The present invention relates to a wind turbine, and, in particular, a self-starting Savonius wind turbine incorporating structures to assist in handling high winds and structural stress.
Windmills that harness wind energy using a plurality of exposed blades have been used both privately and commercially for some time. Such windmills often have a very high initial cost due to the cost of materials used, the cost required to transport the windmill, and time required to install components of the windmill. For example, windmills typically can be very heavy having a steel tower weighing over 2,500 pounds. Such large and heavy structures can be difficult to transport to an installation site. These large, heavy structures often require complex installation and require regular maintenance to ensure they operate at optimum performance. Additionally, once the windmill is erected, it is not intended to be moved to another location. Furthermore, traditional windmills are usually ineffective in variable wind conditions, such as wind coming from more than one direction during operation.
According to one example of the present disclosure, a rotor assembly for a wind turbine is provided. The rotor assembly is configured to rotate about a longitudinal axis. The rotor assembly comprises at least one rotor section, the at least one rotor section comprising: at least two curved turbine blades extending parallel to the longitudinal axis; and at least two support discs connected to the at least two curved turbine blades. At least one of the at least two support discs has at least one relief vent defined therein for allowing air to pass through the at least one support disc.
According to another example of the present disclosure, a wind turbine is provided. The wind turbine comprises two rotor assemblies configured to rotate about a longitudinal axis, each rotor assembly comprising at least one rotor section that comprises at least two curved turbine blades extending parallel to the longitudinal axis. The curved turbine blades of the two rotor assemblies are oriented with respect to the longitudinal axis so that the two rotor assemblies are driven to rotate about the longitudinal axis in opposing rotational directions by wind.
According to another example of the present disclosure, a wind turbine is provided. The wind turbine comprises a frame structure; at least one rotor assembly provided on the frame structure and configured to rotate about a longitudinal axis, the at least one rotor assembly comprising at least one rotor section that comprises at least two curved turbine blades extending parallel to the longitudinal axis; and a torsion rod extending through the at least one rotor assembly along the longitudinal axis, the torsion rod being connected to the at least one rotor assembly so that rotation of the at least one rotor assembly causes rotation of the torsion rod. The torsion rod is configured to be connected to a transmission disposed on the frame structure. The torsion rod is also configured to twist to absorb lateral stresses on the at least one rotor assembly. The at least one rotor assembly is mounted on a support post and a bearing on the frame structure independent of the torsion rod.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures, and the combination of parts and economies of manufacture will become more apparent upon consideration of the following description and with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
For purposes of the description hereinafter, the terms “end”, “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments or aspects of the disclosure. Hence, specific dimensions and other physical characteristics related to the examples disclosed herein are not to be considered as limiting.
With reference to
As shown, the lower rotor assembly includes a first rotor section 10 and a second rotor section 20. The upper rotor assembly includes a third rotor section 30 and a fourth rotor section 40. Each of the rotor sections 10, 20, 30, 40 are of similar construction and length. The rotor assemblies shown in
As shown in
The support discs 13, 14, 15 provide structural support to the first rotor section 10. The middle and upper support discs 14, 15 incorporate strategically sized and placed relief vents 17 or passageways therein to allow air at high pressures to escape from between the rotor blades 11, 12 during high winds. The rotor assemblies function by directing incoming air into offset convex rotor blades 11, 12, 21, 22, 31, 32, 41, 42 causing rotation of the rotor sections 10, 20, 30, 40 around the longitudinal axis Y. Non-laminar wind flow, turbulence, high winds, and particularly, wind gusts transfer a significant amount of lateral load on the rotor sections 10, 20, 30, 40 beyond normal operations. As wind load on the blades 11, 12, 21, 22, 31, 32, 41, 42 exceeds the limitations of the blade material, the connections between the blades 11, 12, 21, 22, 31, 32, 41, 42 and other elements of the rotor sections 10, 20, 30, 40 will undergo structural failure, causing failure of the entire rotor assembly.
Remedying this problem with heavier material or more structural supports adds weight, cost, and complexity to a rotor that should be as lightweight, balanced, and inexpensive as possible to be feasible for economical operations. Completely open rotors without upper and lower supports, such as the support discs 13, 14, 15, is not a practical solution because the discs 13, 14, 15 serve important functions, including functioning as flywheels. Angular momentum of the discs 13, 14, 15 stores a great deal of kinetic energy and helps smooth rotation and the resulting flow of energy to the transmission.
