Embodiments herein relate to the field of saw chain, and, more specifically, to a saw chain link with one or more oversized rivet holes.
Saw chains for chainsaws typically include a plurality of links, such as cutter links, drive links, and tie straps, coupled to one another by rivets. The rivets are disposed in rivet holes of one or more of the links.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings and the appended claims. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
Embodiments herein provide an apparatus, system, and method for a saw chain link with one or more oversized rivet holes. Embodiments further provide a saw chain that includes a plurality of links coupled to one another by rivets. The links may include one or more links that include one or more oversized rivet holes with rivets disposed in the respective oversized rivet holes. For example, a link may include a body with two rivet holes (e.g., a first rivet hole and a second rivet hole) through the body. A rivet may be disposed in each rivet hole to couple the link to one or more adjacent and/or opposing links in the saw chain. One or more of the rivet holes may be oversized rivet holes. The term “oversized” means that the rivet hole and corresponding rivet may provide a clearance between the rivet and the edge of the rivet hole, wherein the rivet hole is thus larger than the standard size rivet hole. The clearance may allow for relative movement of the link with respect to the rivet. For example, the clearance in some embodiments may be about 0.010 inches or more, such as about 0.020 inches. For a saw chain with a pitch (e.g., distance between the centers of adjacent rivet holes) of 0.75 inches, the maximum clearance may be about 0.25 inches. Other embodiments may use another suitable clearance.
In various embodiments, the clearance between the rivet and the oversized rivet hole may allow the link to switch between different stable positions based on one or more conditions. A “stable position” is a position that the link maintains relative to the rivet and/or neighboring links so long as the one or more conditions are met. The oversized rivet may switch between the different stable positions while under tension in the saw chain, e.g., while the saw chain is connected to itself to form an endless loop on a guide bar. As further discussed below, the one or more conditions may include, for example, whether the link is under load (e.g., from a workpiece, such as wood, that is being cut by the saw chain), and/or whether the link is traversing an elongate portion of the guide bar or an end of the guide bar (e.g., a sprocket or a non-sprocket end).
In various embodiments, the saw chain may be configured to be driven on a guide bar of a chain saw or a mechanized tree harvester. The guide bar may extend from a body of the chain saw and may generally include a pair of elongate portions running from a proximal end of the guide bar (closer to the body) to a distal end of the guide bar (further from the body). In some embodiments, the elongate portion may include a pair of rails, with a groove disposed between the rails. The elongate portions may be substantially straight or may be curved. The elongate portions may be coupled together by curved portions at the proximal and distal ends of the guide bar to form an endless loop. The curved portions may have a sharper curvature than the elongate portions.
The guide bar may further include a sprocket at the proximal end and/or distal end to drive the saw chain around the ends (e.g., curved portions) of the guide bar. For example, the guide bar may include a drive sprocket at the proximal end of the guide bar and a nose sprocket at the distal end of the guide bar. The sprocket may include a spur with a plurality of pockets to engage respective links of the saw chain. In some embodiments, the sprocket may further include a pair of rims with outer edges that define rails. The spur may be sandwiched between the pair of rims. Other embodiments of the sprocket may not include rims.
In various embodiments, as discussed above, the saw chain may include a plurality of links coupled to one another in a chain. For example, the saw chain may include one or more cutter links, drive links, and/or tie straps. The cutter links may include a sharpened cutting edge for cutting a workpiece (e.g., wood). In some embodiments, the cutter links may further include a depth gauge to control a depth of cut of the cutter link. For example, the depth gauge may be disposed in front of the cutting element (e.g., in the direction of travel of the saw chain).
In various embodiments, the saw chain may include left side links, right side links, and center links. The left side links may ride on a first rail (e.g., left rail) of the guide bar, and the right side links may ride on a second rail (e.g., right rail) of the guide bar. The center links may ride in the groove of the guide bar between the rails. Additionally, the center links may be disposed in a pocket of the sprocket as the center links traverse the sprocket.
In various embodiments, the tie straps may be left side links or right side links, and the drive links may be center links. The drive links may include a tang that extends downward from a body of the drive link to ride in the groove of the guide bar and/or engage a pocket of the sprocket.
