Saturable absorbers for Q-switching of middle infrared laser cavaties

Information

  • Patent Grant
  • 9391424
  • Patent Number
    9,391,424
  • Date Filed
    Tuesday, August 26, 2014
    10 years ago
  • Date Issued
    Tuesday, July 12, 2016
    8 years ago
Abstract
This disclosure demonstrates successfully using single, polycrystalline, hot pressed ceramic, and thin film Fe doped binary chalcogenides (such as ZnSe and ZnS) as saturable absorbing passive Q-switches. The method of producing polycrystalline ZnSe(S) yields fairly uniform distribution of dopant, large coefficients of absorption (5-50 cm−1) and low passive losses while being highly cost effective and easy to reproduce. Using these Fe2+:ZnSe crystals, stable Q-switched output was achieved with a low threshold and the best cavity configuration yielded 13 mJ/pulse single mode Q-switched output and 85 mJ in a multipulse regime.
Description
FIELD OF THE INVENTION

The present invention relates to the field of lasers and materials used in lasers. More particularly the present invention relates to materials used in the output control of lasers, specifically saturable absorbers which can be used for Q-switching of laser cavities. In even greater particularity the present invention relates to the use of Fe:ZnS and Fe:ZnSe polycrystalline structures in laser applications.


BACKGROUND

Certain medical or biomedical devices are based on Cr:Er:YSGG or Er:YAG lasers operating in free-running oscillation regime near the wavelength of water absorption—2.8-2.9 μm. Lasers emitting in the 3 μm wavelength region are needed in the medical field as surgical tools. This use of a laser as a laser scalpel or drill is due to the absorption of water in this spectral region. To effectively use such a laser, it must have high energy as well as short pulses that can be provided by Q-switching of Er laser cavities.


The temporal output of the current lasers is characterized by multiple spikes of ˜1 μs pulse duration spreading irregularly over the flashlamp discharge pulse of approximately 100-200 μs. The drawback of irregular character of the spikes is that the spikes with energy below the threshold of teeth ablation deposit their light energy towards teeth heating, resulting in painful sensations that might appear in the teeth of the patients.


To eliminate this problem and the need of anesthesia during treatment it is proposed to utilize passive Q-switched regime of Cr:Er:YSGG operation with a much shorter (<150 ns) but regular multiple pulses each with energy above the threshold of ablation to eliminate pain sensations while preserving cutting efficiency of the dental hard tissue.


The simplest way to obtain the required regime of ns multiple laser pulses with high peak powers in a cost-effective, compact and reliable all-solid-state laser system consists in laser cavity passive Q-switching by inserting a saturable absorber inside the Cr:Er:YSGG resonator. However, commercial passive solid-state Q-switches for the 3 μm spectral range are not currently available. A 2.94 μm Er:YAG laser was Q-switched using a rotating, mirror as reported by Bagdasarov, Danilov et al, electro-optic Q-switch as reported by Bagdasarov, Zhekov et al, and a passive water and ethanol Q-switch as reported by Vodopyanov. Successful realization of the 1.3-2.1 μm laser cavities passive Q-switching with the use of Cr doped ZnSe and ZnS crystals was demonstrated by several research groups. However, the use of Fe doped chalcogenides for the passive Q-switching of laser cavities at longer 2.4-3.4 μm spectral range was not evident and trivial due to a strong non-radiative quenching of the excitation in these materials at room temperature. To characterize the effectiveness of Fe2+:ZnSe as a saturable absorber in the Mid IR Spectral region and as a potential gain medium, the cross-section of absorption versus wavelengths must be measured. As one can see from FIG. 1 the absorption cross section of Fe2+ ion in the ZnSe crystal measured at λ=2.94 μm is ˜9.5×10−19 cm2, which is approximately 35 times higher than the cross section for the laser transition of the Er3+ ion in yttrium-aluminum garnet. The combination of a high value of saturation cross-section, small saturation energy with good opto-mechanical and physical characteristics of the ZnSe host (damage threshold—2 J/Cm2, Knoop Hardness 1.20 kg/mm2, thermal conductivity 18 W/mK, dn/dT=70×10−6 K−1) make Fe2+:ZnSe crystal a promising material for passive Q-switching of mid-infrared laser cavities.


