The instant disclosure relates generally to satellites, and, more particularly, to a satellite control system comprising a propulsion system having a plurality of individually selectable solid fuel motors.
Artificial satellites have long been in use for space or earth observation, reconnaissance, navigation, communications and scientific measurements. Satellites typically consist of a mission payload and a payload platform or bus. The mission payload performs one or more of the aforementioned functions and the payload platform provides electrical power, thermal management, payload pointing, terrestrial communications, and attitude and orbit control to support the mission payload. Electrical power is typically supplied using solar cells and batteries for power storage and supply when the satellite is in earth's shadow. Thermal management may include heaters when in the earth's shadow, and payload pointing and reflective materials to avoid solar heating. Communications takes place using an omnidirectional antenna between the satellite and ground stations for state of health telemetry, command and control. Finally, most satellites include an attitude determination and control system (ADCS) consisting of sensors and momentum wheels for keeping the satellite pointed in the correct direction and removing residual momentum. In addition to the ADCS, many satellites include an on-board propulsion system for maneuvering and positioning the satellite.
Existing choices for satellite propulsion include monopropellant and bipropellant liquid propellants, cold gas propellants and electric propulsion. Unfortunately, most satellite propulsion systems have significant disadvantages. For example, liquid propellants are frequently toxic, require complex plumbing, valving and pressurization systems and, when firing rocket motors, consume significant power. Cold gas systems, while less complex than liquid propellant systems also require plumbing and valving, have poor mass and delivered impulse efficiency and also require significant power when firing motors. Electric propulsion systems have very high impulse efficiency, but are heavy and typically require very high power levels to operate and produce very low thrust levels.
Thus, it would be advantageous to provide a propulsion system that overcomes many of the above-noted deficiencies.
The instant disclosure describes a management system for a satellite comprising a power source, a propulsion system comprising individually selectable solid fuel motors, a communication interface and an attitude determination and control system (ADCS). The ADCS receives power from the power source and further receives desired orbital or positional instructions via the communication interface, which may comprise a wireless communication interface. Based on the desired orbital or position instructions, the ADCS generates and provides commands to the propulsion system. In turn, the propulsion system selects and fires one or more motors of the individually selectable solid fuel motors responsive to the commands received from the ADCS. In an embodiment, the propulsion system comprises a substrate, a communication network and a cluster of individually selectable solid fuel motors mounted on the substrate and operatively connected to the communication network. The propulsion system further comprises a controller that is also operatively connected to the communication network and operative to select any one of more motors of the cluster of individually selectable solid fuel motors and transmit signals to fire the one or more motors of the individually selectable solid fuel motors based on the commands. In another embodiment, a satellite may comprise a satellite management system in accordance with the instant disclosure. In addition to the satellite management system, a satellite may further comprise attitude control components and/or sensor components operatively connected to the satellite management system.
The features described in this disclosure are set forth with particularity in the appended claims. These features and attendant advantages will become apparent from consideration of the following detailed description, taken in conjunction with the accompanying drawings. One or more embodiments are now described, by way of example only, with reference to the accompanying drawings wherein like reference numerals represent like elements and in which:
Referring now to
In an embodiment, the controller 108 and communication network 104 may be implemented using a Smart Energetics Architecture (SEA™) bus as provided by Pacific Scientific Energetic Materials Company of Hollister, Calif., and described, for example, in U.S. Pat. No. 7,644,661, the teachings of which prior patent are incorporated herein by this reference. As known in the art, the controller 108, as implemented in the SEA bus, can select any one of the individual motors 106 and transmit signals to the selected motor to, among other things, cause that motor to fire. For example, as shown in
Referring now
Referring once again to
Referring now to
With reference to
In this manner, propulsion systems in accordance with the instant disclosure may be used in addition to or as part of the ADCS (not shown), or linear propulsion system, of the satellite 610. That is, such propulsion systems, in addition to performing delta-V maneuvers for station keeping, can also perform pointing or attitude control maneuvers. A particular advantage of the presently described propulsion systems is that, by enabling such attitude control capability, satellite operators are able to use lower power momentum wheels and perform “momentum dump” maneuvers. Additionally, since motors are can be fired in pairs around the satellite center of gravity 640, the random, very small variations in motor impulse result in lower overall residual spacecraft momentum compared to prior art, liquid propulsion systems, once again resulting in less momentum wheel use and energy consumption.
Furthermore, use of as SEA bus as described above enables reduction of satellite power requirements and solar panel size. The lack of ancillary hardware of the instant propulsion systems as compared to liquid propellant systems, such as propellant and pressurant tanks, valves, plumbing, and fittings, greatly reduces the package volume of the propulsion systems. Additionally, due to the modular and flexible design of the instant propulsion systems, they are easily adaptable to fit in unused space within satellite structures including separation rings, mounting areas for star trackers, seekers, solar arrays, etc. Further still, the construction of propulsion systems in accordance with the instant disclosure result in a very favorable shipping classification and the “bolt on” nature of a solid propulsion system is possible, thereby greatly reducing life cycle costs due to ease of handling, workflow simplification and design simplicity.
Referring now to
As shown, the satellite 710 may comprise one or more attitude control components including, but not necessarily limited to, one or more momentum wheels 752 and/or one or more magnetic torquers 754. As known in the art, such components may be used to adjust the orbit or attitude of the satellite 710 as needed. As further shown, the satellite 710 may comprise one or more sensor components including, but not necessarily limited to, a Global Positioning System (GPS) receiver 750, one or more gyroscopes 756, one or more magnetometers 758, a sun sensor 760 and/or a star sensor 762. As known in the art, such components may be used to determine the actual location and/or attitude of the satellite 710 at any given time. Through use of these components 730, 750-762, the ADCS 740 may effectuate any desired corrections or adjustments to the orbit and/or attitude of the satellite 710.