In some embodiments, the cutter links may be integrated into a tie strap. Such a link may be referred to as a cutter tie strap. The cutter tie strap may be a side link configured to ride on a left or right rail of the guide bar.
Additionally, or alternatively, some embodiments may provide a saw chain including cutter links integrated into a drive link. Such a link may be referred to as a cutter drive link. The cutter drive link may include a body with a tang extending downward from the body, and a cutting element and depth gauge extending upward from the body. Some embodiments may provide a saw chain including a plurality of cutter drive links coupled to one another by tie straps. For example, in some embodiments, the saw chain may include only cutter drive links, tie straps, and rivets.
In some embodiments, one or more of the drive links may be bumper drive links. The bumper drive links may include a bumper portion that extends upward from the body that is designed to extend radially as the bumper drive link traverses one or more of the sprockets. The radial extension of the bumper portion may prevent or reduce kickback of the saw chain during nose cuts (when the nose end of the chain saw is used to cut a workpiece).
In some embodiments, one or more of the tie straps may include one or more integrated rivets that extend from the body of the tie strap. Such a link may be referred to as a tie rivet. In some embodiments, the tie rivet may include two integrated rivets to engage with respective rivet holes in an opposing tie strap. In other embodiments, the tie rivet may include one integrated rivet and one rivet hole, and may engage with an opposing tie strap that also includes one integrated rivet and one rivet hole, such that the two tie straps are complementary.
Furthermore, in some embodiments, the saw chain may be a bi-directional saw chain that can be used in two orientations on the guide bar. For example, the saw chain may be used in a first orientation in which the first rivet hole of the drive links is in the forward direction (e.g., ahead of the second rivet hole in the direction of travel of the saw chain), and may also be used in a second orientation in which the second rivet hole of the drive links is in the forward direction (e.g., ahead of the first rivet hole in the direction of travel). The bi-directional saw chain may be used for a while in the first orientation, and then flipped around and used for a while in the second orientation. Thus, the bi-directional saw chain may provide an extended useful life compared with saw chains that are only usable in one direction.
In various embodiments, the bi-directional saw chain may include cutter links that have a first cutting element to perform cuts when the saw chain is in the first orientation and a second cutting element to perform cuts when the saw chain is in the second orientation. The second cutting element may not cut the workpiece when the saw chain is in the first orientation, and the first cutting element may not cut the workpiece with the saw chain is in the second orientation. Cutter links with first and second cutting elements as described above may be referred to as bi-directional cutter links.
In other embodiments, a bi-directional chain may include different cutter links (e.g., cutter drive links) that are oriented in opposite directions, to perform cuts when the chain travels in opposite directions. That is, one set of cutter links of the bi-directional chain may perform cuts when the bi-directional chain travels in a first direction, and another set of cutter links of the bi-directional chain may perform cuts when the bi-directional chain travels in a second direction opposite the first direction. One or more (e.g., all) of the cutter links may include one or more oversized rivet holes as described herein.
As discussed above, one or more of the links of the saw chain may include one or more oversized rivet holes. For example, one or more of the drive links may include one or more oversized rivet holes. The drive links with one or more oversized rivet holes may be, for example, cutter drive links and/or bumper drive links. Alternatively, one or more of the side links, such as one or more cutter tie straps, may include one or more undersized rivet flanges.
In some embodiments, the link may include a first rivet hole that is an oversized rivet hole and a second rivet hole that is a normal (standard) rivet hole. The oversized rivet hole may provide a first clearance between the edge of the oversized rivet hole and a first rivet disposed in the oversized rivet hole that is greater than a second clearance between the edge of the normal rivet hole and a second rivet disposed in the normal rivet hole. For example, the second clearance may be about 0.002 inches, and the first clearance may be about 0.010 inches or more, such as about 0.020 inches.
In some embodiments, a diameter of the oversized rivet hole may be larger than a diameter of the normal rivet hole. The first and second rivets may have respective flanges that may be disposed in the oversized rivet hole and normal rivet hole, respectively. In some embodiments, the first and second rivets may be the same size (e.g., may have flanges of the same diameter). Alternatively, the flange of the first rivet may have a diameter that is less than a diameter of the flange of the second rivet. The rivets with different diameter flanges may be used with rivet holes of the same diameter (with the rivet hole with the smaller diameter rivet corresponding to the oversized rivet hole) or with rivet holes of different diameters.
