The invention relates to a sanitary installation element with at least one by-pass or cleaning duct, which is assigned a valve, in whose open position, the at least one by-pass or cleaning duct is connected or switched on.
Sanitary installation elements are known, which are embodied as jet regulators that can be inserted into the discharge mouthpiece of a sanitary outlet armature. Such jet regulators are provided to create a homogenous and bubbling-soft water jet and include a jet splitter in the interior of their installation housing, which may be embodied as a diffuser or a perforated plate. While the perforated plate is provided with a multitude of penetrating holes, each creating an individual jet the diffuser is provided with a deflector plate, which is defined by a wall section broken by penetrating openings. These installation elements bear the risk that dirt particles entrained in the water may clog the comparatively small discharge cross-sections of the perforated plate or the diffuser and thus can compromise the function of the functional units provided in the installation elements of prior art.
Therefore, a self-cleaning installation element, embodied as a jet regulator, has been provided (cf. U.S. Pat. No. 4,313,564). This known installation element is provided with a valve, pre-stressed in its open position, which moves into its closed position by a predetermined back-pressure of the water. While the water in the open position of the valve is not only able to flow through the discharge ducts arranged above the valve in the direction of flow, it also flows through by-pass or cleaning ducts arranged above the valve, in the closed position of the valve only the discharge ducts provided above the valve remain open. Through the increased back-pressure of the water during the closing motion of the valve due to the increased speed of the water by the reduced clear opening cross-section as well as the changed guidance of the liquid, an abrasive effect of the water is achieved in the closed position of the valve, which allows loosening and removal potential precipitations in the installation element of prior art. The liquid guidance which changes depending on the back-pressure and the thus changing flow rates simultaneously results in abruptly changing flow characteristics of the discharging water, which is considered disturbing by the user.
From DE 10 2004 044 158 B3, a sanitary installation element is known, which can be inserted into the outlet mouthpiece of a sanitary outlet armature. The installation element of prior art is embodied as a jet regulator insert, which can be switched between a forceful cleaning jet and a soft aerated full jet. For this purpose, the jet regulating insert of prior art is provided with a central cleaning jet duct, surrounded by an annular flow chamber having a multitude of water discharge nozzles. The flow chamber provided to create the soft aerated full jet is provided with an inlet opening, which can be controlled in its closed position by a pre-stressed valve such that the valve can be opened by the inflowing water at the predetermined back-pressure of the water. While the cleaning jet can be advantageously used to clean a razor, for example, in case of a valve opened by the water pressure, a soft jet comprising a multitude of individual jets is created in addition to the cleaning jet. Due to the fact that the so-called soft jet also includes the forceful cleaning jet, here always a combined jet with a splashing center results, which is experienced as relatively uncomfortable, even when the water pressure is appropriate. Also, the cleaning jet of the above-mentioned jet regulator is used for external cleaning purposes only, and not for a self-cleaning of the jet regulator for the purpose of maintaining the functions of its intended purpose.
Therefore the object is to provide a sanitary installation element of the type mentioned at the outset which is characterized in the functional units located therein being trouble-free and of low maintenance and allowing the formation of a homogeneous water jet independent from the water pressure.
This object is attained according to the invention comprises in an installation element of the type mentioned at the outset, in particular, in that the installation element has a filter screen with at least one outlet opening, which outlet opening is provided with a clear opening cross-section enlarged in reference to the screen openings of the filter screen, the at least one outlet opening opens into at least one by-pass or cleaning duct, and that the outlet opening is arranged upstream in the direction of flow and the duct outlet of the at least one by-pass or cleaning duct is downstream in the direction of flow, of at least one liquid-conveying component of at least one functional unit located in the sanitary installation element.
The installation element according to the invention is provided with a filter screen having at least one outlet opening, which traps and can collect dirt particles entrained in the water, in order to remove them via its outlet opening. In order to allow these dirt particles to be removed from the inlet side of the filter screen, the outlet opening of this filter screen is provided with a clear opening cross-section enlarged in reference to the screen openings. The at least one outlet opening opens into at least one by-pass or cleaning duct, through which the collected dirt particles can be removed. Here, the at least one outlet opening of the filter screen is arranged upstream in the direction of flow of at least one liquid-conveying component of a functional unit located in the installation element and the duct outlet of the by-pass or the cleaning duct is arranged downstream thereof in the direction of flow. The installation element according to the invention is therefore characterized in a comfortable operating mode and constant flow rates. Due to the fact that the dirt particles, which potentially compromise the functionality of water-conveying components, can be removed via the by-pass or cleaning duct during the interruption of the water supply, simultaneously a low-maintenance and trouble-free functionality of the installation element according to the invention as well as the functional units located therein is ensured.
