Satiation devices and methods

Information

  • Patent Grant
  • 9107727
  • Patent Number
    9,107,727
  • Date Filed
    Wednesday, January 22, 2014
    10 years ago
  • Date Issued
    Tuesday, August 18, 2015
    9 years ago
Abstract
A device for inducing weight loss in a patient includes a tubular prosthesis self-expandable from a collapsed position in which the prosthesis has a first diameter to an expanded position in which the prosthesis has a second, larger, diameter. In a method for inducing weight loss, the prosthesis is placed in the collapsed position and inserted into a stomach of a patient. The prosthesis is allowed to self-expand from the collapsed position to the expanded position and into contact with the walls of the stomach, where it induces feelings of satiety and/or inhibits modulation of satiety-controlling factors such as Ghrelin.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of devices and methods for achieving weight loss in humans, and, specifically to the use of devices implantable within the human stomach for controlling feelings of hunger.


BACKGROUND OF THE INVENTION

Various medical approaches are used for controlling obesity. These approaches include diet, medication, and surgical procedures. One of the more successful surgical procedures is the vertical banded gastroplexy or the proximal gastric pouch with a Roux-en-Y anastomosis. However, known complications are present with each of these procedures and more successful options are desired.


Other alternatives include implantation of gastric balloons that prevent overeating by occupying volume within the stomach. Unfortunately, gastric balloons can migrate down the GI tract, causing obstruction and thus necessitating removal.


It is therefore desirable to provide a successful and minimally-invasive alternative to existing approaches for controlling obesity.


SUMMARY OF THE INVENTION

A satiation device utilizing principles of the present invention includes a tube having a collapsed position proportioned to permit introduction of the tube into a portion of the stomach. Once positioned within the body, the tube self-expands into contact with the interior of the stomach. During use, food ingested into the stomach passes through the tube. In an alternate embodiment, the tube may be formed of a material that prevents food within the tube from contacting the surrounding walls of the stomach. In one embodiment, the tube may be positionable within the antrum of the stomach. In other alternative embodiments, the device may include a fundal basket which mayor may not be attached to a proximal end of an antral tube, and/or a bowel tube which mayor may not be attached to a distal end of an antral tube.


In other alternative embodiments, a small pouch is attached to a cage structure such as a fundal basket and positioned at the proximal end of the stomach. In other alternative embodiments, this pouch may be provided without a cage structure and is independently secured against the proximal stomach wall by endoscopy guided sutures or other means.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a human stomach and a portion of the small intestine.



FIG. 2 is a plan view of a satiation device utilizing principles of the present invention.



FIG. 3 is a plan view of a satiation device similar to that of FIG. 2, but including a drug delivery reservoir.



FIG. 4A is a schematic illustration of a stomach, pylorus, and bowel, showing introduction of the device of FIG. 2 or 3 into the antrum.



FIG. 4B is a schematic illustration similar to FIG. 4A, showing the device in position.



FIG. 4C is a schematic illustration similar to FIG. 4B, showing withdrawal of the device into a sheath for subsequent removal from the body.



FIG. 5 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube and a bowel tube.



FIG. 6 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube that does not cross the pyloric sphincter.



FIG. 7 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed into the external surface.



FIG. 8 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed at the proximal and distal ends.



FIGS. 9A and 9B are plan views of antral tubes similar to the antral tube of FIG. 6, with variations of retaining ridges formed on their external surfaces.



FIGS. 10A-10C are perspective views of satiation devices having antral tubes and fundal baskets.



FIGS. 10D-10F are partial side elevation views of satiation devices having antral tubes and bowel tubes. Each figure illustrates a portion of the antral tube and a portion of the bowel tube.



FIG. 11 is a plan view of a satiation device having an antral tube, fundal basket, and bowel tube.



FIG. 12A is a plan view schematically illustrating insertion of a device such as the devices of FIGS. 10A-10C into the body.



FIG. 12B is a plan view schematically illustrating removal of the device such as the devices of FIGS. 10A-10C from the body.



FIG. 13 schematically illustrates an alternative embodiment of a satiation device positioned within a human stomach.



FIG. 14 is a side elevation view of a satiation device utilizing a coil configuration.



FIG. 15 schematically illustrates the satiation device of FIG. 15 positioned within a human stomach.



FIGS. 16A and 16B are end views of a tube for a satiation device, such as a fundal basket, antral tube, or bowel tube, illustrating tab members that may be utilized to facilitate tube removal.



FIG. 17A schematically illustrates in vivo positioning of an alternative satiation device utilizing a standalone stomach pouch.



FIG. 17B is a schematic illustration similar to FIG. 17A, but further illustrating a cage in combination with the stomach pouch.



FIG. 17C is a schematic illustration similar to FIG. 17B, but further illustrating an alignment extension in combination with the stomach pouch and cage.



FIG. 17D is a schematic illustration similar to FIG. 17B, but further illustrating a bypass tail in combination with the pouch.



FIG. 18 is a perspective view of a stomach pouch of a type that may be utilized as shown in FIGS. 17A-17C.



FIG. 19A is a perspective view of an alternative stomach pouch of a type that may be utilized as shown in FIGS. 17A-17C.



FIG. 19B is a cross-sectional side view of the stomach pouch of FIG. 19A.



FIG. 20 illustrates in vivo positioning of an alternative satiation device utilizing a duodenal absorption barrier prosthesis.





DETAILED DESCRIPTION

An anatomical view of a human stomach S and associated features is shown in FIG. 1. Stomach S includes a fundus F at its proximal end and an antrum A at its distal end. Antrum A feeds into the pylorus P which attaches to the duodenum D, the proximal region of the small intestine. Within the pylorus P is a sphincter that prevents backflow of food from the duodenum D into the stomach. The middle region of the small-intestine, positioned distally of the duodenum D, is the jejunum J.


Various embodiments of satiation devices are described herein. Many of these devices include an antral tube positionable within the antrum A, and may optionally include a fundal tube connected to the proximal end of the antral tube for placement in the fundus F, and/or a bowel tube connected to the distal end of the antral tube for placement in the duodenum D.