In some embodiments, a cutter drive link may include an oversized rivet hole below the cutting element, and a normal rivet hole below the depth gauge. The oversized rivet hole may, for example, be disposed behind the normal rivet hole with respect to the direction of travel of the link. The oversized rivet hole may cause the cutter drive link to rotate when a load is applied to the cutter drive link (e.g., by a workpiece that is being cut) so that a difference between a height of the cutter element (relative to the guide bar) and a height of the depth gauge is less when the load is applied than when the load is not applied.
For example,
The cutter drive link 104 includes a body 110 with an oversized rivet hole 112 and a normal rivet hole 114 disposed through the body 110. The oversized rivet hole 112 is disposed behind the normal rivet hole 114 with respect to a direction of travel of the saw chain 100. The cutter drive link 104 further includes a cutting element 116 that extends upward from the body 110 above the oversized rivet hole 112. Additionally, the cutter drive link 104 includes a depth gauge 118 that extends upward from the body 110 above the normal rivet hole 114.
In various embodiments, the tie rivet 106 includes a body 120, and a first rivet 122 and a second rivet 124 that extend from the body 120. For example, the first rivet 122 and second rivet 124 may extend approximately perpendicularly from an inner surface of the body 120. The first rivet 122 (e.g., a flange of the first rivet 122) may be disposed in the oversized rivet hole 112. A diameter of the first rivet 122 may be less than a diameter of the oversized rivet hole 112, thereby providing a clearance between the first rivet 122 and the oversized rivet hole 112. In one non-limiting example, the first rivet 122 may have a diameter of about 0.100 inches, and the oversized rivet hole 112 may have a diameter of about 0.121 inches. Accordingly, the clearance may be about 0.021 inches. In other embodiments, the first rivet 122 and oversized rivet hole 112 may have any suitable clearance, such as a clearance of 0.010 inch or more.
In various embodiments, the cutter drive link 104 may be in a first orientation, as shown in
For example, the cutter drive link 104 may have a depth gauge setting that corresponds to a difference in height between the cutting element 116 and the depth gauge 118 in a direction perpendicular to the direction of travel of the cutter drive link 104. The depth gauge setting may be greater in the first orientation than in the second orientation. For example, as shown in
The movement of the cutter drive link 104 from the first orientation to the second orientation when the cutting load is applied may provide one or more benefits. For example, the movement of the cutting element 116 when the cutting load is applied may reduce the vibration from cutting, thereby promoting a smooth cutting response. Additionally, or alternatively, as discussed above, the cutter drive link 104 may have a greater depth gauge setting in the first orientation when the cut is started, and a lower depth gauge setting in the second orientation during the cutting process. The greater depth gauge setting at the start of the cut may facilitate the initiation of the cut. Additionally, the lower depth gauge setting in the second orientation that is used during the cut may prevent the depth of cut from becoming too large and thereby overpowering the chain saw.
Furthermore, a cutter drive link with two normal rivet holes may not have a way to release the tension of the saw chain during a cut, thereby forcing the saw chain to stay engaged in the cut. The resulting chips formed by the saw chain may have a thickness of almost the full depth gauge setting and/or may be longer than chips formed by saw chains with cutter tie strap links (e.g., the chips may be up to an inch long instead of ¼ inch). By allowing the cutter drive link to rock (e.g., rotate) back during the cut, as is provided by the cutter drive link 104, the chips may be broken up sooner thereby producing smaller chips. The smaller chips may facilitate a clean cut and prevent or reduce clogging of the saw chain 100.
In some embodiments, the cutter drive link 104 may be held in one orientation on the nose of the guide bar (e.g., by the pocket of the sprocket), when the cutter drive link 104 is in the engaged state and the unengaged state (e.g., when the cutter drive link 104 is subjected to a load and not subjected to a load, respectively). Accordingly, the cutter drive link 104 may maintain stability for nose cuts (e.g., boring cuts).
