The present invention relates to an improved sash window including a window frame containing two window sashes disposed in the same vertical plane in the closed window position, with the lower sash being also connected by cables to a counterweight vertical-movement mechanism enabling same to move in the window frame, maintained in a second vertical plane, until occupying, for example, a position parallel to the upper sash in an open window position.
Its field of application is intended to be in sash window manufacturing in order to provide the sealing in the sliding of the sash on the frame, given that there is not enough pressure between both, especially in sash windows of recent design; nevertheless, its field of application is also considered to be in the manufacture of any European standard series sash windows existing on the market, with only one requirement: adaptation of a profile for the lower window sash.
Ever since Spanish Patent ES 150519, for example, a counterweight sash window has been known, which window incorporates a mechanism comprising cables, pulleys and weights, intended to assist the vertical movement of the sashes. In the closed position, the window sashes are arranged one after the other, forming a single vertical plane; nevertheless both sashes are guided, the inner sash in lateral guides in the casing that drive its vertical and horizontal path to the outside, and the outer sash in lateral guides that drive it in its vertical path. The horizontal movement of the inner sash to the outside situates the sash in the same vertical plane as that occupied by the outer sash, thus permitting the setting and adjustment of the ruled surfaces of the bottom edge of the outer sash over the top edge of the inner sash. The invention describes the presence of joint covers and weather stripping that clearly do not guarantee the sealing of the window.
A counterweight vertical-movement mechanism that includes a counterbalanced spring for counterweighting suspended elements has been already disclosed in U.S. Pat. No. 1,922,370, which describes a rotatable supported shaft over a support, a pair of opposing pulleys secured to the shaft in such a way that they rotate together with said shaft, a pair of support cords, one end of which is secured to the suspended element while the other end is secured to the respective pulley, in which each of the pulleys includes a circular groove in which the respective cords can be wound in order to move the suspended element, and in which said shaft is connected by one end to an elastic element whose opposite end is secured to a friction disc. The use of this mechanism facilitates the movements initiated by the user to vertically move the suspended element, as said movements are counterweighted at any point of the movements.
According to the above background, the object of the present invention is to provide an improved and simplified sash window, which is outfitted with projection means that move horizontally and frontally one of the window sashes to a separate position of the frame where it is maintained in order to run a vertical path aided, together with the user, by a counterweight vertical-movement mechanism. This permits, for example, the placing of sealing gaskets in the front of the window frame and in the inner perimeter of the window casing. Additionally, the object of the invention extends to conventional sash windows that are already installed.
The present invention provides an improved sash window that aims at a better sealing of the window and a smoother vertical movement of the sliding sashes in the window frame.
In general, to accomplish the proposed object, there is provided an improved sash window of the type that includes a window frame and two window sashes arranged in the frame so as to occupy the same first vertical plane in the closed window position, with the lower sash connected by cords or cables to a counterweight vertical-movement mechanism that includes a counter-balanced spring or torsion spring for aiding the counterweighted movement of said lower sash vertically in the window frame, and so that said lower sash is parallel to the upper sash in an open window position.
The main feature of the invention is to provide the frontal movement of the lower window sash from a first vertical plane in the closed window position to a second plane in an open window position, or vice versa, thus projecting it in a continuous horizontal path between both the first and the second vertical planes and forced to be separated from the first vertical plane with the help of blocking elements so as to be ultimately moved in a vertical path aided by the counterweight vertical-movement mechanism.
Advantageously, in order to avoid imbalances during said movement, the frontal and horizontal movement of the lower window sash is performed with the help of projection means formed by two scissor mechanisms that are guided between the side jambs of the window frame and whose arrangement in the window ensures a single degree of freedom in the horizontal direction for the lower sash, for which purpose the lower ends of each scissor arm are fixed in the closed window position while the upper ends are guided during sash movements. Each scissor mechanism includes two arms formed by hinged strips, and both arms are articulated to each other. As mounted in the window, the first arm of each mechanism is articulated at its lower end to a square anchor arranged, respectively, in the proximity of the closest bottom corner of the lower window sash and is articulated at its upper end to a strip anchor that is guided in the respective stile of the lower window sash; the upper end of the second arm incorporates a pin that, after traversing the outer face of the nearby stile, is secured to an inner rod sliding in a guide rod that is joined to the immediate jamb of the window frame, while its lower end is secured to the end of a torsion bar formed by a hollow tube that maintains the distance between the scissor mechanisms and to whose ends both terminals have been axially coupled, secured to the tube by elastic pins, and whose free ends are connected to sliders that guide the lower window sash in its vertical movements. The torsion bar locks together the movements of the scissor mechanisms situated to the right and left between the stiles of the lower window sash to be projected and the nearby jambs of the window frame, thus maintaining the parallelism of the window in the open position.