The relief vents 17 or passageways in the support discs 14, 15 are strategically placed in the support disc structures to reduce high pressure within the rotor section 10 caused by high wind gusts (i.e., a wind gust having an increase in wind velocity of 20 mph or greater over the steady wind velocity in a short duration of several seconds). These vents 17 are designed to exhaust only excess wind energy entering the rotor section 10 that threatens to exceed the structural loads able to be withstood by the rotor assembly, thereby compromising the structural integrity of the rotor section 10, while allowing rotation (tip speed ratio) of the rotor assembly to normalize to limit torque within an operating range of the rotor assembly. The relief vents 17 are configured to have zero to minimal impact on the transmission of wind energy to the blades 11, 12 under normal wind conditions. As will be discussed, similar relief vents are also provided in the support discs of the second, third, and fourth rotor sections 20, 30, 40.
With reference to
As discussed above with respect to the first rotor section 10, the support discs 23, 25, 26 of the second rotor section 20 each have a plurality of relief vents 28 or passageways defined therein that are strategically sized and located to allow high pressure air to be vented from the second rotor section 20 and reduce stress on the second rotor section 20 due to high winds and turbulence. As shown in
With reference to
As discussed above with respect to the first rotor section 10, the middle and upper support discs 34, 35 of the third rotor section 30 each have a plurality of relief vents 37 or passageways defined therein that are strategically sized and located to allow high pressure air to be vented from the third rotor section 30 and reduce stress on the third rotor section 30 due to high winds and turbulence.
With reference to
As discussed above with respect to the first rotor section 10, the support discs 43, 45, 46 of the fourth rotor section 40 each have a plurality of relief vents 48 or passageways defined therein that are strategically sized and located to allow high pressure air to be vented from the fourth rotor section 40 and reduce stress on the fourth rotor section 40 due to high winds and turbulence. As shown in
With reference to
According to the Kutta-Joukoski Lift Theorem for a Cylinder, lift will be created perpendicular to the wind load direction. Under certain conditions of variable wind load and under rotation, large Savonius rotors will experience this lift as an additional lateral load (perpendicular to the wind) to the structure of the wind turbine.
As shown in
As such, according to the example of the rotor assemblies shown in
With reference to
As shown in
As shown in
With reference to
With reference to
With reference to
With reference to
With reference to
Wind is variable and creates constantly changing lateral and vertical stresses on the rotor assembly. Lateral stress on the rotor assembly, which tends to act about the longitudinal axis Y of the rotor assembly, is transferred to the torsion rod 106 through the connections between the torsion rod 106 and the rotor assembly. The torsion rod 106 is structured to absorb and transfer lateral stresses from the rotor assembly by twisting and then quickly returning to its original shape. In particular, the torsion rod 106 is made from a suitably elastic material having a torsion coefficient (κ) that is sufficiently large such that the lateral stresses on the rotor assembly generate stresses on the torsion rod 106 in the elastic range and do not cause permanent deformation or strain of the torsion rod 106. Accordingly, in addition to acting as a drive shaft transferring wind energy from the rotor assembly to the transmission, the torsion rod 106 acts as a torsion spring to absorb lateral stress on the rotor assembly in order to prevent or limit damage and/or failure of the rotor assembly due to the sudden or constant application of lateral stress on the rotor assembly caused by wind variations. Also, the transmission is configured to introduce an opposing torque on the torsion rod 106 to provide for electrical braking of the rotor assembly during high winds and/or abrupt changes in wind speed and direction. According to one example of the present disclosure, the torsion rod 106 is constructed with a torsion coefficient (κ) that is selected such that the torsion rod 106 undergoes elastic deformation in torsion for all operating speeds of the rotor assembly.
Vertical stresses on the rotor assembly are transferred to the frame 100 via the engagement between the bottom hub 105 beneath the rotor assembly and the support post 102 and bearing 103, as discussed above. As such, the primary vertical load of the rotor assembly is transferred to the frame 100 independent of the torsion rod 106. Accordingly, the torsion rod 106 can be provided with a minimal diameter, which minimizes interference with the wind flowing between the leaving and returning rotor blades of the rotor assembly. In turbine designs where the vertical load of the rotor assembly is carried by the central drive shaft, the drive shaft must be made larger, causing greater interference to airflow through the rotor blades.
With reference to
As shown in
Savonius wind turbines are generally constructed such that the inner edges of the blades lie along the bisect. In such a configuration, the inner edges of the blades in combination with a vertical rotation shaft of the rotor interfere with the movement of air through the rotor blades by creating a turbulent jet of air extending from the inner edge of the rotor blade on the downwind side of the rotor, which disrupts the flow of air across the surface of the blade thereby reducing the transmission of torque from wind energy to the rotor.