A significant problem is that growth of Fe doped ZnSe crystals is not trivial. Bulk Fe2+:ZnSe crystals can be obtained from melt or vapor growing techniques by including the dopant in the starting charge. Under atmospheric pressure ZnSe is sublimed at a temperature higher than about 1100° C. before melting. It is therefore for melt growth, in addition to high temperature (1525° C.), necessary to apply high pressure, up to 75×10−5 Pa [6]. This inconvenience of the ZnSe high temperature melt growth might be accompanied by uncontrolled contamination inducing undesired absorptions. On the other hand, the control of the amount of Fe2+, ions incorporated in the crystal is difficult using vapor growth technique. Hence, utilization of other more cost effective methods of Fe2+:ZnSe fabrication is of interest.


SUMMARY OF THE INVENTION

It is an object of this invention to provide a mechanism to generate ns duration multiple laser pulses with high peak powers in a cost-effective, compact and reliable all-solid-state laser system. This object can be accomplished using polycrystalline or single crystalline Fe:ZnSe and Fe:ZnS as saturable absorbing passive Q-switches. The method of producing polycrystalline and single crystalline ZnSe(S) yielded fairly uniform distribution of dopant and large coefficients of absorption (5-50 cm−1) while being highly cost effective and easy to reproduce. Using these polycrystalline Fe:ZnSe crystals, stable Q-switched output was achieved with a low threshold. The most optimal cavity configuration yielded 13 mJ/pulse single mode Q-switched output and 85 mJ in a multi-pulse regime.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is the absorption cross section of Fe2+ ions in ZnSe crystal.



FIG. 2 is the absorption spectra of Fe2+:ZnSe and Fe2+:ZnS samples.



FIGS. 3a, b, & c are the temporal profiles of single pulse (3a) output and multi-pulse outputs (3b,c) from the passively Q-switched Er:Cr:YSGG laser system utilizing a Fe2+:ZnSe saturable absorber.



FIG. 4 shows Fe2+:ZnSe transmission versus incident 2.8 μm photon flux, with the solid line theoretical fit of experimental results with Frantz-Nodvick equation for σ=0.6×10−18 cm2.



FIG. 5 is a schematic layout of a linear cavity design for Er laser Q-switch utilization of the Fe2+:ZnSe saturable absorber.



FIG. 6 is a schematic layout of a folded cavity design for Er laser Q-switch utilization of the Fe2+:ZnSe saturable absorber.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

In our experiments, the undoped polycrystalline and single crystalline samples of ZnSe were grown by chemical vapor deposition. Doping of the 1-3 mm thick ZnSe polycrystalline and single crystalline wafers was performed by after growth thermal diffusion of Fe from the metal or gas phase in quartz evacuated ampoules. Alternatively, Fe doped thin films of the ZnS and ZnSe the crystals were grown by pulsed laser deposition on ZnS/Se substrates. In addition, Fe:ZnS and ZnSe were fabricated by hot pressing of ZnS and ZnSe powders containing iron. Demirbis et al estimated the diffusion coefficient for iron and chromium ions to be 7.95×10−10 cm2/s and 5.45×10−10 cm2/s, respectively at 1000° C. In our preparation, the sealed ampoules were placed in a furnace and annealed at 820-1120° C. for 5-14 days. Once removed from the furnace and cooled, doped crystals were extracted from the ampoules and polished. This method of production of transition metal doped crystals is covered in U.S. Pat. No. 6,960,486 commonly owned by the assignee of this application and which is incorporated by reference herein for all purposes.


The Q-switched regime of operation for a Er:Cr:YSGG laser system has two distinctive qualities: large amplitude pulses and temporally short pulses with respect to free running oscillation. Both of these qualities are needed for medical applications as well as to ensure efficient Q-switched operation of Fe2+:ZnSe lasers at room temperature. The absorption spectra of Fe2+:ZnSe and Fe2+:ZnS 5E→5T2 transitions are depicted in FIG. 2. These transitions feature a broad absorption centered at ˜3 μm with FWHM of approximately 1400 nm. Further, the absence of exited state absorption makes polycrystalline Fe2+:ZnSe a very good candidate for a passive Q-switch for an Er laser.