The device may be modular in that the various components may be provided separate from one another. In such a modular system, the separate implanted components may be attached to one another within the body during implantation, or certain ones of them may remain unattached to one another even after implantation. Alternatively, the physician may assemble the components to one another just prior to implantation. Modular components are desirable in that they permit the physician to select sizes for each component that are appropriate for the patient. As another alternative, the device may be a unitary device in the sense that the components (e.g. the antral tube, bowel tube and/or fundal basket) are not separately provided but instead form a single-unit implant.



FIG. 2 shows a first embodiment of a satiation device 100 utilizing principles of the present invention. Satiation device 100 includes an elongate tubular body 10 having a proximal section 12 and a distal section 14. Proximal section 12 includes a reduced diameter neck 16. Distal section 14 preferably has an hourglass profile including a pair of broadened sections 18 and a waisted section 20 between the broadened sections.


Tubular body 10 is proportioned to be at least partially positioned within the antrum of the stomach such that food moving into the antrum passes through the hollow interior of the tubular body. The tubular body 10 (which will also be referred to as the antral tube) may be made of shape memory materials such as nitinol or other shape memory alloys, or shape memory polymers, and is preferably made of a soft mesh or other framework formed of nitinol or stainless steel wires in combination with a polymeric barrier that prevents ingested food passing through the antral tube 10 from contacting the walls of the antrum. Thus, the polymeric barrier may be a skin formed on the exterior or interior of the mesh, or the mesh may be encapsulated in polymeric material or the polymer may be disposed in the interstices of the mesh. By preventing food from contacting the antrum walls as it passes from mid-stomach to the pylorus, the device prevents modulation of Ghrelin or other satiety controlling factors.


As shown in FIG. 3, the device 100 may optionally include one or more pharmaceutical delivery reservoirs 22, which are filled with substances known to inhibit release of Ghrelin or other hormones associated with feelings of satiety. Such substances may be chemical or pharmaceutical substances, therapeutic molecules or cells, or genetic material. Each such reservoir 22 may comprise a fluid pocket formed between a first layer of fluid impermeable polymeric material and a second layer of semi-permeable membrane that allows the substances to pass from the reservoirs into the surrounding tissue. Alternatively, the polymeric material used to form the tube may be impregnated with substances useful for maintaining low Ghrelin levels.


The reservoir or material containing the inhibitive substances may be in a portion of the device that lies within the antrum and/or in a portion that lies within the duodenum, particularly the segment of the duodenum that is proximal of the ampulla of vader, as it is believed that receptors for such substances are present in these areas.


During implantation, the antral tube 10 is passed into the patient blindly, under radiologic guidance, or under endoscopic guidance. Prior to implantation, the antral tube 10 is preferably packaged in a tubular sheath 26 (see FIG. 4A) by compressing the antral tube 10 about its longitudinal axis and inserting it into tubular sheath 26.


The sheath 26, with the antral tube 10 packaged inside, is passed into the stomach via the patient's mouth and positioned within the antrum as shown in FIG. 4A. The antral tube 10 is then pushed out the distal end of the sheath 26 using a pushing device 28 inserted into the proximal end of the sheath. The mesh forming the antral tube is preferably constructed so as to be self-expanding, such that the tube 10 springs radially open into an expanded condition upon its ejection from the sheath 26. When in its expanded condition, the antral tube exerts pressure against the interior surfaces against which it is in contact, so as to create the feeling of satiety and to inhibit Ghrelin release. The radial pressure of the device against the walls also secures the device against the walls of the antrum and prevents it from moving through the pylorus, even in the presence of peristalsis. In an alternative embodiment, the antral section is covered, such as by a polymeric material, shielding the stomach contents from the antrum. This may suppress chemical mediators of the sensation of hunger, such as Ghrelin production.


The hour-glass shape of the distal portion 14 is configured such that when the device is implanted, the waist section 20 becomes seated at the pyloric sphincter as shown in FIG. 4B. This helps to prevent migration of the device within the stomach, yet because of the self-expanding nature will avoid obstruction of the pylorus. It may be additionally desirable to provide the antral tube to include a valve (not shown) within the waist section 20, so as to prevent reflux of bile from the duodenum into the antrum.


Referring to FIG. 4C, removal of the device is carried out by inserting sheath 26 into the stomach, and by extending a grasping instrument such as snare 30 through the sheath. Snare 30 is closed around the neck 16 of the tube 10 and withdrawn, causing the tube 10 to collapse and be drawn into the sheath 26. Once the tube 10 is stored within the sheath, the sheath is withdrawn from the patient.


It will be appreciated that various other mechanisms may be used to facilitate collapse of the tube for removal. For example, FIGS. 16A and 16B show end views of the proximal portion of an alternative antral tube 11 which is provided to include one or more radially extending tabs 13. Tabs 13 are preferably rounded and smooth to minimize interference with flow through the tube 11. When the satiation device is to be removed, tabs 13 are drawn inwardly using endoscopic instruments, causing the tube to collapse inwardly.


Referring to FIG. 5, an alternate embodiment of satiation device 110 includes an antral tube 10a similar to that of the previous embodiments, but additionally includes a small diameter bowel tube 32 at its distal end. The bowel tube 32 is preferably formed of a combination of mesh and polymer as described in connection with antral tube 10 of FIG. 2. It simulates a Roux en Y, or gastric bypass, procedure by keeping food away from the proximal portion of the small bowel (i.e. away from the duodenum or the jejunum and duodenum, the portions of the small intestine at which most carbohydrates and proteins are absorbed by the body). This in turn prevents absorption of food by the proximal portion of the small bowel, and thus reduces the total amount of food absorbed by the body.


The bowel tube 32 is smaller in diameter than the antral tube 10a, and is of a diameter that will allow it to press gently against the walls of the small bowel. It must also be sufficiently flexible to pass posteriorly and distally into the second portion of the duodenum without damaging the mucosa. This may be facilitated by the use of a guidewire that is first introduced with an endoscope.