Regardless if the valve is pressed into its open position by a return spring or can be manually set to its open position, it is advantageous for at least one valve to be movable from its open position into its closed position under the back-pressure of the inflowing water.
A preferred and particularly advantageous embodiment according to the invention provides that the installation element is embodied in a self-cleaning fashion and that for this purpose, the at least one valve can be moved under the back-pressure of the inflowing water against a reset force into its closed position. In this embodiment the valve is generally held in its open position by the return force. Due to the fact that under the back-pressure of the inflowing water, the valve can be moved from its open position, against the reset force, into its closed position, the valve is held in its closed position by the inflowing water, in order to only open with an interruption of the water flow, simultaneously closing the outlet armature, such that the collected dirt particles can be removed. In this way, the dirt particles endangering the functionality of a water-conveying component can be removed via the by-pass or cleaning duct during the interruption of the water supply, which occurs regularly when closing the outlet armature which controls the water flow.
A preferred embodiment according to the invention provides that the installation element is provided with a jet regulator as a functional unit and that a jet splitter is provided as at least one of the liquid-conveying components. Due to the fact that particularly the jet splitter of a jet regulator is endangered by dirt particles entrained in the water, due to its relatively small opening cross-section, the installation element according to the invention with its self-cleaning features is particularly suitable in a combination with a jet regulator.
Here, the jet splitter can be embodied as a perforated plate or as a diffuser.
In order to facilitate a trouble-free function of the functional units located in the installation element according to the invention, it is advantageous for at least some of the filter openings of the filter screen to have equally large or smaller clear opening cross-sections in reference to the clear openings of at least one liquid-conveying component. In this way it is ensured that such dirt particles which perhaps have passed the filter openings of the filter screen can definitely pass through the clear openings of the jet splitter.
While the dirt particles entrained in the water, at least to the largest extent, are removed via the by-pass duct it is advantageous for at least one functional unit to be arranged downstream in the direction of flow of the filter openings of the filter screen. In this way, the water jet cleaned by the filter openings of the filter screen is always supplied to at least one functional unit.
A preferred embodiment according to the invention provides for at least one valve having a valve body guided in the installation element in a displaceable fashion against a return force.
Here, a particularly beneficial further embodiment according to the invention provides that a partial sector of the valve body guided through the installation element projects to approximately the water outlet of the installation element and is embodied as a handle for manually operating the valve. The partial section of the valve body projecting beyond the water outlet of the installation element allows not only an indication of the respective operating state of the valve, but also allows the user to trigger further self-cleaning operations from the automatic self-cleaning of the installation element according to the invention, when necessary, moving the valve body at its partial section embodied as a handle into its open position, if necessary.
It is particularly advantageous when the valve body is embodied mushroom or plate shaped.
A preferred embodiment according to the invention provides that the valve body has a guide pin guided in the installation element in a displaceable fashion.
This guide pin is made solidly and can be guided in appropriate guiding openings of the installation element. Another embodiment according to the invention provides that the guide pin is embodied tubular, and the interior of the tube of the guide pin is embodied as a by-pass duct, and that in the upstream end region of the guide pin, at least one inlet for liquids and in the downstream end section of the guide pin at least one outlet for liquids is provided. This way the dirt particles are guided through the interior of the tube of the tubular embodied guide pin, passing the functional liquid-conveying unit. When the tubular guide pin projects from the water outlet of the installation element according to the invention the dirt particles are removed immediately to the outside without allowing them to compromise so much as a single functional unit.
A particularly simple embodiment according to the invention provides that the face opening of the guide pin, preferably protruding from the installation element at the downstream side, is embodied as a discharge unit.