The rotor section 200 according to the example of
Additionally, the curved turbine blades 202, 203 according to the example of
Further, according to one example of the disclosure, the curved turbine blades 202, 203 are sized and arranged to have certain ratios between the diameter D, the blade length A, the overlap length B, and the gap length C to maximize the transfer of torque from wind energy to the torsion rod 106 and the transmission. According to one example, the blade length A is approximately 0.5 D-0.8 D, more particularly approximately 0.6 D, the overlap length B is approximately 0.2 D-0.5 D, more particularly 0.3 D, or 0.3 A-0.7 A, more particularly 0.5 A, and the gap length C is approximately 0.1 D-0.3 D, more particularly 0.1 D, or 0.2 A-0.3 A, more particularly 0.2 A. It is to be appreciated that the ratios provided above are merely exemplary and may be adjusted to any value found to be suitable by those having ordinary skill in the art.
Further examples of the present disclosure will now be described in the following number clauses.
Clause 1: A rotor assembly for a wind turbine, the rotor assembly being configured to rotate about a longitudinal axis (Y), the rotor assembly comprising: at least one rotor section (10), the at least one rotor section comprising: at least two curved turbine blades (11, 12) extending parallel to the longitudinal axis (Y); and at least two support discs (13, 15) connected to the at least two curved turbine blades, wherein at least one of the at least two support discs (13, 15) has at least one relief vent (17) defined therein for allowing air to pass through the at least one support disc (13, 15).
Clause 2: The rotor assembly according to clause 1, wherein the at least two support discs of the at least one rotor section (10) comprise a lower support disc (13), a middle support disc (14), and an upper support disc (15), and wherein at least the middle support disc (14) and the upper support disc (15) each comprise a plurality of relief vents (17).
Clause 3: The rotor assembly according to clause 1 or clause 2, wherein the at least one rotor section comprises a first rotor section (10) and a second rotor section (20) disposed above the first rotor section (10), the at least two curved turbine blades (21, 22) of the second rotor section (20) being angularly offset with respect to the at least two curved turbine blades (11, 12) of the first rotor section (10).
Clause 4: The rotor assembly according to clause 3, wherein the at least two support discs of the first rotor section (10) comprise a lower support disc (13), a middle support disc (14), and an upper support disc (15), wherein each of the middle support disc (14) and the upper support disc (15) of the first rotor section (10) comprises a plurality of relief vents (17), wherein the at least two support discs of the second rotor section (20) comprise a lower support disc (23), a middle support disc (25), and an upper support disc (26), and wherein each of the lower support disc (23), the middle support disc (25), and the upper support disc (26) of the second rotor section (20) comprises a plurality of relief vents (28).
Clause 5: The rotor assembly according to clause 4, wherein the plurality of relief vents (28) in the lower support disc (23) of the second rotor section (20) align with the plurality of relief vents (17) in the upper support disc (15) of the first rotor section (10).
Clause 6: The rotor assembly according to clause 4 or clause 5, wherein the first rotor section (10) further comprises a reinforcement plate (16) on the upper support disc (15) and the second rotor section (20) further comprises a reinforcement plate (24) on the lower support disc (23), and wherein the first rotor section (10) and the second rotor section (20) are connected via the reinforcement plates (16, 24).
Clause 7: A wind turbine, comprising: two rotor assemblies configured to rotate about a longitudinal axis (Y), each rotor assembly comprising at least one rotor section (10, 30) that comprises at least two curved turbine blades (11, 12, 31, 32) extending parallel to the longitudinal axis (Y), wherein the curved turbine blades (11, 12, 31, 32) of the two rotor assemblies are oriented with respect to the longitudinal axis (Y) so that the two rotor assemblies are driven to rotate about the longitudinal axis (Y) in opposing rotational directions by wind.
Clause 8: The wind turbine according to clause 7, wherein each rotor section (10, 30) further comprises at least two support discs (13, 15, 33, 35) connected to the respective at least two curved turbine blades (11, 12, 31, 32), and wherein in each rotor section (10, 30) at least one of the at least two support discs (13, 15, 33, 35) has at least one relief vent (17, 37) defined therein for allowing air to pass through the at least one support disc (13, 15, 33, 35).
Clause 9: The wind turbine according to clause 8, wherein each of the two rotor assemblies comprises two rotor sections (10, 20, 30, 40), and wherein the two rotor sections (10, 20, 30, 40) of each rotor assembly are fastened so as to rotate together about the longitudinal axis (Y).