The bowel tube 32 may be a soft wire mesh (formed, for example, of shape memory alloys, nitinol, stainless steel alloys, stainless steel or polymers including shape memory polymers) covered with a polymer to prevent food and digestive juices from contacting the mucosa of the duodenum. Tube 32 may be provided to have a valve 34 at its distal end, which functions to prevent reflux of intestinal contents. The bowel tube includes an opening 33 to ensure that the ampulla of vader is not obstructed.


Delivery of the device 110 into, and its removal from the stomach may be performed under radiological or endoscopic guidance as described with respect to the prior embodiments. A conventional guide wire may also be used to facilitate positioning of the bowel tube 32. If a guide wire is used, it is first placed into the duodenum using endoscopy or radiology to guide the wire placement. The bowel tube 32 and antral tube 10a are then placed over the wire and guided over the wire into the duodenum or jejunum to the desired location. Next, the guide wire is removed. The small bowel tube position is maintained by bearing against the proximal end of the antral tube using a pushing instrument (such as the pusher 28 shown in FIG. 4A), while the covering sheath is withdrawn. As they are released from the sheath, the small bowel tube and the antral tube deploy and expand into contact with the antrum walls.


In a modular version of the device 110, the antral tube 10a and bowel tube 32 may be provided separately. Components of a modular system may be attached to one another pre-operatively or after each component has been positioned within the body.


An alternative form of a satiation device 120 may be configured, as shown in FIG. 6, to have an antral tube 10b that is positioned only within the antrum and that does not cross the pyloric sphincter. As with the prior embodiments, the satiation device 120 is preferably self-expanding and may be formed of a soft nitinol, shape memory polymer, or stainless steel mesh, preferably in combination with a polymer. Outward radial pressure between the antral tube and the stomach walls prevent the tube from moving distally through the pylorus, even in the presence of peristalsis. Additional mechanisms may be provided to prevent movement of the tube towards the fundus and/or pylorus. For example, soft and directional “fish scale” type structures 36 may be formed on the mesh or polymer on the exterior surface of the antral tube 10b as shown in FIG. 7. The figure shows the scales oriented to prevent movement of the device towards the pylorus, but it should be appreciated that movement towards the fundus may be prevented by orienting the scales in the opposite direction.


A plurality of hooks 38 may be formed on the proximal and/or distal ends of the antral tube 10b, as shown in FIG. 8. These hooks gently attach to the mucosa of the antrum and prevent movement in the proximal and/or distal direction. Such hooks should be sufficiently small as to not penetrate the submucosa or muscularis.



FIGS. 9A and 9B illustrate the use of ridges formed on the exterior of the antral tube for preventing migration of the tube. The ridges may be formed in a variety of configurations, such as the helical ridges 40 shown on the FIG. 9A embodiment or the rings 42 shown in the FIG. 9B embodiment. These same mechanisms for preventing movement may be applied to the bowel tube as well, as described with respect to FIGS. 10D-10F.


A basket structure may extend from the proximal end of the antral tube for positioning in the fundus. Referring to FIGS. 10A-10C, a fundal basket 44a, 44b, 44c may be formed of a mesh provided with large openings sized to permit food to readily flow through the fundal basket into the antral tube. Unlike the mesh of the antral tube, the mesh of the fundal basket is preferably not covered with a polymeric skin or coating. The fundal basket is mechanically connected to the antral tube, such as by spring members 46a (FIG. 10A), elongate struts 46b (FIG. 10B), mesh 46c (FIG. 10C) or equivalent structural components. The proximal end of the fundal basket rests against the walls of the fundus of the stomach and thereby functions to prevent migration of the device within the stomach. An embodiment utilizing an antral tube and fundal basket may be provided in a modular form-in which the antral and fundal components are separate from one another and then attached to one another pre-operatively or following implantation in the body. Alternatively, the antral tube and fundal basket may comprise a unitary device.


Similar attachment mechanisms may be used to attach a bowel tube to an antral tube in embodiments having these components, regardless of whether a fundal basket is used. For example, the bowel section 132b and antral section 110b may be connected with one or more longitudinal struts, as shown in FIGS. 10E and 10F. An alternative embodiment may be provided without an attachment strut, in which case bowel tube 132a may be placed separately from antral tube 110a, and it may include a neck section 133 (or tabs such as tabs 13 of FIGS. 16A/16B) at its proximal edge to allow recovery with an endoscopically controlled snare. See FIG. 10D. As discussed previously, a device of this type may be provided as a modular or unitary device.


Referring to FIG. 11, embodiments having an antral tube 10b and a fundal basket 44 may further include a bowel tube 32 attached to the antral tube. As discussed previously with respect to FIG. 5, the bowel tube 32 functions to keep food away from the proximal small bowel. The bowel tube 32 may have properties similar to those described with respect to the embodiment of FIG. 5.


As with the previous embodiment, the embodiments of FIGS. 10A-10F and 11 are preferably inserted into the stomach in a collapsed condition, such as within a sheath 26 as shown in FIG. 12A. In the case of the FIG. 10A-10C embodiments which include antral and fundal tubes only, the distal tip of the antral tube is placed at the pylorus (or across the pylorus as with the FIG. 2 embodiment) and the sheath is withdrawn. As they are released, the antral and fundal units self-expand and may shorten slightly.


If a small bowel tube is to be included, as in FIGS. 10D-10F, the tube can be placed under radiological guidance or endoscopic guidance or over a guide wire as described above with respect to FIG. 5. As discussed, the antral tube, fundal basket and bowel tube may form parts of a unitary device, or they may be separately provided as modular components. In a modular device, each of the three components may be separately provided and then attached to one another prior to implantation or after the components have been positioned within the body. In another form of modular device, some but not all of the components (e.g. the fundal basket and antral tube, or the antral tube and bowel tube) may comprise a unitary device, and an additional modular component may be provided for subsequent attachment to the unitary device either before or after implantation.


