The present invention relates generally to video processing, and more particularly, to a method of saturation correction that corrects for negative values that occur in color output signals.
In color television systems such as the National Television System Committee (NTSC) and Phase Alternation Line (PAL), the YUV domain is utilized for video transmission. This means that video information is transmitted by a luminance signal and a chrominance signal. The luminance signal provides brightness information while the chrominance signal provides color information. The luminance signal is derived from gamma-corrected red, green and blue signals as follows:
Y=0.299R′+0.587R′+0.114B′ (1)
The chrominance signal is made up of color difference signals that are combined with the luminance signal to produce red, green and blue color signals that are used to produce a color picture. These color difference signals specify the differences between the luminance signal and the gamma-corrected red, green and blue color signals as follows:
U=0.492(B′−Y)
V=0.877(R′−Y) (2)
Saturation control in color television is based on the amplification of the color difference signals relative to the luminance signal. Saturation control performed in the YUV domain sometimes causes colors to be amplified that cannot be reproduced correctly. In one case, this is caused by one of the RGB color output signals being clipped to a maximum level. However, this is a problem usually for very bright colors.
More common is that an output RGB color signal may have a negative value. In saturation control, only the color difference signals U,V are amplified and not the luminance signal Y. Thus, in converting from the YUV to RGB domain, one of the output RGB color signals may have a negative value. This may happen even at moderate luminance levels. Since a negative value cannot be displayed, this value will be clipped by the display. This clipping visually causes a wrong hue or a dull color. In a color picture display, this may not be a problem for all colors. However, dullness is especially apparent for yellow.
In view of the above, the present invention is directed to a method of saturation correction. The method includes converting a luminance signal and at least one color difference signal into a color signal. Detecting if the color signal has a negative value. Inverting the color signal to produce a correction value. Further, adding the correction value to the luminance signal.
In some examples, the conversion step includes converting a luminance signal and two color difference signals into RGB color signals. Further, either taking the minimum of the RGB color signals or just selecting a B color signal.
In other examples, the conversion step includes scaling the at least one color difference signal to produce a scaled color difference signal. Further, adding a negative of both the scaled color difference signal and the luminance signal.
Referring now to the drawings were like reference numbers represent corresponding parts throughout:
As previously described, saturation control performed in the YUV domain may cause a RGB color output signal to have a negative value. Since a negative value cannot be displayed, this can cause colors to be appear visually dull in the displayed picture. Such dullness is especially apparent for yellow. In order to correct for this dullness, the present invention utilizes saturation correction that detects these negative values and then adds a positive of these detected values to the luminance signal.
One example of the saturation correction according to the present invention is shown in
R=Y+1.140V
G=Y−0.394U−0.581V
B=Y+2.032U (3)
In step 4, the minimum of the RGB color signals is taken. Thus, the RGB color signal with the lowest value will be selected. If one of the RGB color signals happens to be negative, then that particular value is selected.
In step 6, it is detected whether the RGB color signal provided by step 4 has a negative value. In this example, this is accomplished by clipping the output signal if the input value is greater than zero (0). For example, if the input value is twenty (20), then the output value is zero (0). If the input value is negative twenty (−20), then the output value is negative twenty (−20). In this way, only RGB color signals with a negative value are passed along for further processing.
In step 8, the RGB color signals provided by step 6 are inverted. Thus, the RGB color signals detected to have a negative value will be converted into a positive value.
As can be seen from
In step 12, the RGB color values provided from either step 8 or 10 are added to the luminance signal Yn to produce an output luminance signal Yout. For example, if a blue color signal is detected as having a negative value, its positive value will be added to the luminance signal Yn to produce an output luminance signal Yout. Thus, the blue color signal produced by converting the output signals Yout, Uout, Vout into RGB Color signals will not be negative. Therefore, clipping in the displayed picture will be prevented for colors that are produced by the blue color signal such as yellow.
Another example of the saturation correction according to the present invention is shown in
During operation, the example of
Another example of the saturation correction according to the present invention is shown in
In step 14, one of the difference signals Uin is scaled to be in the form of B′−Y. For example, if Uin is the same as in Equation 2, Uin would be divided by a factor of “0.492”. In step 16, the negative of both the luminance signal Yin and the output of the scaling 14 is added. This produces a negative of the B color signals. As described above, steps 14,16 convert the luminance signal Yin and one of the difference signals Uin into B color signals. Further, as a result of step 16, the B color signal is also inverted. This futher simplifies this example by not requiring another inverting step as in the previous examples.
In step 18, it is detected weather the B color signals originally had a negative value. In this example, this is accomplished by clipping the output signal if the input value is less than or equal to zero (0). For example, if a B color signal originally had a value of twenty (20), then the output of the adding 16 would be a negative twenty (−20) and the output of step 18 would be zero (0). If a B color signal originally had a value of negative twenty (−20), then the output of the adding 16 would be twenty (20) and the output of step 18 would be zero (20). In this way, only the B color signals that originally had a negative value are passed along for further processing.
As can be seen, the rest of
Similarly, the example of
Another example of the saturation correction according to the present invention is shown in
One example of non-linear curve that any be used in the non-linear adjustment step is shown in
One example of a device according to the present invention is shown in
The input/output devices 20, processor 14 and memory 16 communicate over the bus 18. Input signals Yin,Uin,Vin are processed in accordance with one or more software programs stored in memory 16 and executed by processor 14 in order to generate output color signals Ro′ Go′ Bo′. These output color signals Ro′ Go′ Bo′ can either be stored in the memory 16 or sent to the display 22 to produce a color picture.
In particular, the software programs stored in the memory 14 may include one or more of the saturation correction methods of
While the present invention has been described above in terms of specific examples, it is to be understood that the invention is not intended to be confined or limited to the examples disclosed herein. Therefore, the present invention is intended to cover various structures and modifications thereof included within the spirit and scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/51797 | 9/20/2004 | WO | 3/20/2006 |
Number | Date | Country | |
---|---|---|---|
60504996 | Sep 2003 | US |