This application is a national stage application under 35 U.S.C. §371 of PCT/US2008/082005 filed Oct. 31, 2008.
Many electronic devices include multiple subassemblies such as chips, chipsets, printed circuit assemblies (PCAs) and the like connected by one or more cable assemblies. One example of a cable assembly is a Serial Advanced Technology Attachment (SATA) cable assembly, which is commonly used to connect a system board to an internal storage device, e.g., a hard disk drive assembly. Another example of a cable assembly is an External SATA (eSATA) cable assembly, which is commonly used to connect a system board to an external storage device, e.g., an external hard disk.
Most computer system boards comprise at least one SATA port. However, many current system boards do not include an eSATA port. Accordingly, techniques to enable eSATA adapters to couple to SATA ports may find utility.
Described herein are exemplary systems and methods for electrical encoding of cable types and configurations that may be used, e.g., in a computer system. The methods described herein may be embodied as logic instructions on a computer-readable medium. When executed on a processor, the logic instructions cause a general purpose computing device to be programmed as a special-purpose machine that implements the described methods. The processor, when configured by the logic instructions to execute the methods recited herein, constitutes structure for performing the described methods. In alternate embodiments, the methods may be implanted as hard-wired logic circuits, or as logic in a configurable processing device such as, for example, a field programmable gate array (FPGA) or the like. In some implementations the methods may also be executed manually, in whole or in part.
System hardware 120 may include one or more processors 122. Memory 130 includes an operating system 140 for managing operations of computer 108. In one embodiment, operating system 140 includes a hardware interface module 154 that provides an interface to system hardware 120. In addition, operating system 140 includes one or more file systems 150 that managed files used in the operation of computer 108 and a process control subsystem 152 that manages processes executing on computer 108. Operating system 140 further includes a system call interface module 142 that provides an interface between the operating system 140 and one or more application modules 162.
In operation, one or more application modules 162 and/or libraries 164 executing on computer 108 make calls to the system call interface module 142 to execute one or more commands on the computer's processor. The system call interface module 142 invokes the services of the file systems 150 to manage the files required by the command(s) and the process control subsystem 152 to manage the process required by the command(s). The file system(s) 150 and the process control subsystem 152, in turn, invoke the services of the hardware interface module 154 to interface with the system hardware 120.
The particular embodiment of operating system 140 is not critical to the subject matter described herein. Operating system 140 may be embodied as a UNIX operating system or any derivative thereof (e.g., Linux, Solaris, etc.) or as a Windows® brand operating system.
In one embodiment, memory 130 may include one or more application modules 162 that execute on operating system 140. The particular operation(s) of application modules 162 are not important to the subject matter described herein. Memory 130 may further include one or more user interface modules 164 that provide a user interface to the one or more application modules 162.
In one embodiment, memory 130 may further include an operational logic module 166 that includes logic instructions which, when executed, configure the one or more processors to implement operations for SATA/eSATA port configuration. In alternate embodiments, operational logic module 166 may be implemented in, e.g., the basic input/output system (BIOS) 126 of computing device 130, such that operational logic module 166 is invoked when computing device 100 is activated. In alternate embodiments, operational logic 166 may be implemented in hard-wired circuitry in computing device 100. Operational logic module 166 is explained in greater detail below.
The computing system 100 may include one or more circuit board assemblies.
Motherboard 200 may include a processor 230. For example, the processor 230 may be one or more processors in the Pentium® family of processors including the Pentium® II processor family, Pentium® III processors, Pentium® IV processors, Pentium® M processors available from Intel® Corporation of Santa Clara, California. Alternatively, other CPUs may be used, such as Intel's Itanium®, XEON®, and Celeron® processors. The processors may have a single or multi core design.
One or more integrated circuits 232 may be coupled to the processor by a communication bus 234. For example, integrated circuits 232 may include a graphics and memory control hub (GMCH), and include a memory controller that is coupled to a main system memory 236 by a communication bus 238. The main system memory 236 stores data and sequences of instructions that are executed by the processor 230. In one embodiment, the main system memory 236 includes random access memory (RAM); however, the main system memory 236 may be implemented using other memory types such as dynamic RAM (DRAM), synchronous DRAM (SDRAM), and the like. Additional devices may also be coupled to the bus 234, such as multiple CPUs and/or multiple system memories. Motherboard 200 may comprise at least one SATA port 260 proximate the integrated circuit(s) 232. SATA port 260 may receive a SATA cable connector to provide a connection between the integrated circuit(s) 232 and a device, e.g., a hard disk drive. Motherboard 200 further includes a general purpose input/output (GPIO) port 262 proximate the SATA port 260. In some embodiments, GPIO port 262 may be implemented as one or more pins which are coupled to a predetermined voltage level. For example, the pins may be coupled to ground or to an operating voltage associated with the motherboard 200 (i.e., Vcc).
Motherboard 200 may include one or more memory slots 240. In one embodiment memory slots 240 may be configured to accommodate memory modules such as, e.g., dual in-line memory modules (DIMMs). The memory modules coupled to memory slots 240 may be used to implement system memory 236.
Motherboard 200 may include a power supply 250 to supply power to the various components of motherboard and a fan 220 to facilitate dissipating heat generated by various components of motherboard 200.
Motherboard 200 may include an array of input/output (I/O) card slots 210 configured to receive peripheral I/O cards such as, e.g., sound cards, video cards, or the like. Motherboards compatible with an ATX standard commonly include an array of seven I/O slots 210.
In use, SATA connector slides into the adapter 320 and may be secured by cap adapter cap 330.
The cable assembly 300 may then be coupled to the motherboard 200 to connect the integrated circuit(s) to a SATA device, e.g., a hard drive, or to an eSATA device, e.g., an external hard drive.
