The present invention generally concerns the type of saw that has an elongate cutting member passed around a saw guide bar and drive means drivingly engaging the cutting member, and more specifically relates to a drive arrangement for such a saw.
Saws for cutting harder materials such as concrete, brick or stone are available in different types and in different configurations. Such saws are available both as saws supported on a frame and as handheld or portable saws. These general types of saws are available both as circular saws using circular hard metal or diamond blades, as chain saws having a traditional type of saw chain of metal links on which diamond equipped cutting segments are supported and as wire saws using a wire or cable that runs unsupported between support wheels and that at regular distances carries cutting elements. Of the known saws, the circular saws in general have a restricted cutting depth and, e.g. when employed for forming an opening in concrete, produce a normally unacceptable, considerable excessive cutting or sawing. Chain saws having a saw chain of interconnected metal links do on their side involve a high cutting element cost. Due to their design the wire saws are in principle only possible to use for unsupported or “floating” cutting, i.e. without any underlying guide in the form of a guide bar or the like. Furthermore, it is virtually impossible to replace individual worn out cutting elements on the saw wire, which leads to a relatively high operating cost.
Our own WO 98/32578 describes a new type of saw for cutting harder materials. According to this document, a wire saw is briefly combined with a guide bar that resembles the guide bar of a power chain saw and a cutting member is employed that is intended for use in handheld or portable concrete saws and that has cutting element carriers being “floatingly” supported on a steel wire, i.e. supported for restricted axial movement. This new type of saw has several advantages when compared to the traditional saws. To sum up, these advantages consist in that it is possible to successfully combine the continuous cutting element carrier support of the chain saws with the more flexible and cheaper cutting members of the wire saws. With the illustrated cutting member design the operating cost may also be significantly lowered due to the fact that the “floatingly” supported cutting element carriers may be replaced relatively easily when individual of them are damaged. Although the described, by us developed cutting/sawing equipment has resulted in significant improvements in this technical field and is very attractive in many respects, general requests are made for functional improvements and measures for eliminating other weaknesses, above all from a durability and safety point of view, that exist by virtually all types of saws for the indicated areas of application.
A general object of the present invention is to provide an improved saw for cutting hard materials, such as concrete and stone.
A specific object of the invention is to suggest a method of driving the cutting member of a saw for cutting harder materials, which provides improved durability and function for the saw in its entirety as well as specifically also for the cutting member.
Another object of the invention is to provide a saw for cutting harder materials, which has a drive assembly affording the above mentioned improved durability and function.
Further objects of the invention are to suggest an improved drive arrangement for a saw for cutting harder materials, as well as an improved cutting member for cooperation with said drive arrangement to provide improved drive conditions for the saw, both with regard to its useful life and to its efficiency.
These and other objects are met by the invention as defined by the accompanying patent claims.
The invention relates generally to saws for cutting or sawing the type of hard materials that include concrete, concrete structures, brick and stone and having an endless cutting member driven by a transmission assembly being connected to a drive motor and engaging and being supported by a cutting member supporting portion of the saw. For attaining the indicated objects the invention provides a method and a saw of said type where at least one clamping member is employed, which for establishing a friction drive contact between the clamping member, a drive member and the cutting member is biased towards the drive member with driven parts of the cutting member introduced there between. In this way is achieved significantly reduced load on the saw and thus improved durability of the saw and its parts, especially the cutting member and the transmission assembly, as well as improved functionality in the form of increased flexibility of manufacture and improved saw operation safety.
In an embodiment that may be especially preferable for practical reasons and for reasons of manufacture, the invention suggests that clamping member and drive member are provided substantially centered on a common geometrical axis, that the first-mentioned is supported for axial and tillable movement relative to the drive member and that a biasing force is applied thereto.
In an embodiment that is especially suitable with regard to manufacturing and component cost, biasing force is applied to the clamping member by a biasing roller at a transmission assembly contact area. Thereby, the clamping member is preferably tilted by forming, at a radially outer edge thereof, a drive surface that is angled away from the drive member and where the biasing force is applied.
In an alternative embodiment the biasing force is applied to the clamping member by biasing means and substantially evenly distributed around drive member and clamping member.
In other embodiments of the invention the drive force from the saw drive motor may be transmitted either to the biasing roller or to the drive member and then, through the biasing force, to the cutting member.
In yet another embodiment, a relieving force is applied against a portion of the clamping member tilting the clamping member relative to the drive member so that contact between said members is concentrated to a contact area of the transmission assembly of the saw that is remote from the relieving force application area.
