Satellite deployer door with clutch bearing

Information

  • Patent Grant
  • 11066192
  • Patent Number
    11,066,192
  • Date Filed
    Tuesday, July 31, 2018
    5 years ago
  • Date Issued
    Tuesday, July 20, 2021
    2 years ago
Abstract
A satellite dispenser door assembly is disclosed. In various embodiments, a satellite dispenser door assembly as disclosed herein includes a dispenser door having a hinge pin; and a one way clutch bearing within which the hinge pin is free to rotate in a first rotational direction associated with a transition from a closed position of the dispenser door to an open position of the dispenser door.
Description
BACKGROUND OF THE INVENTION

Small scale satellites, such as CubeSat or other small satellites, may be launched into space in a launch vehicle that includes a plurality of such satellites, each contained in a “dispenser” device, sometimes referred to as a small scale satellite “deployer”, configured to deploy the small scale satellite in a controlled manner, e.g., to achieve a target orbit. The terms “dispenser” and “deployer” are used interchangeably in this specification.


Satellites conforming to the CubeSat Design Specification may have a size and form factor of a corresponding type or class of CubeSat as defined by the standard. The size and form factor of a CubeSat is based on a standard 10×10×11.35 cm3 unit designed to provide 10×10×10 cm3 (or 1 liter) of useful volume. CubeSats of different types may comprise a different number of such units. For example, CubeSats comprising 1, 3, 6, or 12 units, sometimes designated as 1 U, 3 U, 6 U, and 12 U CubeSats, respectively, may be encountered. Other satellites comprising other whole or fractional numbers of standard units may be launched and deployed.


Small scale satellite dispensers typically have a shape, size, and form factor to accommodate a corresponding small scale satellite, and commonly have a door that provides access to a payload area of the dispenser. The small scale satellite (payload) is loaded into the dispenser through the opening associated with the door, with the door in the open position. The door is closed and secured in the closed position. The dispenser may be arranged with other dispensers in a chassis configured to accommodate multiple dispensers. The chassis is loaded into a launch vehicle, such as a rocket, and launched into space. Control circuits initiate deployment of the small scale satellite at a time, orientation, etc. associated with the target orbit of each respective small scale satellite. Typically, a satellite is deployed by causing the dispenser door to open at a precise time, resulting in the small scale satellite being ejected from the dispenser and into orbit. Solar panels, antennae, and other appendages and auxiliary equipment may open, extend, or otherwise deploy once the small scale satellite has been ejected from the dispenser.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1A is a diagram illustrating an embodiment of a small scale satellite dispenser.



FIG. 1B is a diagram illustrating an embodiment of the small scale satellite dispenser 100 of FIG. 1A with the door 104 open.



FIG. 1C is a diagram illustrating an embodiment of the small scale satellite dispenser 100 of FIG. 1A with the door 104 open and the payload 106 ejected from the payload area defined by dispenser body 102.



FIG. 2A is a diagram illustrating an embodiment of a small scale satellite dispenser provided with a pyrotechnic cutter door release mechanism prior to cutter activation.



FIG. 2B is a diagram illustrating an embodiment of a small scale satellite dispenser provided with a pyrotechnic cutter door release mechanism after cutter activation.



FIG. 3 is a diagram illustrating an embodiment of a satellite deployer (dispenser) door having a one way clutch bearing to prevent dispenser door bounce back.



FIG. 4A is a diagram illustrating an embodiment of a satellite deployer (dispenser) door having a one way clutch bearing to prevent dispenser door bounce back.



FIG. 4B shows the door 302 of the assembly shown in FIG. 4A once the door 302 has opened.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


A satellite dispenser having a door that is able to swing open but not rotate back in the direction opposite of the open direction is disclosed. In various embodiments, a dispenser as disclosed herein includes a substantially square or other rectangular door hinged at one side/end. A release mechanism releases the door and spring force pushes/drives the door towards an open position. In various embodiments, to prevent the door from bouncing back or otherwise returning to a closed or partially closed position, a one way clutch bearing or equivalent structure is provided to allow the hinged end to rotate only in the open direction, and not to rotate back in the closed direction.