In some embodiments, operational logic module 166 implements operations to configure selectively the SATA port 260 using either SATA configuration parameters or eSATA configuration parameters based at least in part upon the detection of a signal indicating whether the GPIO connector 325 is coupled to the GPIO port 262 on the motherboard 200.
At operation 415 the operational logic module 166 determines whether the GPIO connector 325 is connected to the GPIO port 262 adjacent the SATA port 260. In some embodiments, determining whether the GPIO connector 325 is connected to the GPIO port 262 adjacent the SATA port 260 comprises detecting a signal generated when the pins of GPIO port 262 are coupled to the GPIO connector 325. For example, one of the pins may be connected to an operating voltage (i.e., Vcc) while the other pin may be connected to ground, and the GPIO connector 325 may provide an electrical connection between the pins when the pins of GPIO port 262 are coupled to the GPIO connector 325. Thus, connecting the GPIO connector 325 to the GPIO port 262 causes a small current to flow between the pins of the GPIO port 262. The operational logic module 166 may detect this current (or a change in voltage) as a signal indicating that the GPIO connector 325 is connected to the GPIO port 262.
If, at operation 415, the operational logic module 166 detects the connection of a GPIO connector 325 to the GPIO port 262 adjacent the SATA port 260, then control passes to operation 420 and the operational logic module 166 configures the SATA port using eSATA characteristics. By contrast, if at operation 415, the operational logic module 166 does not detect the connection of a GPIO connector 325 to the GPIO port 262 adjacent the SATA port 260, then control passes to operation 425 and the operational logic module 166 configures the SATA port using SATA characteristics.
Various components and functionality described herein are implemented with a number of individual computers.
Generally, various different general purpose or special purpose computing system configurations can be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The functionality of the computers is embodied in many cases by computer-executable instructions, such as program modules, that are executed by the computers. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media.
The instructions and/or program modules are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer. Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable media when such media contain instructions, programs, and/or modules for implementing the steps described below in conjunction with a microprocessor or other data processors. The invention also includes the computer itself when programmed according to the methods and techniques described below.
For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
With reference to
Computer 500 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computer 500 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. “Computer storage media” includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 500. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network, fiber optic networks, or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 506 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 510 and random access memory (RAM) 512. A basic input/output system 514 (BIOS), containing the basic routines that help to transfer information between elements within computer 500, such as during start-up, is typically stored in ROM 510. RAM 512 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 504. By way of example, and not limitation,
The computer 500 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, the computer system of
The drives and their associated computer storage media discussed above and illustrated in
The computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote computing device 550. The remote computing device 550 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 500. The logical connections depicted in
When used in a LAN networking environment, the computer 500 is connected to the LAN 552 through a network interface or adapter 556. When used in a WAN networking environment, the computer 500 typically includes a modem 558 or other means for establishing communications over the Internet 554. The modem 558, which may be internal or external, may be connected to the system bus 508 via the I/O interface 542, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 500, or portions thereof, may be stored in the remote computing device 550. By way of example, and not limitation,
Moreover, some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein. The machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data. Moreover, data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/082005 | 10/31/2008 | WO | 00 | 4/25/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/050969 | 5/6/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6781826 | Goldstone et al. | Aug 2004 | B1 |
6843660 | Barr et al. | Jan 2005 | B2 |
6983338 | Hadba et al. | Jan 2006 | B2 |
6985152 | Rubinstein et al. | Jan 2006 | B2 |
7065603 | Smith et al. | Jun 2006 | B2 |
7186147 | Chou et al. | Mar 2007 | B1 |
7216195 | Brown et al. | May 2007 | B1 |
7270572 | Rubenstein et al. | Sep 2007 | B2 |
7308534 | Mimatsu et al. | Dec 2007 | B2 |
7393247 | Yu et al. | Jul 2008 | B1 |
7440287 | Ni et al. | Oct 2008 | B1 |
7558899 | Yip | Jul 2009 | B2 |
7600069 | Lin | Oct 2009 | B2 |
7650447 | Barras | Jan 2010 | B2 |
7806733 | Lee et al. | Oct 2010 | B2 |
7925802 | Lauterbach et al. | Apr 2011 | B2 |
8122172 | Lu et al. | Feb 2012 | B2 |
8239581 | Ibarra et al. | Aug 2012 | B2 |
8250266 | Rugg et al. | Aug 2012 | B2 |
8301831 | Ni et al. | Oct 2012 | B2 |
20040120353 | Kim et al. | Jun 2004 | A1 |
20060094286 | Lee et al. | May 2006 | A1 |
20060294272 | Chou et al. | Dec 2006 | A1 |
20070115954 | Wu et al. | May 2007 | A1 |
20070270026 | Lo | Nov 2007 | A1 |
20070294459 | Chen | Dec 2007 | A1 |
20080076301 | Liu | Mar 2008 | A1 |
20080162755 | Minami | Jul 2008 | A1 |
20080288703 | Iyer | Nov 2008 | A1 |
20090019301 | Minami | Jan 2009 | A1 |
20090094394 | Wu et al. | Apr 2009 | A1 |
20090286421 | Rugg et al. | Nov 2009 | A1 |
20110072186 | Cheng | Mar 2011 | A1 |
20120124253 | Cheng | May 2012 | A1 |
20120185631 | Lin et al. | Jul 2012 | A1 |
20120254598 | Mikuszewski et al. | Oct 2012 | A1 |
Entry |
---|
WIPO, International Search Report, May 29, 2009, PCT/US2008/082005, filed Oct 31, 2008. |
Number | Date | Country | |
---|---|---|---|
20110208889 A1 | Aug 2011 | US |