Referring to FIG. 12B, removing the device, whether it includes only an antral tube, fundal and antral tubes, or fundal, antral and small bowel tube, is accomplished by extending a sheath 26 into the stomach, extending a grasping instrument through the sheath, grasping the proximal end of the device and pulling the tube into the sheath causing it to collapse. If a wire snare loop is to be used as the grasping instrument, the snare is placed around a neck (such as neck 16 shown in FIG. 2 or a similar neck 17 at the proximal end of the fundal basket as shown in FIG. 12B) to grasp the device. Engagement with the snare loop would assist in collapsing the tube as the snare is tightened around the neck and withdrawn into the sheath 26. Alternatively, as described with respect to FIGS. 16A and 16B, the proximal end of the tube may include tabs 13 that are pulled radially inwardly using an endoscopic instrument to facilitate collapse of the device.


Another alternative satiation device 130 is shown in FIG. 13. As with the prior devices, device 130 includes an antral tube 10c positionable within the antrum to minimize direct contact between food entering the antrum and the walls of the antrum. The antral tube 10c may be formed of a combination of soft polymeric material as well as reinforcing members formed of nitinol, stainless steel, and/or polymer. In the embodiment shown in FIG. 13, device 130 is formed of a polymeric sleeve 48 with nitinol struts 50 embedded in the sleeve material. Stainless steel or polymeric reinforcing bands 52 extend longitudinally along the interior walls of the tubular member. Inflatable reservoirs 54 formed of a soft elastic polymer are positioned on the exterior of the tubular sleeve 48. A fill tube 56 is fluidly coupled to the reservoirs. After the device is positioned within the antrum, reservoirs 54 are filled with saline to expand the sleeve 48 into contact with the antrum walls, so as to hold the device in place within the antrum. Fill tube 56 may detach from the reservoir following inflation using the saline. To prevent saline leakage, a one-way valve (not shown) may be located within the reservoir at the point of attachment of the fill tube.


Another alternative embodiment of a satiation device 200 is shown in FIGS. 14 and 15. The device may be formed of a wire member coiled to create a stent-like device. The coil may be contoured to match the contours of interior lumen wall, such as by forming the coil of a shape memory material such as nitinol or polymers, and shape setting the material to the desired shape. Device 200 has a proximal portion 202 positionable in the antrum, and a distal portion 204 that may be positioned in the duodenum bulb or further within the small intestine. The pitch of the coil is selected to give the device 200 a desired strength and flexibility.


A straight portion 206 connects the proximal and distal portions 202, 204. Straight portion 206 is positionable within the pyloric sphincter. Under normal conditions, the pyloric sphincter remains closed. until the stomach is ready to evacuate its contents into the duodenum. Straight portion 206 is beneficial in that it provides structure connecting proximal and distal portions 202, 204 while allowing the pyloric sphincter to correctly perform its normal function.


Although a preferred material for the device 200 is wire, it should be noted that a variety of alternative materials may be used for this purpose. For example, device 200 may be formed of ribbons of material, or it may be formed from a metallic sheet, or its pattern may be cut from tubing.


Yet another embodiment of a satiation device 300 is illustrated in FIG. 17A. Device 300 includes a tubular pouch 302 that is positioned in the proximal region of the stomach. Pouch 302 includes a proximal end that is preferably positioned to be slightly proximal of the gastroesophageal junction as shown. The walls of the pouch preferably taper inwardly from the proximal end towards the distal end. A proximal opening 304 of, for example, approximately 25 to 50 mm in diameter is located at the proximal end and a distal opening 308 having a diameter of approximately 6-12 mm is formed at the distal end. The proximal opening 304 is preferably placed into alignment with the esophagus, and the distal opening 308 opens into the interior of the stomach.


Because of its small volume (which may be on the order of approximately 30 cc-50 cc in volume), the pouch functions to limit the amount of food that can be consumed at one time. Food ingested by the patient remains in the pouch until digestive enzymes have broken it down sufficiently for it to pass through the distal opening 308.


The pouch is preferably self-expanding and may take a variety of forms. For example, referring to FIG. 18 it may be formed of struts 310 or a mesh formed of nitinol, stainless steel, polymer (including shape memory polymer). A ring 312 is attached to the struts/mesh at the proximal end of the device, and also may be formed of nitinol, stainless steel, polymer (including shape memory polymer). The exterior or interior of the pouch covered with a material 313 will prevent passage of food through the sides of the pouch. One example of such a material is a polyester material such as the polyester sold by the DuPont Company under the trademark Dacron.



FIGS. 19A and 19B show another example of a pouch 302a. Pouch 302a is formed of a shape memory coil that has been heat set to a funnel shape. Dacron polyester or other material 313a (FIG. 19B) may optionally cover the interior or exterior walls of the coil, although the coil may itself be sufficiently small as to prevent migration of food to the surrounding stomach walls. The material 313a may be pinched between proximal-most coil 312a and its adjacent coil as shown in FIG. 19B. so as to hold it in place.


The pouches 302, 302a may be provided with a proximal-to-distal dimension that is fairly long (e.g. on the order of approximately 2.5-5.0 cm) and that thus gives the pouch a funnel shape as shown in FIGS. 18 and 19A. However, a variety of alternative shapes may be used for the pouch. For example, the pouch may have a much shorter proximal-to-distal dimension and thus take the shape of a shallow saucer with a small hole on its bottom surface.


The stomach pouch may be used alone or in combination with other components. If used without additional components, the proximal end of the pouch (e.g. ring 312 of pouch 302 or ring 312a of pouch 302a) may serve as a sewing ring that is attached by sutures to the interior stomach walls. The suture may pass through the material 313, 313a (see FIG. 19B) to strengthen the connection between the stomach wall and the device. Alternatively, the pouch may be used as a standalone device without sutures-in which case it may be held in place by the radial expansion forces of the struts, mesh or coils.


The stomach pouch may alternatively be one portion of a larger satiation device. For example, referring to FIG. 17B, the proximal portion of the pouch (such as ring 312 of the pouch of FIG. 18 or the upper coil 312a of the pouch of FIG. 19A) may be connected to the proximal end of a larger cage structure 314. Cage 314 extends from the esophagus to the proximal portion of the antrum, and may be similar to the fundal baskets described above. It may be a large stent-like structure preferably formed of self-expanding material, such as stainless steel or a shape memory material such as nitinol or polymer. Cage 314 functions primarily to distend the stomach to create a feeling of satiety. As shown, the pouch 300 is suspended into the interior of cage 314.


