(Not Applicable)
The present invention relates generally to aerial work platforms and, more particularly, to a wall saw accessory cooperable with an aerial work platform to facilitate a wall sawing operation.
It may be desirable in the building construction industry to cut openings in exterior walls and the like, including those made of concrete, stone, and other hard materials. Such cuts are best made using a saw mounted to a carriage for movement along a track attached to the wall. The carriage is typically guided along the track by a plurality of rollers or other guide elements bearing against contact surfaces on opposite sides of the track.
In order to mount the saw for a cutting operation, several operations are typically required in order to secure the track to the wall and mount the saw on the track. This operation is particularly troublesome when a cut is to be performed in an exterior wall at a significant height.
Additionally, in order to maintain the integrity of the saw blade during the saw operation, the wall saw typically requires a source of coolant such as water to be applied to the saw blade during use. Accessibility to the coolant source can be an obstacle to efficient operation.
Still further, the cutting operation can leave a residue on the cut surface, which ultimately requires cleaning via a pressure washer or the like. Particularly at height, a pressure washer may be burdensome to manipulate, and, like the coolant for the wall saw, the fluid source for the pressure washer can create additional problems.
In order to overcome these drawbacks of existing wall saw systems, the present invention provides a wall saw accessory for an aerial work platform that facilitates manipulation of the saw and track while streamlining the saw operation. Additionally, the wall saw accessory of the present invention enables a single operator to perform the wall sawing operation more efficiently than an entire crew using conventional arrangements.
In an exemplary embodiment of the invention, a wall saw accessory for an aerial work platform is cooperable with a wall saw is movably affixed on a track secured to a wall to be sawed. The wall saw accessory includes a saw/track manipulator fixable to the aerial work platform, where the saw/track manipulator movably supports the track and saw and enables positioning of the saw and track to and from a working position. Hydraulic power from the machine's hydraulic system may be coupled with a water supply to provide hydraulic power and coolant flow to the wall saw. Alternatively, a separate hydraulic power source may be mounted on the aerial work platform.
Preferably, the saw/track manipulator includes a bottom bracket securable to the aerial work platform and supporting a lateral rail; a sliding bracket movably mounted on the lateral rail; a telescope assembly secured to the sliding bracket, where the telescope assembly includes a hydraulically assisted lifting arm; and a rotatable track support assembly attached to the lifting arm of the telescope assembly via at least one structural link. The track support assembly includes holding brackets for holding the track during installation and removal.
The saw/track manipulator is preferably constructed to enable positioning of the saw and track with five degrees of freedom. Moreover, the hydraulic power source may be coupleable with the saw via a quick-connect coupler.
The wall saw accessory may additionally include a pressure washer system connected with the hydraulic power source. In this context, the pressure washer system may comprise a spray nozzle, a hose, and a pressure adjustment mechanism. Moreover, the hydraulic power source may further include a toggle switch for the wall saw and the pressure washer system such that only one is operable at a time.
In another exemplary embodiment of the invention, a lift vehicle includes an aerial work platform, and the wall saw accessory of the invention coupled to the aerial work platform. The vehicle may include a chassis, wherein the water supply is at least one water tank mounted to the chassis, and preferably two water tanks saddle mounted on the chassis.
In still another exemplary embodiment of the invention, a method of constructing a lift vehicle with wall saw accessory includes the steps of movably affixing a wall saw on a track; securing the wall saw accessory to an aerial work platform by fixing a saw/track manipulator to the aerial work platform, the saw/track manipulator movably supporting the track and saw and enabling positioning of the saw and track to and from a working position; and coupling a hydraulic power source with a water supply, the hydraulic power source providing hydraulic power and coolant flow to the wall saw.
Other exemplary embodiments of the invention include a coolant circuit integrated with the aerial work platform and a pressure washer system utilizing the coolant circuit.
These and other aspects and advantages of the present invention will be described in detail with reference to the accompanying drawings, in which:
An aerial work platform provides a convenient way for an operator to work at heights. Typically, a platform includes a floor upon which the operator can stand and a guard rail about its perimeter. Tools and other functional apparatus may be integrated with the guard rail or floor to facilitate use by the operator. The platform itself is raised and lowered by a suitable lifting apparatus, such as a boom lift or scissors lift or the like. Typically, a position of the vehicle as well as its platform can be controlled by the operator from the platform.
With continued reference to
The saw/track manipulator 20 is a multiple degree of freedom (preferably five-degree of freedom) mechanical device that aids in the positioning of both the saw and track section simultaneously. The manipulator includes a bottom bracket 24 (
With this assembly, the manipulator is constructed to enable positioning of the saw and track with preferably five degrees of freedom, including hydraulically assisted vertical movement (preferably, +/−four inches) with manual adjustment in and out, left and right, and lockable 360° rotation of the saw and track via the track support assembly 34. A fifth joint via the structural link 36 provides for angular and horizontal adjustment of the track to the wall. A simple tether-mounted pendant or other suitable structure controls the vertical cylinder motion. Once positioned, the track is secured to the wall in a conventional manner and disconnected from the manipulator 20 for the sawing process. The manipulator 20 may be provided with a stow cradle to prevent it from interfering with the sawing process.
The hydraulic power source 22 may itself form part of an accessory assembly providing multiple energy power sources for air or water powered tools. In one arrangement, the power sources may be powered either from an onboard engine driven generator or from an outside AC power outlet. With reference to
This power arrangement allows for the saw operator to be independent on the site by not tethering the mobile unit to fixed hydraulic and water supplies. The chance of hose damage due to construction site traffic is also significantly reduced or eliminated because all hoses from source to user are managed on the machine.