Clause 10: The wind turbine according to any one of clauses 7-9, further comprising a torsion rod (106) extending through at least one of the two rotor assemblies along the longitudinal axis (Y), the torsion rod (106) being connected to the at least one of the two rotor assemblies so that rotation of the rotor assembly causes rotation of the torsion rod (106), wherein the torsion rod (106) is configured to transfer rotation of the rotor assembly to a transmission, and wherein the torsion rod (106) is configured to twist to absorb lateral stresses on the rotor assembly.
Clause 11: The wind turbine according to any one of clauses 7-10, further comprising a frame structure (100) configured to support the two rotor assemblies, wherein at least one of the two rotor assemblies is rotatably mounted on a support post (102) and a bearing (103) on the frame structure (100).
Clause 12: The wind turbine according to clause 11, wherein the at least one of the two rotor assemblies further comprises a bottom hub (105) configured to engage the bearing (103) and support post (102), the bottom hub (105) comprising a recess configured to receive the bearing (103).
Clause 13: A wind turbine, comprising: a frame structure (100); at least one rotor assembly provided on the frame structure (100) and configured to rotate about a longitudinal axis (Y), the at least one rotor assembly comprising at least one rotor section (10) that comprises at least two curved turbine blades (11, 12) extending parallel to the longitudinal axis (Y); and a torsion rod (106) extending through the at least one rotor assembly along the longitudinal axis (Y), the torsion rod (106) being connected to the at least one rotor assembly so that rotation of the at least one rotor assembly causes rotation of the torsion rod (106), wherein the torsion rod (106) is configured to be connected to a transmission disposed on the frame structure (100), wherein the torsion rod (106) is also configured to twist to absorb lateral stresses on the at least one rotor assembly, and wherein the at least one rotor assembly is mounted on a support post (102) and a bearing (103) on the frame structure (100) independent of the torsion rod (106).
Clause 14: The wind turbine according to clause 13, wherein the at least one rotor section of the at least one rotor assembly comprises a first rotor section (10) and a second rotor section (20), wherein each of the first and second rotor sections (10, 20) further comprises a lower support disc (13, 23), a middle support disc (14, 25), and an upper support disc (15, 26) connected to the respective at least two curved turbine blades (11, 12, 21, 22), and wherein in each rotor section (10, 20) at least one of the support discs (13, 14, 15, 23, 25, 26) has at least one relief vent (17, 28) defined therein for allowing air to pass through the at least one support disc (13, 14, 15, 23, 25, 26).
Clause 15: The wind turbine according to clause 14, wherein the first rotor section (10) further comprises a reinforcement plate (16) on the upper support disc (15) and the second rotor section (20) further comprises a reinforcement plate (24) on the lower support disc (23), and wherein the first rotor section (10) and the second rotor section (20) are connected via the reinforcement plates (16, 24).
Clause 16: The wind turbine according to any one of clauses 13-15, wherein the at least one rotor assembly comprises two rotor assemblies, and wherein the curved turbine blades (11, 12, 31, 32) of the two rotor assemblies are oriented with respect to the longitudinal axis (Y) so that the two rotor assemblies are driven to rotate about the longitudinal axis (Y) in opposing rotational directions by wind.
Clause 17: The wind turbine according to clause 16, wherein the at least one rotor section of each of the two rotor assemblies comprises two rotor sections (10, 20, 30, 40), wherein each rotor section (10, 20, 30, 40) comprises a lower support disc (13, 23, 33, 43), a middle support disc (14, 25, 34, 45), and an upper support disc (15, 26, 35, 46), and wherein in each of the two rotor assemblies the curved turbine blades (11, 12, 21, 22, 31, 32, 41, 42) of the two rotor sections (10, 20, 30, 40) are angularly offset with respect to each other.
Clause 18: The wind turbine according to any one of clauses 13-17, wherein the at least one rotor assembly further comprises a bottom hub (105) configured to engage the bearing (103) and support post (102), the bottom hub (105) comprising a recess configured to receive the bearing (103).
Clause 19: The wind turbine according to clause 18, further comprising a transmission box (101) supported on the frame structure (100), the transmission box (101) being configured to house the transmission, wherein the torsion rod (106) extends from the at least one rotor assembly through the bottom hub (105), the bearing (103), the support post (102), and into the transmission box (101).
Clause 20: The wind turbine according to any one of clauses 13-19, wherein an upper end of the torsion rod (106) is connected to the frame structure (100) by at least one pillow bearing (110).
It is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the specification, are simply exemplary embodiments or aspects of the invention. Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments or aspects, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments or aspects, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope thereof. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment or aspect can be combined with one or more features of any other embodiment or aspect.