Additionally, the pouch (as used with or without cage 314) may also be attached at its proximal end to an alignment extension 316. Referring to FIG. 17C, alignment extension 316 is a tubular stent portion that extends into the esophagus. In one embodiment, extension 316 may be approximately 5 cm in length. It functions primarily to keep the proximal opening of the pouch aligned with the esophagus-so that food passing through the esophagus passes easily into the pouch.


Finally, as illustrated in FIG. 17D, an enclosed bypass tail 318 may extend from distal opening 308 of the pouch through the pylorus into the small bowel to simulate a stomach bypass procedure. The structure of the tail 318 may be similar to the bowel tube described with respect to FIG. 5.


The stomach pouch and associated components may be implanted and removed using procedures of the type described with respect to previous embodiments. In embodiments in which the stomach pouch includes the cage, alignment extension, and/or bypass tail, the components may be implanted simultaneously as a single device. Alternatively, they may be segmented for separate implantation and for subsequent suture attachment to one another once they are within the body.


Another embodiment of a satiation device is illustrated in FIG. 20. This satiation device includes a duodenal absorption barrier-an elongate tube 400 that is positionable within the small intestine at a location slightly distal of the ampulla of vader. For example, the barrier may be positioned a distance of approximately 1 cm or more from the ampulla of vader. Positioning of the tube so that it does not contact the ampulla (an opening through which bile passes into the duodenum) is desirable in that it minimizes the chance of irritation and choleocystitus.


The tube 400 is preferably a flexible tube preferably approximately 20 cm or more in length. It may be constructed as described with the satiation devices described above. For example, it may be formed of a self-expandable material such as nitinol, stainless steel or a shape memory polymer (e.g. oligo-(caprolactone)-dimethacrylate or n-butyl acrylate), and covered with a polymer covering that is resistant to gastric juices (e.g. silicone) and that prevents passage of food byproducts through the walls of the tube.


The tube 400 prevents caloric intake in the small intestine by preventing absorption of food through the walls of the duodenum, and thus functions as an aid to weight loss.


Tube 400 may be delivered and extracted using the techniques described above, and it may be held in place in any of the ways described herein, including sutures, barbs, scales, hooks, or under the outward pressure of the expanded device against the surrounding walls of the duodenum. Tube 400 may be used alone or in combination with components of the type described above.


Various embodiments of satiation device have been described herein. These embodiments are giving by way of example and are not intended to limit the scope of the present invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments.

Claims
  • 1. A device for implantation in a patient having an esophagus, a gastro-esophageal junction, a stomach, and an intestine, comprising: a gastro-esophageal junction prosthesis extending from an upstream opening at an upstream end to a downstream opening at a downstream end, wherein the upstream end is configured to be attached within the gastro-esophageal junction;a gastric bypass sleeve including an intestinal portion, the sleeve extending from a proximal opening to a distal opening, the sleeve being fluidly coupled to the prosthesis and dimensioned to be positioned such that the proximal opening is positioned proximate the gastro-esophageal junction and the intestinal portion is positioned in the intestine, andone or more attachment elements configured to attach the prosthesis to the gastro-esophageal junction,wherein the downstream opening of the prosthesis is coupled to the proximal opening of the sleeve, and wherein the upstream opening of the prosthesis is configured to be positioned in alignment with the esophagus.
  • 2. The device of claim 1, wherein the prosthesis is self-expanding, such that, in an expanded condition, the prosthesis exerts pressure on tissue surfaces against which it is in contact to retain the device in the body.
  • 3. The device of claim 1 wherein the attachment elements include sutures.
  • 4. The device of claim 1, wherein the prosthesis has a length of at least 2.5 cm.
  • 5. The device of claim 1, wherein the upstream opening of the prosthesis is larger than the downstream opening of the prosthesis.
  • 6. A device for implantation in a patient having an esophagus, a gastro-esophageal junction, a stomach, and an intestine, comprising: a gastro-esophageal junction prosthesis extending from an upstream opening at an upstream end to a downstream opening at a downstream end, wherein the upstream end is configured to be attached within the gastro-esophageal junction;a flexible gastric bypass sleeve having a proximal end configured to be positioned proximate the gastro-esophageal junction and an intestinal portion configured to be positioned in the intestine, wherein the flexible sleeve is dimensioned to extend, when the proximal end is positioned proximate the gastro-esophageal junction and the intestinal portion is positioned in the intestine, from a proximal opening at the proximal end to a distal opening of the intestinal portion; andone or more sutures configured to couple the prosthesis to tissue proximate the gastro-esophageal junction,wherein the downstream opening of the prosthesis is coupled to the proximal opening of the sleeve.
  • 7. The device of claim 6, wherein the sleeve includes a wire mesh and a polymer.
  • 8. The device of claim 6, wherein the sleeve is dimensioned to extend past a duodenum of the intestine.
  • 9. The device of claim 6, wherein the sleeve is dimensioned to extend past a jejunum of the intestine.
  • 10. The device of claim 6, wherein the prosthesis is self-expanding, such that, in an expanded condition, the prosthesis exerts pressure on tissue surfaces against which it is in contact.
  • 11. The device of claim 6, wherein the prosthesis includes a tubular structure and extends from an upstream opening at an upstream end to a downstream opening at a downstream end, and wherein the upstream opening and the downstream opening of the prosthesis are concentric, and a diameter of the downstream opening is smaller than a diameter of the upstream opening.
  • 12. A device for implantation in a patient having an esophagus, a gastro-esophageal junction, a stomach, and an intestine, comprising: a gastro-esophageal junction prosthesis extending from an upstream opening at an upstream end to a downstream opening at a downstream end, the upstream end of the prosthesis configured to be attached within the gastro-esophageal junction and aligned with the esophagus;a gastric bypass sleeve including an intestinal portion configured to be positioned in the intestine, the sleeve being dimensioned to extend from a proximal opening, fluidly coupled to the prosthesis, to a distal opening of the intestinal portion; andone or more attachment elements separate from the sleeve and the prosthesis, the one or more attachment elements being configured to attach the upstream end of the prosthesis to tissue proximate the gastro-esophageal junction,wherein the downstream opening of the prosthesis is coupled to the proximal opening of the sleeve.
  • 13. The device of claim 12, wherein the one or more attachment elements include one or more sutures, and wherein the upstream end of the prosthesis is configured to be sutured to tissue proximate the gastro-esophageal junction.
  • 14. The device of claim 12, wherein the prosthesis is self-expanding, such that, in an expanded condition, the prosthesis exerts pressure on tissue surfaces against which it is in contact.
  • 15. The device of claim 12, wherein the prosthesis includes a tubular structure and a diameter of the prosthesis at the downstream end is smaller than a diameter of the prosthesis at the upstream end.
  • 16. The device of claim 12, wherein the sleeve is flexible and includes a polymer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/936,132, filed Jul. 5, 2013, now pending, which is a continuation of U.S. patent application Ser. No. 12/538,741, filed Aug. 10, 2009, now abandoned, which is a continuation of U.S. patent application Ser. No. 10/457,144, filed Jun. 9, 2003, now abandoned, which is a divisional of U.S. patent application Ser. No. 09/940,110, filed Aug. 27, 2001, now U.S. Pat. No. 6,675,809.