In our experiments a flashlamp pumped Er:Cr:YSGG laser was used as a test bed for passive Q-switching. Many cavity designs were tested, however in all cavity designs the laser head includes a 73 mm long Er:Cr:YSGG crystal with a 3 mm diameter in a gold elliptical pumping chamber pumped with a xenon flashlamp. FIG. 5 schematically illustrates a linear design with a 100% reflective mirror, HR, and an OC with reflectivity of 83% or 40%. The HR was placed approximately 70 mm from the end of the Er:Cr:YSGG laser crystal and the OC was placed approximately 50 mm from the laser crystal. The Fe2+:ZnSe was sample placed between 17-65 mm from the high reflector in the cavity. The laser was pulsed at 10 Hertz. Input power was determined by directly measuring the voltage across the capacitor driving the flashlamp. The output was measured with a Molectron EPM 1000 power meter or a JR-09 joule meter. For this cavity, at maximum pump energy of 31 J, an output energy of 0.5 J was achieved in a free-running mode.


Using a 4×8×1 mm 90% initial transmission at 2.8 μm, Fe:ZnSe placed at the Brewster angle Q-switched operation was achieved. We obtained single giant pulse lasing with a pulse duration of approximately 65 to 100 ns FWHM measured with a pyroelectric detector with a rise time of approximately 15 ns (See FIG. 3a). A maximum output energy of 5 mJ for 80% OC and approximately 7 J pump energy was achieved. The ratio of energy of single giant pulse to the respective free-running energy approached 20% and could be further increased with improvements of Fe:ZnSe quality.


A multi-pulse regime was also obtained using either the 83% or the 40% OC, yielding multiple pulses depending on pump power although better performance was obtained using the 40% OC. The threshold for lasing with this OC was approximately 9 J. The five pulse regime shown in FIG. 3b represents a nearly ideal train of pulses with little energy difference from pulse to pulse. The pump energy for five pulses was 14J. Multi-pulse output with a maximum of 19 pulses was obtained with 85 mJ total output energy at pump energy of 30 J with a 40% OC as shown in FIG. 3c. Utilization of a 50% initial transmission Fe:ZnSe sample, yielded 9 mJ output energy using a 40% OC and 42 J pump energy.


Altering the cavity to a folded cavity scheme using three mirrors and two output beams allows the effective reflectance of the OC to be tuned with angle (see FIG. 6). Also this design reduced the photon flux upon the Fe2+:ZnSe sample allowing a sample with a high initial transmission to be more effectively used as a passive Q-switch with little difficulty. The HR was located approximately 115 mm from the laser crystal. The cavity was folded at approximately 45 degrees using a 40% reflecting OC as the folding mirror at approximately 180 mm from the front of the laser crystal. A 82% reflecting mirror was used as the second HR. The Fe2+:ZnSe sample was placed on this side as a passive Q-switch. The pulse repetition rate was reduced to 4 Hz to deal with thermal lensing problems. Using this setup enabled maximum Q-switched single pulse energy of 13 mJ with 65 ns FWHM using 30 J of pump energy. Similar results on Cr:Er:YSGG cavity Q-switching were obtained with the use of single thermally diffused Fe:ZnSe crystals as well as with hot-pressed ceramic Fe:ZnSe and thin films of Fe:ZnSe grown by pulsed laser deposition. Thus we propose these Fe2+:ZnSe materials for use as a passive Q-switch, particularly for Er lasers.


Further, Fe2+:ZnS, having similar spectroscopic properties to Fe2+:ZnSe, is known to have the larger bandgap (3.84 vs. 2.83 eV), better mechanical and optical damage characteristics, better overlap of absorption band with the Cr:Er:YSGG lasing wavelength, higher cross-section of absorption at 2.8 μm, as well as lower thermal lasing dn/dT (+46×10−6 vs. +70×10−6/° C.). Therefore, the intracavity energy and power handling capability of this material should lie higher; making Fe2+:ZnS very attractive for high energy, high power applications. Parallel experiments to those with Fe:ZnSe have been performed using Fe:ZnS, fabricated similarly to Fe:ZnSe by after growth thermo-diffusion. A ˜5×8×1 mm sample of Fe2+:ZnS with an absorption coefficient of 6 cm−1 and an initial transmission of 75% at 2.8 μm was utilized as a passive Q-switch. Using a linear cavity design placing the Fe2+:ZnS sample at the Brewster angle between the HR and Er:Cr:YSGG crystal, with an 80% reflectance OC, Q-switching experiments were performed. Approximately 5 mJ per pulse was obtained. Similar results on Cr:Er:YSGG cavity Q-switching were obtained with the use of single thermally diffused Fe:ZnS crystals as well as with hot-pressed ceramic Fe:ZnS and thin films of Fe:ZnS grown by pulsed laser deposition. Thus we propose these Fe2+:ZnS materials for use as a passive Q-switch, particularly for Er lasers.