The cutter drive link 204 may be in a first orientation, as shown in
In some embodiments, the oversized rivet hole of the cutter drive link may have a non-circular cross-sectional shape. For example, the oversized rivet hole may have a cross-sectional shape that corresponds to a slanted oval, a kidney bean shape, a slot with substantially straight side walls and curved end walls, an arc-shaped slot, or another suitable shape. Additionally, in some embodiments, a movement axis of the oversized rivet hole may be disposed at an angle with respect to a direction of travel of the saw chain and/or a bar perpendicular line that is perpendicular to the bar contour below the oversized rivet hole. The movement axis may generally correspond to the path of travel of the rivet hole with respect to the rivet when the cutter drive link moves between the first orientation and the second orientation. The angled movement axis of the oversized rivet hole may cause the rivet to move horizontally between the first and second orientations. Accordingly, the distance between the adjacent links (e.g., tie straps) that are coupled to the cutter drive link by the rivets may change from the first orientation to the second orientation.
In various embodiments, the cutter drive link 304 may further include a cutting element 316 and a depth gauge 318. A rivet 322 of a tie strap 306 may be disposed in the oversized rivet hole 312. The cutter drive link 304 may move with respect to the rivet 322, e.g., when a cutting load is applied. For example, in an unengaged state (e.g., when no cutting load is applied), the rivet 322 may be disposed in a lower portion of the oversized rivet hole 312. In some embodiments, there may be a small gap between the lower boundary of the oversized rivet hole 312 and the rivet 322 during engagement as the cutting load and restoring force are balanced by the cutting element 316 moving downward to decrease the cutting load to match the chain tension induced restoring force. Tension in the chain causes a rivet 322 to come against the rear wall of angled oversized rivet hole 312 which is oriented at the angle 330. The chain tension acting against the rear wall at angle 330 creates a vertical restoring force. The position of the rivet 322 and the oversized rivet hole 312 shown in
When a cutting load is applied to the cutter drive link 304, the cutting element 316 may move so that the rivet 322 is disposed in an upper portion of the oversized rivet hole 312. The angled oversized rivet hole 312 may cause the rivet 322 to move in a horizontal direction between the first and second orientations. Accordingly, the distance between the tie strap 306 and an adjacent tie strap (e.g., tie strap 308) may be different in the first orientation than in the second orientation.
In various embodiments, the value of the angle of the rear wall of the oversized rivet hole 312 (e.g., the angle 330 of the movement axis 331) may determine the amount of restorative force that is provided by tension in the saw chain 300. The restorative force may correspond to the amount of force that pushes the cutter drive link 304 toward the first orientation that the cutter drive link 304 has in the unengaged state (e.g., the force that must be overcome by the cutting load to push the move the cutter drive link 304 to the second orientation). A higher value of the angle 330 (e.g., the more the oversized rivet hole 312 is angled from vertical) may provide more pitch change (e.g., change in the distance between adjacent links) per degree of rotation of the cutter drive link 304, and also thereby more tension change.
As shown, a distance between a center of a rear rivet 424 of the tie rivet 406 and a center of the rivet (not shown) disposed in the rivet hole 416 of the cutter drive link 404 may be greater in the first orientation than in the second orientation. In one non-limiting example, as shown in
Alternatively, in some embodiments, the oversized rivet hole may have a cross-sectional shape that corresponds to an arc-shaped slot so that there is no pitch change between the first orientation and the second orientation. For example,
As shown, a distance between a center of a rear rivet 524 of the tie rivet 506 and a center of the rivet (not shown) disposed in the rivet hole 516 of the drive link 504 may be the same in the first orientation and in the second orientation. Accordingly, the cutter drive link 504 may change between the first orientation and the second orientation without changing the pitch and/or tension of the saw chain 500.