US Referenced Citations (350)
Number Name Date Kind
1408865 Cowell Mar 1922 A
3663965 Lee et al. May 1972 A
4134405 Smit Jan 1979 A
4207890 Mamajek et al. Jun 1980 A
4246893 Berson Jan 1981 A
4315509 Smit Feb 1982 A
4331277 Green May 1982 A
4403604 Wilkinson et al. Sep 1983 A
4416267 Garren et al. Nov 1983 A
4417360 Moasser Nov 1983 A
4441215 Kaster Apr 1984 A
4467804 Hardy et al. Aug 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4607618 Angelchik Aug 1986 A
4641653 Rockey Feb 1987 A
4648383 Angelchik Mar 1987 A
4694827 Weiner et al. Sep 1987 A
4723547 Kullas et al. Feb 1988 A
4747849 Galitier May 1988 A
4846836 Reich Jul 1989 A
4848367 Avant et al. Jul 1989 A
4899747 Garren et al. Feb 1990 A
4925446 Garay et al. May 1990 A
4946440 Hall Aug 1990 A
4969896 Shors Nov 1990 A
4997084 Opie et al. Mar 1991 A
5006106 Angelchik Apr 1991 A
5037021 Mills et al. Aug 1991 A
5061275 Wallsten et al. Oct 1991 A
5084061 Gau et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5163952 Froix Nov 1992 A
5211658 Clouse May 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5259399 Brown Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5290217 Campos Mar 1994 A
5306300 Berry Apr 1994 A
5314473 Godin May 1994 A
5327914 Shlain Jul 1994 A
5345949 Shain Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5401241 Delany Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405377 Cragg Apr 1995 A
5431673 Summers et al. Jul 1995 A
5486187 Schneck Jan 1996 A
5514176 Bosley, Jr. May 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5562239 Bolarski et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5593434 Williams Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5609624 Kalis Mar 1997 A
5628786 Banas et al. May 1997 A
5630539 Plyley et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653743 Martin Aug 1997 A
5662713 Andersen et al. Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5674241 Bley et al. Oct 1997 A
5706998 Plyley et al. Jan 1998 A
5709657 Zimmon Jan 1998 A
5720776 Chuter et al. Feb 1998 A
5749918 Hogendijk et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5769887 Brown et al. Jun 1998 A
5771903 Jakobsson Jun 1998 A
5785684 Zimmon Jul 1998 A
5792119 Marx Aug 1998 A
5820584 Crabb Oct 1998 A
5824040 Cox et al. Oct 1998 A
5839639 Sauer et al. Nov 1998 A
5848964 Samuels Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5856445 Korsmeyer Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5887594 LoCicero, III Mar 1999 A
5897562 Bolanos et al. Apr 1999 A
5910144 Hayashi et al. Jun 1999 A
5922019 Hankh et al. Jul 1999 A
5947983 Solar et al. Sep 1999 A
5993473 Chan et al. Nov 1999 A
5993483 Gianotti Nov 1999 A
6016848 Egrees Jan 2000 A
6051015 Maahs Apr 2000 A
6086600 Kortenbach Jul 2000 A
6098629 Johnson et al. Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6102940 Robichon et al. Aug 2000 A
6113609 Adams Sep 2000 A
6120534 Ruiz Sep 2000 A
6146416 Andersen et al. Nov 2000 A
6152956 Pierce Nov 2000 A
6159146 El Gazayerli Dec 2000 A
6159238 Killion et al. Dec 2000 A
6197022 Baker et al. Mar 2001 B1
6206930 Burg et al. Mar 2001 B1
6245088 Lowery Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287334 Moll et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6358197 Silverman et al. Mar 2002 B1
6416522 Strecker Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6460543 Forsell Oct 2002 B1
6461366 Seguin Oct 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494895 Addis Dec 2002 B2
6503264 Birk Jan 2003 B1
6506196 Laufer et al. Jan 2003 B1
6527784 Adams et al. Mar 2003 B2
6540789 Silverman et al. Apr 2003 B1
6544291 Taylor Apr 2003 B2
6547801 Dargent et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6558429 Taylor May 2003 B2
6572627 Gabbay Jun 2003 B2
6572629 Kalloo Jun 2003 B2
6575896 Silverman Jun 2003 B2
6592596 Geitz et al. Jul 2003 B1
6596023 Nunez et al. Jul 2003 B1
6607555 Patterson et al. Aug 2003 B2
6627206 Lloyd Sep 2003 B2
6632227 Adams Oct 2003 B2
6663639 Laufer et al. Dec 2003 B1
6675809 Stack et al. Jan 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6755869 Geitz Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6790214 Kraemer et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6845776 Stack et al. Jan 2005 B2
6916332 Adams Jul 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6960233 Berg et al. Nov 2005 B1
6966875 Longobardi Nov 2005 B1
6981978 Gannoe Jan 2006 B2
6981980 Sampson Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7011094 Rapackie et al. Mar 2006 B2
7020531 Colliu et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033373 de la Torre et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7056305 Garza Jun 2006 B2
7066945 Hashiba et al. Jun 2006 B2
7083629 Weller et al. Aug 2006 B2
7090699 Geitz Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7097665 Stack et al. Aug 2006 B2
7111627 Stack et al. Sep 2006 B2
7112186 Shah Sep 2006 B2