In some embodiments, the dispenser and/or door includes a hard stop, which is adjustable in some embodiments, to prevent the door from opening beyond a desired maximum extent, e.g., to avoid interfering with any adjacent dispenser in the same launch vehicle.



FIG. 1A is a diagram illustrating an embodiment of a small scale satellite dispenser. In the example shown, dispenser 100 includes a dispenser casing or body 102 with a door 104 at one end. In the state shown in FIG. 1A, the dispenser door 104 is closed, as it would be subsequent to a small scale satellite being loaded into the dispenser 100 but before deployment.



FIG. 1B is a diagram illustrating an embodiment of the small scale satellite dispenser 100 of FIG. 1A with the door 104 open. A small scale satellite 106 is visible in the payload area defined by dispenser body 102. The state shown in FIG. 1B may be associated with loading the payload 106 into the dispenser 100, but prior to the door 104 being closed, and/or just prior to ejection of payload 106 after the door 104 being opened.



FIG. 1C is a diagram illustrating an embodiment of the small scale satellite dispenser 100 of FIG. 1A with the door 104 open and the payload 106 ejected from the payload area defined by dispenser body 102. In various embodiments, the payload 106 may have been ejected at least in part by a spring-loaded pusher plate against which the payload 106 had been pressed against during loading of payload 106 into dispenser 100, thereby compressing one or more springs associated with the pusher plate.


In various embodiments, the state of dispenser 100 as shown in FIGS. 1B and 1C is attained at least in part by activating a door release mechanism (not shown in FIGS. 1A through 1C) configured to hold door 104 in the closed position prior to activation. Upon activation of the door release mechanism, the door 104 is no longer held in the closed position. In various embodiments, one or more springs compressed by closing door 104 and securing door 104 in the closed position may, upon activation of the door release mechanism, cause the door 104 to be pushed open, as in FIGS. 1B and 1C, allowing the payload 106 to be ejected, as shown in FIG. 1C.



FIG. 2A is a diagram illustrating an embodiment of a small scale satellite dispenser provided with a pyrotechnic cutter door release mechanism prior to cutter activation. In the example shown, satellite dispenser 200 includes a dispenser body 202 and door 204. The door 204 is held closed in the state shown by a door release mechanism 206 which in this example includes a wire or cable (not shown in FIG. 2A) to hold the door closed prior to deployment and two pyrotechnic cutters positioned and configured to cut the wire or cable to release the door 204 to enable the door 204 to open. In the example shown, electrical leads 208 are connected to the pyrotechnic cutters included in door release mechanism 206. In various embodiments, signals and/or power to activate the pyrotechnic cutters is/are provided via leads 208, e.g., from a driver or similar component comprising and/or otherwise associated with the dispenser 200.



FIG. 2B is a diagram illustrating an embodiment of a small scale satellite dispenser provided with a pyrotechnic cutter door release mechanism after cutter activation. In the state shown in FIG. 2B, the pyrotechnic cutters comprising door release mechanism 206 have been fired resulting in the cable or wire holding door 204 closed being cut. In the example shown, the door 204 has been assisted in opening by a spring-loaded pusher 210 being pushed out from the door release mechanism 206 once the wire or cable holding the door 204 shut had been cut. Also shown in FIG. 2B is a recess or cavity 212 into which a door side portion of the wire or cable that had been holding the door 204 closed has been pulled, e.g., by a spring-loaded plunger configured to extend into the cavity 212 pulling the door end of the cut wire or cable into cavity 212. In various embodiments, the wire or cable retraction mechanism configured to pull the free end of the cut wire or cable into cavity 212 ensures the loose (door) end of the cut wire or cable does not interfere with ejection and/or deployment of the small scale satellite from dispenser 200.