In other embodiments, the front rivet hole of the drive link may be the oversized rivet hole. For a cutter drive link with an oversized rivet hole as the front rivet hole, the depth gauge may move lower (e.g. away from the workpiece being cut) when a cutting load is applied to the cutter drive link. Such a cutter drive link may be used to prevent/reduce kickback (e.g., as the cutter drive link traverses the nose of a non-sprocket nose bar (a guide bar that does not include a sprocket on the nose)). Lowering the depth gauge of the cutter drive link may increase the heel interference of the cutter drive link, decrease the cutting edge relief angle (e.g., the angle of the top surface of the cutting element), and/or decrease the cutting edge engagement with the workpiece (e.g., wood). The heel of the cutter drive link may refer to the top rear portion of the cutting element. Heel interference may result from an orientation of the cutter drive link on the nose of the guide bar in which the heel of the cutting element extends further from the rail of the guide bar than the cutting edge. The wood may contact the heel first and the heel may prevent the cutting edge from cutting the wood.
For example,
The cutter drive links 604a-f each include an oversized rivet hole 612, a normal rivet hole 614, a cutting element 616, and a depth gauge 618. The oversized rivet hole 612 is disposed below the depth gauge 618, and the normal rivet hole 614 is disposed below the cutting element 616. The saw chain 600 further includes a plurality of tie rivets 606 with integrated rivets that extend through the respective oversized rivet holes 612 and normal rivet holes 614 of the cutter drive links 604a-f. The opposing tie straps are not shown to allow the oversized rivet holes 612 and normal rivet holes 614 to be viewed.
In various embodiments, with the oversized rivet hole 612 disposed below the depth gauge 618, the depth gauge 618 may lower with respect to the cutting element 616 when the cutter drive link 604a-f when subjected to a load (e.g., from cutting engagement). The lowering of the depth gauge 618, when the chain is on the nose of the bar, may increase the heel interference of the cutter drive link 604a-f, decrease the cutting edge relief angle, and decrease the amount of engagement between the cutting edge and the workpiece (e.g., wood). This arrangement may be used to prevent or reduce kickback of the saw chain 600 as it traverses the nose of the guide bar 600.
As shown, for cutter drive link 604e, the radial extension distance 634a is greater than the radial extension distance 634b, and the radial extension distance 634b is greater than the radial extension distance 634c. In contrast, for cutter drive link 604f, the radial extension distance 634d is less than the radial extension distances 634e and 634f, and the radial extension distance 634e is greater than the radial extension distance 634f. Accordingly, the cutting load on the cutter drive link 604e results in increased heel interference for the cutter drive link 604e compared with the cutter drive link 604f (which is not under a cutting load). The heel of the cutter drive link 604e acts as a bumper so that the cutting edge of the cutting element 616 and the depth gauge 618 of the cutter drive link 604e do not contact the wood.
As discussed above, the change in the depth gauge setting and/or radial extension distances as the cutter drive links 604a-f may prevent or reduce kickback of the saw chain 600. Additionally, or alternatively, a similar arrangement may be used to orient the cutter drive links 604a-f on a sprocket (e.g., on the drive sprocket or nose sprocket) to facilitate sharpening of the cutter drive links 604a-f.
As shown, cutter drive link 704a, which is traversing the elongate portion of the guide bar 702, has a depth gauge setting that is greater than the depth gauge setting of the cutter drive link 704e, which is traversing the sprocket 738. The cutter drive links may change their depth gauge setting in response to cutting forces while the drive links traverse the elongate portion of the guide bar 702 (e.g., cutter drive links 702a and 702b as shown in
The cutter drive links 804a-d each include two normal rivet holes 812 and 814, a cutting element 816, and a depth gauge 818. The bumper drive links 842a-b each include an oversized rivet hole 844 and a normal rivet hole 845. The bumper drive links 842a-b further include a bumper portion 846 that extends upward above the oversized rivet hole 844.
On the elongate portion of the guide bar, as illustrated by cutter drive link 804a and bumper drive link 842a, the bumper portion 846 of the bumper drive link 842a is disposed at a lower height (e.g., relative to the guide bar 802) than the depth gauge 818 and the cutting element 816 of the cutter drive link 804a. The lower height of the bumper portion 846 on the elongate portion of the guide bar may prevent the bumper portion 846 from interfering with cuts made using the elongate portion of the guide bar.