As known in the art, the ADCS 740 may comprise one or more computing devices (such as, but not limited to, a microprocessor, microcontroller, digital signal processor, application specific circuit, programmable logic array, etc.) and other related components (e.g., memory, peripheral interfaces, etc.). The ADCS 740 is configured to receive desired orbital or positional (attitude) instructions via the communication interface 742. In an embodiment, the communication interface 742 may comprise a wireless communication interface capable of operation at various radio frequencies and using various well-known communication protocols. As shown, the communication interface 742 may receive the desired orbital or positional instructions via a ground- or space-based controller 770 capable of transmitting such instructions to the satellite 710, as known in the art. Based on these received instructions, and using known techniques, the ADCS 740 determines commands that may be used to control operation of the propulsion system 730 and/or other attitude control components 752, 754 to effectuate the desired orbital or positional instructions. For example, if it is desired to adjust the rotation of the satellite 710 about a given axis (and assuming appropriate configuration of the motors 732) by a certain number of degrees, this change can be transmitted to the satellite 710 and provided, via the communication interface 742 to the ADCS 740. In turn, the ADCS 740, having stored knowledge of the motors 372, such as availability (i.e., which motors have and have not been previously fired), configuration (i.e., the direction of the force vector that could be applied to the satellite by a given motor) and properties (e.g., the impulse of any given, available motor), provides commands to the propulsion system 730 (specifically, the controller 734) to select and fire one or more of the motors 732 to effectuate the desired change. Such knowledge may be stored in suitable memory or the like used to implement the ADCS 740 and updated as the status of individual motors changes. Using appropriate feedback (as provided, for example, by the various sensors 756-762), the ADCS 740 can assess the effect of the provided commands to determine whether further commands are necessary to properly effectuate the received instructions.
As a specific example, the communication interface 742 may receive a suitably encoded transmission embodying an instruction to “translate the spacecraft linearly in the x-direction by 10 m/s for 1.5 seconds.” This instruction is passed to the ADCS 740 and, based on its stored knowledge of the motors 732 and using known algorithms to translate the capabilities of the motors 732 into the desired performance, the ADCS 740 determines one or more commands that can be provided to the controller 734 in order to actuate the necessary motors 732 and/or check sensor measurements for feedback. Suitable algorithms for this purpose may be found, for example, in “Fundamentals of Spacecraft Attitude Determination and Control,” F. L. Markley et al., Springer Science+Business Media (2014) or “Space Mission Engineering: The New SMAD,” edited by J. R. Wirtz et al., Microcosm Press (2011).
For example, in light of the received instruction described above, the ADCS 740 can determine that motors labeled 2, 4, 6 and 8 in a first array of motors should be fired at a specific time (i.e., at t=0 ms) to initiate the desired translation. In addition to the issuance of those commands, the ADCS 740 can check sensor inputs to determine if any further commands are necessary, or the ADCS 740 can continue with issuing further commands. Continuing with the current example, after the commands to fire motors 2, 4, 6 and 8 in the first array have been issued, the ADCS 740 can check sensor inputs (e.g., one or more accelerometers) to assess whether recalculations and further commands are needed. That is, the ADCS 740 can incorporate feedback into its determination of commands necessary to effectuate the received instructions. Alternatively, the ADCS 740 can simply proceed with issuing further commands, e.g., fire motors 3, 9 and 12 in the first array after a delay of 0.5 ms (at t=0.5 ms), notwithstanding any intervening sensor measurements. As known in the art, such commands can be embodied by the ADCS 740 in a matrix form, as illustrated in Table 1 below.
In the example of Table 1, the ADCS 740 can create simultaneous commands such as firing motor 0 in array 1/group 0 at the same time as firing motor 0 in array 1/group 1 at t=0 (sequence numbers 1 and 3) or firing motors 1-4 in array 1/group 1 at t=1 ms (sequence numbers 5-8). Additionally, opportunities for adjustments may be provided by assessing status, e.g., checking status of motor 0/array 1/group 0 and motor 0/array 1/group 1 at t=0.1 ms (sequence numbers 2 and 4). It is noted that, although the examples above concern commands issued by the ADCS 740 relative to the motors 732 of the propulsion system 730, such command may also be used to actuate attitude control components 750, 752 as well. Furthermore, as noted above, having caused individual ones of the motors 732 to be fired, the ADCS 740 can update its stored knowledge of the motors, e.g., update the status of which motors remain available after completion of the issued commands.
While particular preferred embodiments have been shown and described, those skilled in the art will appreciate that changes and modifications may be made without departing from the instant teachings. It is therefore contemplated that any and all modifications, variations or equivalents of the above-described teachings fall within the scope of the basic underlying principles disclosed above and claimed herein.
The instant application is a continuation-in-part of U.S. patent application Ser. No. 14/844,597 entitled “PROPULSION SYSTEM COMPRISING PLURALITY OF INDIVIDUALLY SELECTABLE SOLID FUEL MOTORS” and filed Sep. 3, 2015, which prior application claims the benefit of Provisional U.S. Patent Application Ser. No. 62/045,493 entitled “SOLID STATE PROPULSION AND ATTITUDE CONTROL SYSTEM FOR SATELLITES” and filed Sep. 3, 2014, the teachings of which are incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
62045493 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14844597 | Sep 2015 | US |
Child | 15784823 | US |