FIG. 3 is a diagram illustrating an embodiment of a satellite deployer (dispenser) door having a one way clutch bearing to prevent dispenser door bounce back. In the example shown, door assembly 300 includes a door 302 having hinge pins 304 and 306. One way clutch bearings 308 and 310 are assembled onto hinge pins 304 and 306. Hinge extensions 312 and 318 are place over the one way clutch bears 308 and 310. The hinge extensions 312, 318 extend through openings in dispenser feet 314, 320 and are held in place by clutch nuts 316, 322. Once assembled, the one way clutch bearings 308, 310 allow the door 302 to swing open (roughly clockwise as shown in FIG. 3) but not back towards the closed position. In various embodiments, the one way bearings 308, 310 allow the door to spring open once the door release mechanism, e.g., as described herein, has been activated, but prevent the door from bouncing or being knocked back towards the closed position, which could prevent ejection of the payload, interfere with complete deployment of the payload, and/or damage the payload.


In some embodiments, the feet 314, 320 include a structure that acts as a hard stop to prevent the door 302 from opening past a design extent of opening. For example, in some embodiments hard stops comprising the feet 314, 320, combined with the one way clutch bearings 308, 310, operate to allow the door 302 to open to 110 degrees from the original closed position, and to remain open to the designed extent without return wholly or partly to the closed position. In some embodiments, the stops prevent the door 302 from opening so far as to potentially interfere with the opening of doors of other dispenser that may be mounted adjacent to the dispenser, e.g., in a launch and/or deployment vehicle configured to hold and deploy satellites from multiple dispensers.



FIG. 4A is a diagram illustrating an embodiment of a satellite deployer (dispenser) door having a one way clutch bearing to prevent dispenser door bounce back. In the example shown, the door 302 is in vertical or closed position relative to the side and top walls of the dispenser body 402. A black mark at the 12 o'clock (top) position on the hinge pin 304 shows that the hinge and door are in the closed position. A stop 404 is shown at bottom, which in various embodiments may be included in a foot or similar structure attached to the dispenser body 402, such as feet 314, 320 of FIG. 3.



FIG. 4B shows the door 302 of the assembly shown in FIG. 4A once the door 302 has opened. In the example shown, the door 302 has opened to a point at which it has engaged the stop 404. The hinge pin 304 and the inner race of one way clutch bearing 308 have rotated to the position as shown. The structures of one way clutch bearing 308 that prevent rotation back towards the closed position, i.e., counter-clockwise as shown, prevent the door 302 from returning wholly or partly to the closed position, while the stop 404 prevents the door 302 from opening further.


In various embodiments, the combination of a one way clutch bearing such as bearing 308 and a physical stop such as stop 404 ensures the door 302 opens to the desired extent and remains fully opened at that extent. This ensure the dispenser payload is ejected and deploys without interference from the door 302 while also ensuring the opened door 302 does not interfere with the ejection and deployment of payloads from adjacent dispensers, if any.