The Q-switched output of the Er:Cr:YSGG laser was used for saturation studies of Fe:ZnSe. The saturation curve of Fe:ZnSe was measured (FIG. 4). It's fitting with the Frantz-Nodvick equation results in, absorption cross section of 0.6×10−18 cm2, which is of the same order of magnitude as the absorption cross-section obtained from spectroscopic measurements (1.0×10−18 cm2. Hence, the described Fe-doped ZnSe and ZnS crystals are very promising as passive Q-switches for mid-IR Er lasers operating over the 2.5-4.0 μm spectral range.


Although the invention has been described in various embodiments it is not so limited but rather enjoys the full scope of any claims granted hereon.

Claims
  • 1. A method for producing laser pulses at a laser wavelength around 3 μm based on passive Q switching at room temperature, the method comprising: providing a laser cavity in an Erbium or transition metal doped laser to include a doped laser gain material to produce laser light at a laser wavelength around 3 μm under optical pumping; andusing a saturable absorber inside the laser cavity to effectuate passive Q-switching in the laser light that generates laser pulses at the laser wavelength around 3 μm, where the saturable absorber is a single crystalline or polycrystalline material of Fe2+:ZnSe or Fe2+:ZnS structured to exhibit a saturable absorption at the laser wavelength around 3 μm that effectuates the passive Q-switching at room temperature.
  • 2. The method of claim 1, wherein the laser wavelength is in the range 2.5 μm to 3.4 μm.
  • 3. The method of claim 1, wherein the laser wavelength is in the range 2.5 μm to 4 μm.
  • 4. The method of claim 1, wherein: the single crystalline or polycrystalline material of Fe2+:ZnSe or Fe2+:ZnS is structured to exhibit an absorption cross section of about 10−18 cm2 for saturable absorption at the laser wavelength around 3 μm and at the room temperature.
  • 5. The method of claim 1, wherein the saturable absorber is formed by: forming a polycrystalline or single crystalline structure of a thickness sufficient for use as a microchip saturable absorber, where the polycrystalline or single crystalline structure is selected from the group consisting of ZnS and ZnSe;depositing a thin film layer of Fe on opposing faces of the polycrystalline or single crystalline structure by a method selected from the group consisting of pulsed laser deposition, cathode arc deposition, thermal evaporation, and plasma sputtering; andannealing the polycrystalline or single crystalline structure sealed in vacuumed ampoules in an oven for a period and at a temperature sufficient to allow crystal doping by Fe diffusion and replacement in selected regions of the polycrystalline or single crystalline structure.
  • 6. The method of claim 1, wherein the saturable absorber is formed by: forming a polycrystalline or single crystalline structure of a thickness sufficient for use as a microchip saturable absorber, where the polycrystalline or single crystalline structure is selected from the group consisting of ZnS and ZnSe; andannealing the polycrystalline or single crystalline structure sealed in vacuumed ampoules together with iron containing chemical in an oven for a period and at a temperature sufficient to allow crystal doping by Fe diffusion and replacement in selected regions of the polycrystalline or single crystalline structure.
  • 7. The method of claim 1, wherein the saturable absorber is formed by a thin film of Fe doped ZnS or ZnSe grown by pulsed laser deposition, plasma sputtering, or thermal evaporation on a transparent at lasing wavelength substrate made from similar or dissimilar material.
  • 8. The method of claim 1, wherein said saturable absorber is fabricated by hot pressing of ZnS or ZnSe powders containing iron.
  • 9. The method of claim 1, wherein the laser pulses comprise single-mode Q-switch pulses, each pulse having a maximum output power of 13 mJ.
  • 10. The method of claim 1, wherein the pulses comprise a full width half maximum (FWHM) value in the range 65 to 100 nanoseconds.
  • 11. The method of claim 1, wherein the laser pulses comprise 85 mJ output pulses in a multi-pulse regime.
  • 12. The method of claim 11, wherein the multi-pulse regime includes between 5 and 19 pulses.
  • 13. A method for forming a saturable absorber of a 2.5 μm to 4 μm Erbium laser including a Q-switch comprising the saturable absorber selected from the group consisting of Fe doped ZnS or ZnSe that provides saturable optical behavior at a laser wavelength between the 2.5 μm and 4 μm range of the Erbium laser, the method comprising: forming a polycrystalline or single crystalline structure of a thickness sufficient for use as a microchip saturable absorber, where the polycrystalline or single crystalline structure is selected from the group consisting of ZnS and ZnSe;depositing a thin film layer of Fe on opposing faces of the polycrystalline or single crystalline structure by a method selected from the group consisting of pulsed laser deposition, cathode arc deposition, thermal evaporation, and plasma sputtering; andannealing the polycrystalline or single crystalline structure sealed in vacuumed ampoules in an oven for a period and at a temperature sufficient to allow crystal doping by Fe diffusion and replacement in selected regions of the polycrystalline or single crystalline structure.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent document is a divisional of and claims priority to U.S. patent application Ser. No. 11/925,148, filed on Oct. 26, 2007, which claims the benefit of priority of U.S. Provisional Patent Application No. 60/863,268, filed on Oct. 27, 2006, and which is a continuation-in-part of U.S. patent application Ser. No. 11/140,271, filed on May 27, 2005, now U.S. Pat. No. 7,548,571, which is a divisional of U.S. patent application Ser. No. 10/247,272, filed on Sep. 19, 2002, now U.S. Pat. No. 6,960,486, which claims the benefit of priority of U.S. Provisional Patent Application No. 60/323,551, filed on Sep. 20, 2001. The entire contents of the before-mentioned patent applications are incorporated by reference as part of the disclosure of this document.