When the links traverse the sprocket 838 of the guide bar 802, as illustrated by cutter drive link 804c and bumper drive link 842b, the bumper portion 846 is disposed at a greater height than the depth gauge 818 and the cutting element 816 of the cutter drive link 804c. Additionally, the depth gauge setting of the cutter drive link 804c is reduced compared with the depth gauge setting of the cutter drive link 804a. The greater height of the bumper portion 846 on the sprocket 838 may prevent or reduce kickback of the saw chain 800 on the nose sprocket 838.
In other embodiments, the saw chain may include a bumper drive link that includes a bumper portion disposed above the forward rivet hole and that is disposed immediately behind a cutting element of an adjacent link in the saw chain. The bumper drive link may include an oversized rivet hole below the bumper portion.
In some embodiments, the saw chain may include a tie rivet that includes one or more cam rivets. The cam rivet may include a hub that is off-center from a flange of the cam rivet. The flange may be disposed in the rivet hole of the cutter drive link, while the hub may be disposed in the opposing tie strap. Accordingly, the cam rivet may allow vertical displacement of the cutter drive link with respect to the connecting tie straps.
For example,
The cam rivet 1052a of the tie rivet 1050a is disposed in the rear rivet hole 1012b of the cutter drive link 1004b, which is below the cutting element 1016b. The coaxial rivet 1054a is disposed in the front rivet hole 1014a of the cutter drive link 1004a, which is below the depth gauge 1018a. A cam rivet 1052b of another tie rivet 1050b is disposed in the rear rivet hole 1012a of the cutter drive link 1004a, and a coaxial rivet 1054b of another tie rivet 1050c is disposed in the front rivet hole 1014b of the cutter drive link 1004b.
In various embodiments, the cam rivet 1052b may cause the depth gauge setting of the cutter drive link 1004a to change as the cutter drive link 1004a rotates with respect to the tie rivets 1050a-b, for example, when the cutter drive link 1004a goes from the elongate portion of the guide bar to the end of the guide bar. The depth gauge setting may be changed in a similar relationship to that discussed herein with respect to the cutter drive links with oversized rivet holes.
As discussed above, the oversized rivet holes may also be used in a saw chain with bi-directional cutter drive links that are designed to be used in two different orientations on the guide bar. For example, the saw chain may be used in a first orientation in which the first rivet hole of the drive links is in the forward direction (e.g., ahead of the second rivet hole in the direction of travel of the saw chain), and may also be used in a second orientation in which the second rivet hole of the drive links is in the forward direction (e.g., ahead of the first rivet hole in the direction of travel).
The bi-directional cutter drive links 1104 include two oversized rivet holes 1112 and 1114. The bi-directional cutter drive links 1104 further include a first cutting element 1116 and a second cutting element 1117 that extend up from the middle of the bi-directional cutter drive link 1104 and are oriented in opposite directions. The first cutting element 1116 may be used to cut when the bi-directional cutter drive link 1104 travels in a first direction with the rivet hole 1114 as the forward rivet hole, and the second cutting element 1117 may be used to cut when the bi-directional cutter drive link 1104 travels in a second direction with the rivet hole 1112 as the forward rivet hole (e.g., opposite the first direction). The bi-directional cutter drive link 1104 may further include a depth gauge 1118 and a depth gauge 1119 extending above the body of the bi-directional cutter drive link 1104 at opposing ends of the bi-directional cutter drive link 1104 (e.g., on opposite sides of the cutting elements 1116 and 1117).
The tie rivets 1106 of saw chain 1100 include a first rivet 1122 that is disposed in the rivet hole 1112 of one bi-directional cutter drive link 1104, and a second rivet 1124 that is disposed in the rivet hole 1114 of an adjacent bi-directional cutter drive link 1104. A diameter of the first rivet 1122 may be less than a diameter of the oversized rivet hole 1112, thereby providing a clearance between the first rivet 1122 and the oversized rivet hole 1112. Additionally, a diameter of the second rivet 1124 may be less than a diameter of the oversized rivet hole 1114, thereby providing a clearance between the second rivet 1124 and the oversized rivet hole 1114. In some embodiments, the clearance may be about 0.010 inches or more, such as about 0.020 inches
In various embodiments, the cutter drive links 1104 of the saw chain 1100 may enter the first or second stable position responsive to respective tensile and cutting forces caused by the saw chain 1100 moving in the first direction 1160 or second direction 1162. Additionally, or alternatively, the oversized rivet holes 1112 and 1114 of the cutter drive links 1104 may allow the position of the cutter drive links 1104 to change responsive to receiving a cutting load, as described herein. Furthermore, other components of the chain may be used to introduce one or more restorative forces to use the freedom of movement provided by the oversized rivet holes 1112 and 1114 to place the cutter drive links 1104 in a desired position.