7120498 Imran et al. Oct 2006 B2
7121283 Stack et al. Oct 2006 B2
7146984 Stack et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7152607 Stack et al. Dec 2006 B2
7160312 Saadat et al. Jan 2007 B2
7172613 Wazne Feb 2007 B2
7175638 Gannoe et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7211114 Bessler et al. May 2007 B2
7214233 Gannoe et al. May 2007 B2
7220237 Gannoe et al. May 2007 B2
7220284 Kagan et al. May 2007 B2
7223277 DeLegge May 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261722 McGuckin, Jr. et al. Aug 2007 B2
7288101 Deem et al. Oct 2007 B2
7306614 Weller et al. Dec 2007 B2
7315509 Jeong et al. Jan 2008 B2
7316716 Egan Jan 2008 B2
7320696 Gazi et al. Jan 2008 B2
7326207 Edwards Feb 2008 B2
7335210 Smit Feb 2008 B2
7347863 Rothe et al. Mar 2008 B2
7347875 Levine et al. Mar 2008 B2
7354454 Stack et al. Apr 2008 B2
7399304 Gambale et al. Jul 2008 B2
7431725 Stack et al. Oct 2008 B2
7461767 Viola et al. Dec 2008 B2
7470251 Shah Dec 2008 B2
7485142 Milo Feb 2009 B2
7503922 Deem et al. Mar 2009 B2
7520884 Swanstrom et al. Apr 2009 B2
7608114 Levine et al. Oct 2009 B2
7615064 Bjerken Nov 2009 B2
7628821 Stack et al. Dec 2009 B2
7674271 Bjerken Mar 2010 B2
7695446 Levine et al. Apr 2010 B2
7819836 Levine et al. Oct 2010 B2
7846138 Dann et al. Dec 2010 B2
7846174 Baker et al. Dec 2010 B2
7881797 Griffin et al. Feb 2011 B2
7892214 Kagan et al. Feb 2011 B2
7892292 Stack et al. Feb 2011 B2
20010011543 Forsell Aug 2001 A1
20010020189 Taylor Sep 2001 A1
20010020190 Taylor Sep 2001 A1
20010021796 Silverman et al. Sep 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20020022851 Kalloo et al. Feb 2002 A1
20020055757 Torre et al. May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020082621 Shurr et al. Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020183767 Adams et al. Dec 2002 A1
20020183768 Deem et al. Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat et al. May 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030158569 Wazne Aug 2003 A1
20030191476 Smit Oct 2003 A1
20030191525 Thornton Oct 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040030347 Gannoe et al. Feb 2004 A1
20040044353 Gannoe Mar 2004 A1
20040044354 Gannoe et al. Mar 2004 A1
20040044357 Gannoe et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040088023 Imran et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040098043 Trout May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153167 Stack et al. Aug 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040172142 Stack et al. Sep 2004 A1
20040186502 Sampson et al. Sep 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20040243223 Kraemer et al. Dec 2004 A1
20040267378 Gazi et al. Dec 2004 A1
20050004430 Lee et al. Jan 2005 A1
20050004681 Stack et al. Jan 2005 A1
20050033326 Briganti et al. Feb 2005 A1
20050033345 DeLegge Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer et al. Apr 2005 A1
20050096673 Stack et al. May 2005 A1
20050096750 Kagan et al. May 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050159769 Alverdy Jul 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050183732 Edwards Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192615 Torre et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050247320 Stack et al. Nov 2005 A1
20050250980 Swanstrom et al. Nov 2005 A1
20050251158 Sadat et al. Nov 2005 A1
20050251162 Rothe et al. Nov 2005 A1
20050256533 Roth et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050261712 Balbierz et al. Nov 2005 A1
20050267405 Shah Dec 2005 A1
20050267499 Stack et al. Dec 2005 A1
20050267595 Chen et al. Dec 2005 A1
20050267596 Chen et al. Dec 2005 A1
20050273060 Levy et al. Dec 2005 A1
20060015006 Laurence et al. Jan 2006 A1
20060020278 Burnette et al. Jan 2006 A1
20060058829 Sampson et al. Mar 2006 A1
20060129094 Shah Jun 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060155259 MacLay Jul 2006 A1
20060155311 Hashiba et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060253142 Bjerken Nov 2006 A1
20060271076 Weller et al. Nov 2006 A1
20060282095 Stokes et al. Dec 2006 A1
20060287734 Stack et al. Dec 2006 A1
20070010864 Dann et al. Jan 2007 A1
20070032800 Ortiz et al. Feb 2007 A1
20070043384 Ortiz et al. Feb 2007 A1
20070055292 Ortiz et al. Mar 2007 A1
20070060932 Stack et al. Mar 2007 A1
20070149994 Sosnowski et al. Jun 2007 A1
20070175488 Cox et al. Aug 2007 A1
20070191870 Baker et al. Aug 2007 A1
20070191871 Baker et al. Aug 2007 A1
20070198074 Dann et al. Aug 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070239284 Skerven et al. Oct 2007 A1
20070260327 Case et al. Nov 2007 A1
20070276432 Stack et al. Nov 2007 A1
20080033574 Bessler et al. Feb 2008 A1
20080065122 Stack et al. Mar 2008 A1
20080116244 Rethy et al. May 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080195226 Williams et al. Aug 2008 A1
20080208355 Stack et al. Aug 2008 A1
20080208356 Stack et al. Aug 2008 A1