US Referenced Citations (29)
Number Name Date Kind
4158207 Bishop et al. Jun 1979 A
4782494 Pollack et al. Nov 1988 A
4847138 Boylan et al. Jul 1989 A
4944900 Willingham et al. Jul 1990 A
5070507 Anthon Dec 1991 A
5084880 Esterowitz et al. Jan 1992 A
5488626 Heller et al. Jan 1996 A
5541948 Krupke et al. Jul 1996 A
5746942 Bowman et al. May 1998 A
5786094 Kiuchi et al. Jul 1998 A
5802083 Birnbaum Sep 1998 A
5832008 Birnbaum et al. Nov 1998 A
5833818 Townsend et al. Nov 1998 A
6090102 Telfair et al. Jul 2000 A
6297179 Beall et al. Oct 2001 B1
6449294 Boutoussov Sep 2002 B1
6490399 Heitmann et al. Dec 2002 B1
6839362 Kokta et al. Jan 2005 B2
6960486 Mirov et al. Nov 2005 B2
7203209 Young et al. Apr 2007 B2
7288086 Andriasyan Oct 2007 B1
7548571 Mirov et al. Jun 2009 B2
7606274 Mirov et al. Oct 2009 B2
8532151 Li et al. Sep 2013 B2
8817830 Mirov et al. Aug 2014 B2
20040089220 Kokta May 2004 A1
20040112278 Yoshida et al. Jun 2004 A1
20060159132 Young et al. Jul 2006 A1
20080101423 Mirov et al. May 2008 A1
Foreign Referenced Citations (3)
Number Date Country
0 855 770 Oct 2000 EP
WO 2004049522 Jun 2004 WO
WO 2008052161 Aug 2008 WO
Non-Patent Literature Citations (5)
Entry
Podlipensky et al., “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-micron Er:glass lasers”; Optics Letters, vol. 24, No. 14, Jul. 15, 1999, pp. 960-962.
Mirov et al., “Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS adn CR2+:ZnSe lasers”, Optics Letters, vol. 27, No. 11, Jun. 1, 2002, pp. 909-911.
DeLoach et al., “Transition Metal-Doped Zinc Chalcogenides: Spectroscopy and Laser Demonstration of a New Class of Gain Media”, IEEE Journal of Quantum Electronics, vol. 32, No. 6, Jun. 1996, pp. 885-895.
Kisel et al., “Saturable Absorbers for Passive Q-Switching of Erbium ILasers Emitting in the Region of 3 Microns”, Journal of Applied Spectroscopy, vol. 72, No. 6, 2005, pp. 818-823.
PCT International Search Report for PCT/US2007/082662, Jun. 5, 2008, 2 pages.
Related Publications (1)
Number Date Country
20140362879 A1 Dec 2014 US
Provisional Applications (2)
Number Date Country
60323551 Sep 2001 US
60863268 Oct 2006 US
Divisions (2)
Number Date Country
Parent 11925148 Oct 2007 US
Child 14469547 US
Parent 10247272 Sep 2002 US
Child 11140271 US
Continuation in Parts (1)
Number Date Country
Parent 11140271 May 2005 US
Child 11925148 US