As best seen in
In some embodiments, all cutter links of a saw chain may be cutter drive links 1204. Alternatively, a saw chain may include a mix of cutter drive links 1204 and cutter drive links 1104.
In some embodiments, a saw chain link may include a pair of oversized rivet holes that are vertically offset from one another (e.g., with respect to a pitch line of the saw chain). For example,
In some embodiments, the oversized rivet holes may be non-circular. For example,
In various embodiments, the shape of the rivet hole and corresponding rivet may at least partially determine the type and magnitude of the restorative force caused by tension in the saw chain. In some embodiments, different stable positions of a saw chain link may be designed to have substantially the same or similar tensile forces in each position. Accordingly, the saw chain link may rotate to a stable position and stay in that position without a restorative force trying to move it back to another stable position. This may be useful, for example, to allow the position to be stable without a cutting load applied.
Alternatively, the saw chain link and/or rivets may be designed to apply a restorative force on the link when the components are in a specific position. The restorative force may encourage the link to move back to another position (e.g., when a cutting load is removed).
For example,
In some embodiments, cam rivets may be used with saw chain links that have a pair of oversized rivet holes. For example, one or both of the rivets disposed in the oversized rivet holes of a saw chain link may be a cam rivet.
The cutter tie strap links 2004a-c further include a cutting edge 2024a-c and a depth gauge 2026a-c. The bumper drive links 2006a-c further include a bumper portion 2028a-c.
Bumper drive link 2006a is shown in
In some embodiments, the bumper drive links 2006a-c of saw chain 2000 may be replaced with bumper drive links with rivet holes that are vertically offset. For example,
In some embodiments, a saw chain may include one or more drive links that include one or more oversized rivet holes, and one or more drive links that do not include oversized rivet holes. The drive links that include one or more oversized rivet holes may change position responsive to a cutting load, while the drive links that do not include oversized rivet holes may not change position responsive to the cutting load.
For example,
The cutter tie strap link 2402 includes integrated rivets 2420 and 2422. Rivet 2422 is disposed in the oversized rivet hole 2410 of the bumper drive link 2404 and provides a clearance between the oversized rivet hole 2410 of the bumper drive link 2404. In some embodiments, the rivet 2422 may be a cam rivet as shown in
In various embodiments, the saw chain features (e.g., tension-controlled cutting force compensation features) described herein may be used to provide the overall saw chain with power requirements that better fit the power output of the chain saw. For example, the saw chain features described herein may allow a single chain design to be used on a broader power range of chain saws. Additionally, or alternatively, the saw chain features described herein may lessen the required expertise of the chain saw user to apply the exact feed load needed to maximize the cutting speed without stalling the chain saw.
In various embodiments, initial tension in the chain is applied by the chain saw user, after the chain is placed on the guide bar and drive sprocket, by an adjusting screw on the chainsaw that moves the guide bar away from the drive sprocket. Additional chain tension may be added between the drive sprocket and chain components in contact with the wood while the chain saw is operating.
In various embodiments, cutter drive link 2502a has its cutting element 2504a at full height (e.g., relative to the depth gauge 2506a and/or the guide bar 2512) because of the lifting action of the chain tension and no downward force acting on the cutter drive link 2502a. The cutting element 2504b of cutter drive link 2502b has moved to the lowest point (e.g., least cutting position) since the chain tension (T) is low acting on the angled slot of the oversized rivet hole 2508b and there is a downward force from the wood being cut. The cutting element 2504c of the cutter drive link 2502c is raised higher than the cutting element 2504b of the cutter drive link 2502b due to the increased chain tension (T2) caused by the cutting force (CF1) on the cutter drive link 2502b and shortened chain length from the cutting element 2504b being at its lowest point. Additionally, the cutting element 2504d of cutter drive link 2502d is higher than the cutting elements 2504b and 2504c because of the added cutting forces and shortened chain lengths associated with the cutter drive links 2502b and 2502c that act on the angled slot of the oversized rivet hole 2508d of the cutter drive link 2502d and lift the cutting element 2504d higher against the downward force of the contacting wood.