While in certain example embodiments illustrated and described herein a one way clutch bearing is provided to ensure the dispenser door does not bounce back, potentially damaging the satellite and/or interfering with proper deployment, in various embodiments other equivalent structures are used to prevent the dispenser door from bouncing or being pushed back, including by way of example and without limitation one or more of a ratchet, such as pawl and ratchet wheel; a Sprague clutch or other one way clutch; etc.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A satellite dispenser door assembly, comprising: a dispenser door having a hinge pin; anda one way clutch bearing within which the hinge pin is free to rotate in a first rotational direction associated with a transition from a closed position of the dispenser door to an open position of the dispenser door;wherein: the dispenser door includes a structure configured to be engaged by a door release mechanism or a satellite dispenser on which the satellite dispenser door assembly is configured to be installed;the door release mechanism maintains the dispenser door in the closed position with respect to a dispenser body before deployment of a payload the dispenser body is configured to hold; andin response to the dispenser door being engaged by the door release mechanism, the hinge pin of the dispenser door rotates to the open position.
  • 2. The satellite dispenser door assembly of claim 1, further comprising a clutch nut configured to hold a non-rotating portion of the one way clutch bearing in place relative to a stationary structure comprising a dispenser with which the dispenser door is associated.
  • 3. The satellite dispenser door assembly of claim 1, wherein: the hinge pin comprises a first hinge pin positioned at one end of a hinged end of the dispenser door; andthe dispenser door further includes a second hinge pin at an opposite end of the hinged end of the dispenser door.
  • 4. The satellite dispenser door assembly of claim 3, wherein the one way clutch bearing comprises a first one way clutch bearing and further comprising a second one way clutch bearing within which the second hinge pin is free to rotate in a second rotational direction associated with the transition from the closed position of the dispenser door to the open position of the dispenser door.
  • 5. The satellite dispenser door assembly of claim 1, further comprising a stop positioned to prevent the dispenser door from opening to greater than a designed extent relative to the closed position.
  • 6. The satellite dispenser door assembly of claim 5, wherein the door assembly further comprises a foot configured to be mounted fixedly to a dispenser body of a dispenser with which the dispenser door assembly is associated and wherein the foot includes the stop.
  • 7. The satellite dispenser door assembly of claim 1, wherein the door assembly further includes the door release mechanism.
  • 8. The satellite dispenser door assembly of claim 1, wherein the door release mechanism includes a spring loaded pusher configured to push the dispenser door from the closed position towards the open position of the dispenser door.
  • 9. The satellite dispenser door assembly of claim 1, wherein a control module is configured to cause a driving voltage or a driving current to be provided to the door release mechanism in response to a determination that the payload is to be deployed.
  • 10. The satellite dispenser door assembly of claim 9, wherein in response to receipt of the driving voltage or the driving current, the door release mechanism engages the dispenser door in response to a determination that the payload is to be deployed.
  • 11. The satellite dispenser door assembly of claim 1, further configured to allow the dispenser door to open at least 110 degrees from the closed position in relation to the dispenser body, and to ensure that the dispenser door does not wholly return to the closed position in relation to the dispenser body without manual intervention.
  • 12. A satellite dispenser, comprising: a dispenser body defining a cavity;a satellite door assembly, comprising: a dispenser door having a hinge pin; anda one way clutch bearing within which the hinge pin is free to rotate in a first rotational direction associated with a transition from a closed position of the dispenser door to an open position of the dispenser door; anda door release mechanism that maintains the dispenser door in the closed position with respect to a dispenser body before deployment of a payload the dispenser body is configured to hold, and that engages the dispenser door in response to receipt of a driving voltage or driving current from a control module, wherein in response to the dispenser door being engaged, the hinge pin of the dispenser door rotates to the open position,wherein the door release mechanism is responsive to a control module configured to cause the driving voltage or driving current to be provided to the door release mechanism in response to a determination that the payload is to be deployed.
  • 13. The satellite dispenser of claim 12, wherein the satellite dispenser is positioned adjacent to one or more other satellite dispensers, a distance between the satellite dispenser and the one or more other satellite dispensers being sufficient that when the dispenser door is opened to the designed extent relative to the closed position the dispenser door does not interfere with the ejection or deployment of one or more payloads from the one or more other dispensers.
  • 14. The satellite dispenser of claim 12, wherein the satellite door assembly is configured to allow the dispenser door to open at least 110 degrees from the closed position, and to ensure that the dispenser door does not wholly return to the closed position without manual intervention.
CROSS REFERENCE TO OTHER APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/541,493 entitled SMALL SCALE SATELLITE DEPLOYER filed Aug. 4, 2017 which is incorporated herein by reference for all purposes.

GOVERNMENT LICENSE RIGHTS

This invention was made with Government support under Contract No. 2014-14031000011 awarded by a United States Government Agency. The United States Government has certain rights in the invention.