The onboard pressure washer 42 is a hydraulically driven unit that provides preferably 4 GPM at a user-selected operating pressure of between approximately 1000 psi and a maximum of 3500 psi. The pressure washer 42 is mounted on the platform where the operator can easily adjust the washing pressure on the fly. Activation of the pressure washer is achieved via a simple two-step process. Once the saw is turned off, the manual water diverter valve 47 is turned to the pressure washer selection, and the power switch for the pressure washer is turned on. See, for example, steps 1 and 3 in
In operation, the saw is first connected to generally the midpoint of the desired track length, the saw and track themselves may be of conventional construction. This subassembly is then secured to the manipulator 20 via the holding brackets 38 before ascending the platform 12 to the cut location. The operator then lays out the first cut and mounts and levels conventional track brackets to the wall. Position controls on the aerial work platform are then used to position the saw/track assembly in the necessary orientation adjacent the mounted brackets. Final adjustments are accomplished using the manipulator 20 via its five degrees of freedom to finally align the track with the track brackets secured to the wall. Locking bolts are then installed to secure the track to the bracket.
Subsequently, the operator disconnects the manipulator from the track, and the manipulator 20 is returned to its stowed position. The track/bracket connection bolts can then be fully secured for the sawing operation. Resultant binding, due to the weight transfer from the machine to the wall, may require slight vertical adjustments via the telescope assembly 30 to more easily accomplish the separation.
The operator then installs the appropriate blade and guard for the saw, makes the required power and water connections, and positions the platform at a safe working distance from the saw. With reference to
Upon completion of the first cut, the operator reverses the start-up procedure: the hydraulic power is switched off, the water pump is turned off, and the saw guard and blade are removed. The manipulator 20 is then reattached to the saw and track, and the track/bracket bolts are removed. The operator can then prepare for the next cut in the same manner as the first, moving the saw/track assembly to the next cut location. The wall and equipment can be power washed using the onboard power washer at any time the saw is not being operated.
With the hydraulic power source, the manipulator and the pressure washer of the wall saw accessory according to the invention, overall operating costs for sawing operations can be reduced. The system provides time savings, reduced or eliminated back charges, improved quality, reduced worker turnover, reduced maintenance costs, and the ability to almost double the output of a two-man sawing crew. The time savings begin with the reduced set up time at the start of the job and continue throughout the working day from the conveniences of the accessory functionality. Steady productivity throughout a work day results from the lessened operator strain while using the manipulator. Traditionally, the operator would have to handle the up to 10-foot section of track and the 100+ pound saw individually and for each cutting sequence. With the saw accessory including the saw/track manipulator, once the saw and track are installed at the beginning of a work day, the operator is not required to lift the saw again until the end of the day when it is stowed for transport.
The integrated pressure washer allows for the operator to maintain a clean working area and tools, also saving time by not forcing the crew to wait until the slurry has dried before attempting to remove it from the wall and at the same time eliminating possible back charges from doing so. Quality is improved in both the short and long terms from the use of the manipulator in the positioning of the cumbersome saw and track. Work days will not require as much effort, which will add up to equal more experienced saw operators. The per man productivity can also increase by essentially turning a two-man operation into one easily managed by a single person. Furthermore, maintenance costs will also be reduced by the ability to rent readily equipped machines from local rental facilities.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This is a continuation-in-part of U.S. patent application Ser. No. 10/145,808, filed May 16, 2002, now U.S. Pat. No. 6,823,964; which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/291,313, filed May 17, 2001; the entire contents of which are hereby incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
2691478 | Frankel | Oct 1954 | A |
2965094 | Carrier | Dec 1960 | A |
3722497 | Hiestand et al. | Mar 1973 | A |
3763845 | Hiestand et al. | Oct 1973 | A |
4181194 | Bassett et al. | Jan 1980 | A |
4407392 | Lazzari | Oct 1983 | A |
4560029 | Dalmaso | Dec 1985 | A |
4705140 | Dudley et al. | Nov 1987 | A |
4756298 | Spiegelberg | Jul 1988 | A |
4832412 | Bertrand | May 1989 | A |
4836494 | Johnsen | Jun 1989 | A |
4919283 | Riley et al. | Apr 1990 | A |
4936284 | Johnson | Jun 1990 | A |
4986252 | Holmes et al. | Jan 1991 | A |
4998775 | Hollifield | Mar 1991 | A |
5036949 | Crocker et al. | Aug 1991 | A |
5092426 | Rhodes | Mar 1992 | A |
5230270 | Bertrand | Jul 1993 | A |
5388661 | Hood, Jr. | Feb 1995 | A |
5588418 | Holmes et al. | Dec 1996 | A |
5645040 | Bieri jun. | Jul 1997 | A |
5887579 | Eriksson et al. | Mar 1999 | A |
6092623 | Collavino | Jul 2000 | A |
6158817 | Bertrand | Dec 2000 | A |
6170478 | Gorder | Jan 2001 | B1 |
6286905 | Kimura et al. | Sep 2001 | B1 |
6863062 | Denys | Mar 2005 | B1 |
20020195094 | Crawford | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
2 202 788 | Oct 1998 | GB |
2-160504 | Jun 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20040173404 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60291313 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10145808 | May 2002 | US |
Child | 10802917 | US |