Preferably, the blocking of the lower sash in the horizontal open and closed window positions takes place coincidentally with the descent and ascent of the inner rod on the blocking slider and in a simple manner. Thus, use is made of a blocking pin connected to the lower end of a guide strip secured to the inner rod, which pin runs between the ends of a slanted channel laid out in one of the faces of said blocking slider also provided with an insertion projection in a retention clip that is used to keep the scissor mechanisms stretched once folded.
Advantageously, a closure guide with a “V”-shaped channel for sliding the opposite end of the blocking pin, is laid out in each window frame jamb in such a way that one of its branches faces the slanted channel of the blocking slider to define a common channel for the advance of the pin in its forced descent in the scissor mechanism opening until abutting against the lower end of the slanted channel of the blocking slider, coincidentally with the complete opening of the scissor mechanism, and yet to allow its escape through the contiguous branch of the V-shaped channel that is vertically oriented, thus defining a guideway that is continued in the corresponding guide rod laid out in each side jamb of the window frame in order to enable the vertical movement of the lower window sash. In this way it is achieved that the lower window sash, projected out of, or extracted from, the closure plane or closure first vertical plane, emerges from the retention clip, thus initiating its ascent, during which the pin is guided by the vertical branch of the sliding “V”-shaped channel, thus preventing the scissor mechanism from closing and problems from occurring with the upper sash.
Additionally, unlike similar mechanisms, the counterweight vertical-movement mechanism preferably comprises a hexagonal-section shaft, a positioner, a multi-point brake, a counter-balanced spring or torsion spring, and two grooved pulleys with their respective cables. The positioner is designed with ball elements or a similar arrangement that act perpendicularly on the hexagonal bar, thus establishing various rotating positions. The multi-point brake is intended to control the braking force so as to increase or decrease the ascending force exerted by the counterbalanced spring on the lower sash in its vertical movement. This brake makes it possible to use a single spring for multiple different sizes of windows, thus avoiding the current problems of systems with springs and counterweights, in which the spring varies depending on the size and weight of the sash. The pulleys and cables transmit the effort to the lower window sash, for which reason die-cast pulleys and steel cables are preferred. The counter-balanced spring is secured to the shaft by means of grooved pieces. The entire assembly is mounted onto a “U”-shaped aluminum profile, so that the pieces are introduced into it, as in a guide rail. A standard cremone bolt with two fastening points in the lower part and two fastening points in the sides using one return means each constitutes the fastening for the sash in the window frame.
One advantage of the invention is that the window may incorporate perimetral sealing gaskets in the front part of the window frame. Furthermore, the type of fastening used and the cremone bolt ensure a strong sealing comparable to that of a tilt-and-turn or operable window.
Another advantage of the present invention is that the manufacture, the assembly of all its components, and the use of the scissor mechanisms that constitute the means of projection of the window sash, are easily achieved.
These and other advantages are achievable by the present invention, as shall be seen from the following description of one of its embodiments that must be considered solely as an example by way of illustration and not of limitation, in combination with the drawings, wherein:
According to the proposed embodiment that may be observed in the various figures of the drawings, an improved sash window according to the invention includes a window frame (1) and two window sashes, an upper one (2) and a lower one (3) one, that are arranged in the window frame (1) occupying the same first vertical plane in the closed window position, as best seen in
The lower sash (3) is best seen in
The window incorporates scissor mechanisms (9) that act as projection means so as to horizontally and frontally move said lower sash (3) from the first vertical plane in the closed position to a second vertical plane in a separate open position, or vice versa. As can be better understood from the figures, preferably
As can be better seen from
In the example, the closure guide (23) is formed by an oblong body, secured vertically at the bottom end of each jamb (4) of the window frame (1), with a flat lateral surface in which there has been provided a “V”-shaped guide channel (30) with one branch each, a slanted one (31) and a vertical one (32), for the blocking pin (24); at the top, it presents a parallelepipedic narrowing (35) adjusted to a housing (21) in the guide rod (20).