20080269797 Stack et al. Oct 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20090018558 Laufer et al. Jan 2009 A1
20090024143 Crews et al. Jan 2009 A1
20090030284 Cole et al. Jan 2009 A1
20090125040 Hambley et al. May 2009 A1
20090171383 Cole et al. Jul 2009 A1
20090177215 Stack et al. Jul 2009 A1
Foreign Referenced Citations (53)
Number Date Country
680263 Jul 1992 CH
0775471 May 1997 EP
1492478 Jan 2005 EP
1602336 Dec 2005 EP
2768324 Mar 1999 FR
09-168597 Jun 1997 JP
WO 9101117 Feb 1991 WO
WO 9747231 Dec 1997 WO
WO 0012027 Mar 2000 WO
WO 0032137 Jun 2000 WO
WO 0078227 Dec 2000 WO
WO 0141671 Jun 2001 WO
WO 0145485 Jun 2001 WO
WO 0143663 Jun 2001 WO
WO 0149359 Jul 2001 WO
WO 0166018 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0189393 Nov 2001 WO
WO 02060328 Aug 2002 WO
WO 03017882 Mar 2003 WO
WO 03086246 Oct 2003 WO
WO 03086247 Oct 2003 WO
WO 03090633 Nov 2003 WO
WO 03094784 Nov 2003 WO
WO 03094785 Nov 2003 WO
WO 03099137 Dec 2003 WO
WO 2004019765 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004037064 May 2004 WO
WO 2004041133 May 2004 WO
WO 2004064680 Aug 2004 WO
WO 2004064685 Aug 2004 WO
WO 2004080336 Sep 2004 WO
WO 2004110285 Dec 2004 WO
WO 2005037152 Apr 2005 WO
WO 2005079673 Sep 2005 WO
WO 2005096991 Oct 2005 WO
WO 2005105003 Nov 2005 WO
WO 2006016894 Feb 2006 WO
WO 2006055365 May 2006 WO
WO 2006127593 Nov 2006 WO
WO 2007041598 Apr 2007 WO
WO 2008030403 Mar 2008 WO
WO 2008033409 Mar 2008 WO
WO 2008033474 Mar 2008 WO
WO 2008141288 Nov 2008 WO
WO 2009001182 Jan 2009 WO
WO 2009011881 Jan 2009 WO
WO 2009086549 Jul 2009 WO
WO 2009117533 Sep 2009 WO
WO 2010054399 May 2010 WO
WO 2010054404 May 2010 WO
Non-Patent Literature Citations (27)
Entry
Nisheeth Shrivastava, “Medians and Beyond: New Aggregation Techniques for Sensor Networks,” Nov. 3-5, 2004 SenSys'04, pp. 1-11.
International Search Report and Written Opinion in International Patent Application No. PCT/US2012/028922 mailed Aug. 28, 2012.
International Preliminary Report on Patentability for PCT Application No. PCT/US2012/028922, mailed Sep. 26, 2013, 6 pages.
Non-final Office Action of Jul. 8, 2013 for U.S. Appl. No. 13/223,167, 25 pages.
International Search Report from PCT Patent Application No. PCT/US2002/027177 mailed Feb. 14, 2003.
International Search Report from PCT Patent Application No. PCT/US2003/004378 mailed Aug. 13, 2003.
International Search Report from PCT Patent Application No. PCT/US2003/033605 mailed Mar. 29, 2004.
International Search Report from PCT Patent Application No. PCT/US2003/033606 mailed Mar. 29, 2004.
International Search Report from PCT Patent Application No. PCT/US2003/004449 mailed Aug. 13, 2003.
International Search Report from PCT Patent Application No. PCT/US2004/006695 mailed Sep. 8, 2004.
International Search Report from PCT Patent Application No. PCT/US2004/033007 mailed Feb. 9, 2005.
International Search Report from PCT Patent Application No. PCT/US2005/014372 mailed Jul. 28, 2005.
International Search Report from PCT Patent Application No. PCT/US2006/019727 mailed Apr. 19, 2007.
International Search Report from PCT Patent Application No. PCT/US2006/038684 mailed Feb. 14, 2007.
International Search Report from PCT Patent Application No. PCT/US2007/019227 mailed Feb. 20, 2008.
International Search Report from PCT Patent Application No. PCT/US2007/019833 mailed Feb. 20, 2008.
International Search Report from PCT Patent Application No. PCT/US2007/019940 mailed Mar. 14, 2008.
International Search Report from PCT Patent Application No. PCT/US2008/008726 mailed Oct. 16, 2008.
International Search Report from PCT Patent Application No. PCT/US2008/008729 mailed Aug. 18, 2009.
International Search Report from PCT Patent Application No. PCT/US2008/063440 mailed Aug. 1, 2008.
International Search Report from PCT Patent Application No. PCT/US2008/088581 mailed Feb. 26, 2009.
International Search Report from PCT Patent Application No. PCT/US2009/037586 mailed Sep. 28, 2009.
International Search Report from PCT Patent Application No. PCT/US2009/063925 mailed Jan. 12, 2010.
International Search Report from PCT Patent Application No. PCT/US2009/063930 mailed Jan. 12, 2010.
Felsher et al., “Mucosal apposition in endoscopic suturing,” Gastrointestinal Endoscopy, vol. 58, No. 6, pp. 867-870, 2003.
Stecco et al., “Trans-oral plication formation and gastric implant placement in a canine model,” Stecco Group, San Jose and Barosense, Inc., Redwood City, CA (2004).
Stecco et al., “Safety of a gastric restrictive implant in a canine model,” Stecco Group, San Jose and Barosense, Inc., Redwood City, CA (2004).
Related Publications (1)
Number Date Country
20140142720 A1 May 2014 US
Divisions (1)
Number Date Country
Parent 09940110 Aug 2001 US
Child 10457144 US
Continuations (3)
Number Date Country
Parent 13936132 Jul 2013 US
Child 14161392 US
Parent 12538741 Aug 2009 US
Child 13936132 US
Parent 10457144 Jun 2003 US
Child 12538741 US