In general, a cutter drive link with a cutting element that is at a greater height will cut more wood and also have an increased associated cutting force than a cutter drive link with a cutting element that is at a lower height.
The tension in the saw chain associated with cutting wood may continue to increase between the components in contact with the wood and the drive sprocket until the operating chain saw motor cannot generate additional pulling force to support a higher load associated with cutting more wood. At this point, the forces required by the saw chain to cut wood are balanced by the motor. The height of the cutter elements will vary so that the cutting forces meet the pull of the chain saw motor. Unlike conventional cutters that cannot change their cutting forces, some of the cutter drive links with tension-controlled cutting-force-compensating features (e.g., the oversized rivet holes 2508a-d of the cutter drive links 2502a-d) will have their cutting elements lower than others, thereby reducing their required cutting forces so as to compensate for the available power from the chain saw.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
The present application claims priority to U.S. Provisional Patent Application No. 62/278,331, filed Jan. 13, 2016, entitled “Saw Chain Link with One or More Oversized Rivet Holes,” the disclosure of which is hereby incorporated by reference in its entirety for all purposes except for those sections, if any, that are inconsistent with this specification.
Number | Name | Date | Kind |
---|---|---|---|
2705512 | Wolf | Apr 1955 | A |
3421313 | Mitoshi | Jan 1969 | A |
3725972 | McCabe | Apr 1973 | A |
4118995 | Lanz | Oct 1978 | A |
4524519 | Muehling | Jun 1985 | A |
4581968 | Gibson | Apr 1986 | A |
4593591 | Beerens | Jun 1986 | A |
4754549 | Fischer | Jul 1988 | A |
4756221 | Nitschmann | Jul 1988 | A |
4979416 | Nitschmann | Dec 1990 | A |
5029501 | Smith | Jul 1991 | A |
5123400 | Edgerton | Jun 1992 | A |
5131150 | Muehling | Jul 1992 | A |
5172619 | Kolve | Dec 1992 | A |
6138658 | Bell | Oct 2000 | A |
6837138 | Mang | Jan 2005 | B2 |
7293491 | Harfst | Nov 2007 | B2 |
7836808 | Szymanski | Nov 2010 | B2 |
8256335 | Canon | Sep 2012 | B1 |
8578694 | Scott | Nov 2013 | B2 |
9027451 | Goettel | May 2015 | B2 |
9038519 | Goettel | May 2015 | B2 |
9561600 | Droβler | Feb 2017 | B2 |
9610702 | Hutsell | Apr 2017 | B2 |
9757808 | Harfst | Sep 2017 | B2 |
9895825 | Gerlach | Feb 2018 | B2 |
10406715 | Harfst | Sep 2019 | B2 |
10456946 | Lux | Oct 2019 | B2 |
20020040841 | Winkelman | Apr 2002 | A1 |
20030167895 | Mang | Sep 2003 | A1 |
20050115379 | Schulz | Jun 2005 | A1 |
20070124946 | Seigneur | Jun 2007 | A1 |
20080110316 | Harfst | May 2008 | A1 |
20080110317 | Osborne | May 2008 | A1 |
20130118144 | Scott | May 2013 | A1 |
20160136837 | Szymanski | May 2016 | A1 |
20160169324 | Wu | Jun 2016 | A1 |
20170197327 | Harfst | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
200981272 | Nov 2007 | CN |
100445057 | Dec 2008 | CN |
101808789 | Aug 2010 | CN |
105073357 | Nov 2015 | CN |
105073358 | Nov 2015 | CN |
1552691 | May 1970 | DE |
1552690 | Aug 1970 | DE |
512912 | May 1976 | SU |
WO2014143135 | Sep 2014 | WO |
WO2014143136 | Sep 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170197327 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62278331 | Jan 2016 | US |