US Referenced Citations (84)
Number Name Date Kind
3144956 Anderson Aug 1964 A
3991649 Patrichi Nov 1976 A
4210274 Leonard Jul 1980 A
4540873 Kester Sep 1985 A
4771971 Ludwig Sep 1988 A
4779826 Kiendl Oct 1988 A
4936367 Marello Jun 1990 A
4984666 Orii Jan 1991 A
5050821 Kerstein Sep 1991 A
5109571 Ohshima May 1992 A
5364046 Dobbs Nov 1994 A
5462800 Yamazaki Oct 1995 A
5664897 Hennings Sep 1997 A
5743492 Chan Apr 1998 A
5755406 Aston May 1998 A
5755407 Aubret May 1998 A
5848766 Thompson Dec 1998 A
6126115 Carrier Oct 2000 A
6227493 Holemans May 2001 B1
6357699 Edberg Mar 2002 B1
6532628 Kim Mar 2003 B2
6668985 Krenkel Dec 2003 B2
6869048 Draisey Mar 2005 B2
6886221 Minami May 2005 B2
6901836 Valembois Jun 2005 B1
6904644 Oshima Jun 2005 B2
6905097 Blackwell-Thompson Jun 2005 B2
7065834 Lowry Jun 2006 B2
7107648 Lu Sep 2006 B1
7111773 So Sep 2006 B1
7155780 Chen Jan 2007 B2
7213301 Sakai May 2007 B2
7350664 Nam Apr 2008 B2
7386918 Tomizawa Jun 2008 B2
7401381 Konja Jul 2008 B2
7543357 Ishikawa Jun 2009 B2
7634838 Ge Dec 2009 B2
7699378 Smith Apr 2010 B2
7712186 Kang May 2010 B2
7814620 Lin Oct 2010 B2
8079115 Zhang Dec 2011 B2
8132292 Patterson Mar 2012 B2
8424160 Chen Apr 2013 B2
8432677 Duan Apr 2013 B2
8459754 Cho Jun 2013 B2
8745820 Janak Jun 2014 B2
8769770 Kullman Jul 2014 B2
9115519 Li Aug 2015 B2
9289879 Copeland Mar 2016 B2
9290880 Park Mar 2016 B2
9394645 Park Jul 2016 B2
9414724 Vallance Aug 2016 B2
9434486 Santos Sep 2016 B1
9464376 Kim Oct 2016 B2
9725940 Lambright Aug 2017 B2
9796488 Cook Oct 2017 B2
10011373 Echelman Jul 2018 B1
10017279 Poncet Jul 2018 B2
10053243 Apland Aug 2018 B2
10370124 Dube Aug 2019 B2
10569910 Bogdanov Feb 2020 B2
10689133 Cheynet De Beaupre Jun 2020 B2
10773831 Wang Sep 2020 B2
20030192522 Taryoto Oct 2003 A1
20050045771 Caldwell Mar 2005 A1
20050230562 Buehler Oct 2005 A1
20060049317 Reutenauer Mar 2006 A1
20120112010 Young May 2012 A1
20120280085 Sinclair Nov 2012 A1
20130099059 Cheynet De Beaupre Apr 2013 A1
20130282117 Van Heugten Oct 2013 A1
20140117028 Huber May 2014 A1
20140131521 Apland et al. May 2014 A1
20140319283 Holemans Oct 2014 A1
20160075452 Robles Mar 2016 A1
20160200459 Aston Jul 2016 A1
20160207605 Jensen Jul 2016 A1
20170072647 Perrillat et al. Mar 2017 A1
20170081011 Matthews Mar 2017 A1
20170174368 Dube Jun 2017 A1
20170225873 Fougere Aug 2017 A1
20170320597 Lim Nov 2017 A1
20170327253 Bogdanov Nov 2017 A1
20180194494 Dube Jul 2018 A1
Foreign Referenced Citations (3)
Number Date Country
106081170 Nov 2016 CN
20160147547 Dec 2016 KR
2008034550 Mar 2008 WO
Non-Patent Literature Citations (3)
Entry
Donaldson et al. “Ejection and Recovery System for Cubesat Sized Ejectables on Sounding Rockets”. Apr. 22, 2017. Retrieved from the Internet on Sep. 19, 2018. URL: (https://web.archive.org/web/20170422053555/http://rexusbexus.net/wp-content/uploads/2015/06/Suineadh-_IAC-Paper. pdf>.
Holemans et al. “Canisterized Satellite Dispenser (CSD) As a Standard for Integrating and Dispensing Hosted Payloads on Large Spacecraft and Launch Vehicles”, May 2014.
“Small Spacecraft Technology State of the Art”, Dec. 2015, NASA Mission Design Division, pp. 125-129 (Year: 2015).
Related Publications (1)
Number Date Country
20190039755 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
62541493 Aug 2017 US