Adjacent to the housing (21), although open toward the inner rod (19), there can be seen a guide groove (22) that is a continuation of the vertical branch (32) in the guiding of the blocking pin (24) during sliding of the lower window sash (3). In the proximate of the lower base of the closure guide (23), there is shown an anchoring appendage (34) for the retention clip (28). A cap (33) coupled to the closure guide (23) closes each jamb (4) from below.
According to the proposed example, the counterweight vertical-movement mechanism (8) includes a hexagonal-section shaft (37) into which there have been threaded the positioner (40), the multi-points brake (41), the counterbalanced spring (39) and two grooved pulleys (38) with their respective cables (36). The assembly can be seen disposed in a box profile (42). A standard cremone bolt (43), with two fastening points in the lower part and two fastening points in the sides using one return means each, contributes to the sealing of the entire assembly. According to the example, the profiled sealing gaskets (44), (45), and (46) cooperate therewith.
For the purpose of outside cleaning of the window, and as better shown in
Starting from the closed window position shown in
From any intermediate position or from this final open window arrangement, the user need only exert a slight downward traction, aided by the counterweight vertical-movement mechanism (8), in order to force the lower window sash (3) to descend until the lowest position in its path in said second vertical plane, and thus come to face the hollow that it must occupy in the first vertical plane in order to attempt the closing of the window, which is achieved by keeping the scissor mechanisms (9) open. The user need only push against the hollow the lower window sash (3) to make the scissor mechanisms (9) fold in the reverse direction to the fold when open, thus forcing the raising of their arms, the ascent of the inner rod (19) in the guide rod (20) and the ascent of the closure strip (24), and forcing the pin (24) articulated at its end to abandon the vertical groove (22) in the guide rod (20) and to descend in the vertical channel (32) of the closure guide (23) so as, the confluence between the two being saved, to return to the slanted channel (31) converging therein and to ensure the retention of the blocking slider (25) in said lower position, maintaining the opposite end of the pin (24) in the highest position of the slanted channel (26) of the blocking slider (25) and attempting additionally the entry of the projection (27) into the retention clip (28) that will keep the scissor mechanisms (9) stretched in the closed position.
The counterweight vertical-movement mechanism (8) is counterbalanced in order to maintain a slight tension on the blocking slider (25), which tension does not reach that required to free the projection (27) from the blocking slider (25) of the retention clip (28).
Number | Date | Country | Kind |
---|---|---|---|
200702113 | Jul 2007 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2008/070141 | 7/17/2008 | WO | 00 | 1/19/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/022045 | 2/19/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1533048 | Sustarsic et al. | Apr 1925 | A |
1636806 | Campbell | Jul 1927 | A |
1854419 | Neuhausen | Apr 1932 | A |
1922370 | Johnson et al. | Aug 1933 | A |
1942239 | Chauvet | Jan 1934 | A |
2601706 | Orlin | Jul 1952 | A |
2908052 | Jakush | Oct 1959 | A |
4551945 | von Resch | Nov 1985 | A |
4802307 | Schmidt | Feb 1989 | A |
5189837 | Ienaga | Mar 1993 | A |
6336246 | Giovannetti | Jan 2002 | B1 |
6581331 | Kral | Jun 2003 | B1 |
6840009 | Ronay et al. | Jan 2005 | B2 |
20030150165 | Ronay et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
27 24 149 | Dec 1978 | DE |
42 25 328 | Feb 1994 | DE |
1 710 379 | Oct 2006 | EP |
150519 | Jul 1970 | ES |
2 514 398 | Apr 1983 | FR |
WO 9212321 | Jul 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20100115845 A1 | May 2010 | US |