The present application claims priority from U.S. Provisional Patent Application No. 62/322,278, filed on Apr. 14, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1697574 | Savonius | Jan 1929 | A |
1764052 | Pfeifer | Jun 1930 | A |
1824336 | Francis | Sep 1931 | A |
2007963 | Cleveland | Jul 1935 | A |
2252523 | Plotkin | Aug 1941 | A |
2431111 | Du Brie | Nov 1947 | A |
2436747 | Du Brie | Feb 1948 | A |
4047833 | Decker | Sep 1977 | A |
4156580 | Pohl | May 1979 | A |
4239977 | Strutman | Dec 1980 | A |
4382191 | Potter | May 1983 | A |
4455491 | Lanzrath | Jun 1984 | A |
4830570 | Benesh | May 1989 | A |
4926061 | Arreola, Jr. | May 1990 | A |
5038049 | Kato | Aug 1991 | A |
5336933 | Emster | Aug 1994 | A |
5454694 | O'Dell | Oct 1995 | A |
6172429 | Russell | Jan 2001 | B1 |
6191496 | Elder | Feb 2001 | B1 |
6538340 | Elder | Mar 2003 | B2 |
6767025 | Hagen | Jul 2004 | B2 |
6910873 | Kaliski | Jun 2005 | B2 |
6966747 | Taylor et al. | Nov 2005 | B2 |
6984899 | Rice | Jan 2006 | B1 |
7242108 | Dablo | Jul 2007 | B1 |
7381030 | Vanderhye | Jun 2008 | B1 |
7762777 | Vanderhye et al. | Jul 2010 | B2 |
7896608 | Whitworth et al. | Mar 2011 | B2 |
8075196 | Burner et al. | Dec 2011 | B2 |
8174135 | Roe et al. | May 2012 | B1 |
8198747 | Kato | Jun 2012 | B2 |
8322992 | Fuller | Dec 2012 | B2 |
8358030 | Plaskove | Jan 2013 | B2 |
8672633 | Ball | Mar 2014 | B2 |
8786123 | Bannister | Jul 2014 | B2 |
9051918 | Hench et al. | Jun 2015 | B1 |
20070029807 | Kass | Feb 2007 | A1 |
20070251090 | Breugel et al. | Nov 2007 | A1 |
20090191057 | Knutson | Jul 2009 | A1 |
20100092296 | Ferenczy | Apr 2010 | A1 |
20100219643 | Biucchi et al. | Sep 2010 | A1 |
20100296913 | Lee | Nov 2010 | A1 |
20110037271 | Sheinman | Feb 2011 | A1 |
20110070068 | Cumings | Mar 2011 | A1 |
20110135907 | Shooshtari et al. | Jun 2011 | A1 |
20110250069 | Quintal | Oct 2011 | A1 |
20120119504 | Vigaev | May 2012 | A1 |
20120148403 | Flaherty et al. | Jun 2012 | A1 |
20120235418 | Plaskove | Sep 2012 | A1 |
20130287570 | Gdovic | Oct 2013 | A1 |
20140367972 | Rhee | Dec 2014 | A1 |
20150204313 | Bergua | Jul 2015 | A1 |
20160377062 | Vallejo | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
108561271 | Sep 2018 | CN |
102008044807 | Mar 2010 | DE |
102010045801 | Mar 2012 | DE |
102012017861 | Mar 2013 | DE |
2016017448 | Feb 2016 | JP |
101157389 | Jun 2012 | KR |
3103683 | Dec 1981 | WO |
2004063565 | Jul 2004 | WO |
2010003955 | Jan 2010 | WO |
WO-2010116983 | Oct 2010 | WO |
Entry |
---|
Fotiis, “Building a Savonius Wind Turbine—Animation” Jun. 23, 2012, accessed from https://www.youtube.com/watch?v= 5ZM7njSC8xE on Jul. 19, 2019. (Year: 2012). |
NTN, Ball and Roller Bearings file:///C:/Users/telliott/Documents/References%20-%20Other/BearingSelection.pdf (Year: 2015). |
Johnson, G. Wind Energy Systems Chapter 4: Wind Turbine Energy, and Torque, 2001, https://www.rpc.com.au/pdf/wind4.pdf (Year: 2001). |
International Searching Authority, United States Patent and Trademark Office; International Search Report and Written Opinion re Patent Cooperation Treaty Application No. PCT/2017/027341; dated Aug. 16, 2017; 15 pgs.; Alexandria, Virginia, U.S.A. |
Number | Date | Country | |
---|---|---|---|
20170298902 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62322278 | Apr 2016 | US |