Another, particularly advantageous embodiment according to the invention provides that the valve body is embodied elastically, at least in a shield-shaped partial section, and has an external circumferential seal and that the shield-shaped partial section can be moved from an open position into a closed position against the elasticity of the elastic material. The elastically embodied, shield-shaped partial section of such a valve body can be everted by the backpressure of the inflowing water such that the valve moves from its open position into its closed position. When the backpressure of the water drops, the shield-shaped partial section of the valve body can evert from its closed position into the open position, due to the natural elasticity of the material.
It is particularly advantageous when the outlet opening of the defining edge region of the filter screen is embodied as a valve seat cooperating with the valve body.
In order to allow even large dirt particles in the water to be filtered out it is advantageous when at least one attachment screen is installed upstream in the direction of flow in reference to the installation element. Such an attachment screen effects a preliminary filtering of the inflowing water before the water then passes the filter screen.
It is particularly advantageous when the installation element is provided with a jet regulator as well as a preferably upstream positioned flow regulator as its functional units.
A preferred embodiment according to the invention provides that the filter screen is embodied like a funnel and that the funnel opening of the filter screen serves as the outlet opening. Here, the funnel shaped filter screen may be of an essentially convex or concave funnel-shaped design.
The valve body of the valve allocated to the by-pass duct can be moved against the reset force of a return spring from its open position into its closed position. Another, particularly beneficial embodiment according to the invention provides that the valve body is guided in a displaceable manner by a guide pin that projects from the attachment or filter screen, and that at least one return element comprising an elastic material is provided, which on the one hand is connected to the valve body and on the other hand to the guide pin.
In order to allow guiding the valve body particularly safely at the guide pin, it is beneficial when the valve body annularly encompasses the guide pin. The valve body, on the one hand, and the return element allocated thereto, on the other hand, form an inseparable functional unit when the return element is formed in one piece at the opposite facial edges of the valve body and when the return element is supported with its central area on the upstream face of the guide pin. Here, the return element can be practically fastened at the valve body in the fashion of bellows or suspenders.
A particularly simple and advantageous embodiment according to the invention provides that the return element overlaps the guide pin in a cap-shaped fashion and that the return element with the downstream end of its circumferential edge region is formed in one piece at the valve body.
In a return element overlapping the guide pin in a cap-like fashion it is particularly advantageous for the elastic perimeter of the cap of the return element, comprising an elastic material, to represent the return force. A particularly preferred embodiment according to the invention therefore provides that the valve body is essentially guided in a displaceable fashion through the elastic perimeter of the cap of the return element at the guide pin.
The return element connected to the valve body can be produced from a hard-elastic material and/or allow a longer displacement distance of the valve body when the return element has a cap perimeter embodied as bellows.
Additional features according to the invention are discernible from the following description of embodiments according to the invention as well as the claims. In the following, the invention is explained in greater detail using the preferred exemplary embodiments:
Shown are:
The installation elements 1 shown in
As discernible, for example, from a comparison of
Here, the filter openings 11 of the filter screen 4 arranged upstream in reference to at least one functional unit 3 have a clear opening cross-section being at the most of the same size and preferably smaller in reference to the penetrating openings 10 of the at least one liquid-conveying component 7, 8, so that such dirt particles that have passed the filter openings of the filter screen 4 can always also pass through the penetrating openings or penetrating holes 10 of the liquid-conveying component 7, 8.
In the installation elements shown in
From
While the valve body 12 of the installation elements 1 shown in
An exemplary embodiment is shown in
From the comparison of
From
It is understood that the jet regulator 1 shown in
As discernible from a comparison of
The return element 21 is produced from an elastic material and is embodied like a cap. The cap-shaped return element 21 overlaps the guide pin 20 and is formed in one piece with the valve body 12 with its circumferential edge region at the downstream side such that the return element 21 is connected to the valve body 12 at the opposite facial edges while it is supported with its central area on the face of the guide pin 20 at the upstream side.
While the return element 21 of the installation elements 1 shown in
The by-pass duct of the installation elements 1 shown in
Here, the jet splitter of the installation elements 1 shown in
Number | Date | Country | Kind |
---|---|---|---|
102006057795.7 | Dec 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/010314 | 11/28/2007 | WO | 00 | 10/9/2008 |