation can deliver particles containing such organisms to others, thereby spreading disease.
Face masks are often worn by medical professionals to protect patents from any viruses or bacteria that may be harbored by the wearer. The face masks also provide a degree of protection to the wearer from outside sources. These masks can be made of a variety of materials, such as paper, fabric or various nonwoven materials. While these masks can be somewhat effective in preventing the virus particles from escaping through the mask, their efficacy is limited due to an imprecise fit and limited filtration. it would be desirable to equip the masks with a way to kill the virus particles so that even those that escape from the mask cannot infect the public.
This object is accomplished according to the invention by a sanitizing device comprising a housing having a central aperture and an ultraviolet (UV) light-emitting diode (LED) assembly mounted in the housing. The UV LED assembly is formed of a plurality of connected UV LEDs arranged circumferentially around the central aperture so as to project UV-C light into the aperture. UV-C light is a short-wave ultraviolet light that has been found to be effective in killing viruses in the air and on surfaces. Far UV-C light (e.g. 222 nm wavelength) is preferably used, as exposure to it has less adverse effects on humans. A power source is connected to the UV LED assembly to supply power to the assembly. The housing is configured with overhanging front and rear faces, so that the UV LED assembly is recessed within the housing and is not visible when viewing the housing directly from the front or rear. This arrangement protects the user and others from excessive UV exposure during use.
There is an attachment layer connected to a rear surface of the housing. The attachment layer is configured for attaching the sanitizing device to a face mask. The attachment layer can be any suitable attachment means, such as a releasable adhesive or a hook-and-loop type fastener, that follows the toroidal shape of the housing. If a hook-and-loop type fastener is used, one side of the fastener is affixed to the housing, and then a plurality of corresponding layers of the other side of the fastener are provided for attachment to a face mask, as new fastener is required each time the mask is discarded an a new one is used. Each side of the fastener can be affixed to the housing or the mask via an adhesive substance. The power source also has an attachment layer connected to its back surface. The attachment layer can also be any suitable attachment means, such as an adhesive or hook-and-loop type closure. A switch can be connected to the housing to turn the LEDs on and off. An indicator light can be connected to the switch so that the user, who may not be able to see the LEDs that are recessed in the housing, will know whether the LEDs are on or off.
To further prevent exposure by the LEDs, a filter cover can be placed over the aperture in the housing, on the front and/or rear sides of the housing.
The power source can be any suitable source of electrical power for the LEDs. In one embodiment, the power source is a battery. The battery is preferably configured to be as small and as flat as possible, so that it can be easily adhered to a face mask. The battery is connected to the LED assembly via a wire.
The sanitizing device according to the invention is ideally used on disposable paper face masks to sanitize the user's inhalations and exhalations. The housing is affixed to a front or rear central portion of the face mask, adjacent the wearer's mouth, so as to capture the majority of air exhaled by the wearer. The battery can be affixed to any suitable location on the mask. Once the mask has been used, the sanitizing device can be removed from the mask and re-used on a new mask by affixing the housing and battery to the new mask. The sanitizing device can be re-used as many times as needed. The battery can be replaced when it is depleted. Alternatively, a re-chargeable battery can be used instead. While envisioning a lightweight battery that can be connected to the housing and also adhered onto the mask, the invention does not require a particular design with regard to the battery. Therefore, for more professional uses it may be required to have more LEDs and a greater battery supply, in which case the wire can be connected to a larger battery source that can be located or clipped onto, held or stored on the person wearing the mask as well as any person or object in proximity to the mask, such that it is electrically connected to the sanitizing device according to the invention.
In an alternative embodiment, the sanitizing device can be permanently mounted in an aperture in a face mask so that it is not removable, or can be retro-fitted into a valve nozzle in an existing mask. The power source can be in the form of a battery that is attached to the mask, or can be in the form of a conductive material such as graphene, that is printed on the mask itself and connected to the LED assembly through the material of the mask.
While this invention calls for inhalation and exhalation to be the driving force in moving air in and out of the body, the invention is not limited thereby. In one embodiment, a micro fan can be used to assist in certain cases where it may be necessary.
It is believed that this invention will add another layer of protection to masks used for mitigation of disease.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring now in detail to the drawings.
As shown in
As shown in
As shown in the diagram in
An alternative embodiment of the invention is shown in
The device of the present invention is a simple and effective way to sanitize the air traveling through a face mask. It is small, lightweight, portable and inexpensive to manufacture.
Accordingly, while only a few embodiments of the present invention have been shown and described, it is obvious that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.
This application claims priority under 35 USC 119(e) of U.S. Provisional Patent Application No. 63/105,248, filed on Oct. 24, 2020, the disclosure of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63105248 | Oct 2020 | US |