According to another aspect of the invention a transmission assembly is suggested for creating the inventive friction drive contact between the parts of the saw of the invention, whereby the drive member of the saw has a disc shape with flat sides and an even peripheral surface and the clamping member, which is biased against the drive member, likewise has a disc shape with a flat side and whereby biasing means are provided that have a direction of action of their biasing force that corresponds to or alternatively forms an angle with a normal to flat sides of the drive member.
According to yet another aspect of the invention a cutting member is suggested that is adapted for use in the drive arrangement of the invention and that has cutting element carriers with support members for direct supporting contact with the cutting member supporting portion of the saw and rider members having portions for guidingly contacting the cutting member supporting portion and provided at a distance apart that is slightly larger than the width of the cutting member supporting portion of the saw as well as of the transmission assembly drive member.
The invention and further objects and advantages thereof, in addition to those described above, will be best understood by referring to the following description of embodiments of the invention taken together with the accompanying drawings, in which:
The invention will be described in greater detail below, with reference to embodiments thereof that are illustrated in the accompanying drawing
In order to eliminate the described drawbacks and problems of known saws for cutting harder materials and their drive systems, respectively, the present invention suggests a new solution for the drive arrangement for such a saw and its object is to achieve a safe, comparatively wear-free and inexpensive solution for the drive force transmission from a drive motor to a cutting member. This is basically achieved by means of the solution according to the present invention, which briefly means that drive is transmitted from the motor to the cutting member through a friction drive. With such a solution one does above all achieve that the cutting member may be manufactured without having to observe an exact, fixed pitch between the cutting element carriers. In particular, the friction drive permits that the mutual distribution of the cutting element carriers along the cutting member will not have to be adapted to the toothing of a drive member of the saw, which simplifies and cheapens the manufacturing of drive components and cutting member and also involves heavily reduced load on the drive transmission and cutting member and thereby significantly reduced wear of these parts. Thereby, it will also be possible to reduce overload and other disadvantageous load peaks of the cutting member as well as other drive components. This in turn means that the durability and useful life of the saw may be markedly improved in comparison with the prior art.
Initially, the invention will now be explained with reference to an exemplifying embodiment thereof that is illustrated in the drawing figures of the accompanying
The invention is based on the solution that the transmission assembly 11, 20 comprises at least one clamping member 20 that is provided centered on a common geometrical axis GA with the drive member 11 and that in this embodiment is rotatable in the saw 1 by being coupled to the drive member 11 so as to be fixed for rotation therewith. The clamping member 20 likewise has a circular disc shape with one side 21 facing the drive member and having a substantially flat drive surface 24 and, in addition, preferably a radial outer surface 25 that in this design is outwardly angled or beveled with the angle α (illustrated very exaggerated in
As was mentioned, in this design the clamping member 20 is angled/beveled outwardly, the angle α in
The tilted position of the clamping member 20 relative to the drive member 11 is in this design accomplished by means of a relieving means 40 that is provided for applying an axial relieving-force AK against the clamping member 20 in a relieving area 23 of the transmission assembly 11, 20, said area 23 being closest to the saw guide bar 3. As was mentioned, the clamping member 20 is journalled for movement axially towards and away from as well as for tilting relative to the drive member 11. This relative movement is enabled by the fact that the hub 15 of the drive member 11 with an appropriate play is received in a central recess 26 in the clamping member 20 as well as by the fact that the pins 32 of the biasing means 30, which are firmly connected to the clamping member, pass with play through the holes 11A of the drive member 11. By the provision of the central recess 26 in the clamping member 20 the drive shaft 2A of the motor 2 extends freely therethrough, as is evident from especially
In this embodiment the relieving means 40 consists of a running roller 41 being supported freely rotatable at a frame 1A (
The described transmission assembly 11, 20 is adapted for cooperation with a cutting member 4 that according to the invention comprises rider members 7 having substantially parallel guide and drive portions 7A, 7B (
As was mentioned, the relieving force AK of the relieving means 40 acting against the clamping member 20 causes tilting of the clamping member 20 relative to the drive member 11 and thus separation of the clamping member 20 and the drive member 11 in connection with the relieving area 23. The contact between these elements 11, 20 is thus concentrated to the contact area 18 of the saw that is remote from the relieving area 23 where the force AK is applied. Through this tilting the drive member 11 and the clamping member 20 are brought into friction drive contact with the rider members 7 of the cutting member 4. This is done such that the transmission of drive force to the cutting member 4 will take place in the contact area 18, through the rider members 7. The driver members 7 are, with a guide and drive portion 7A thereof, freely introduced between the drive member 11 and the clamping member 20 in the relieving area 23 where the drive and clamping members are separated and are then, during continued operation, clamped between the drive member 11 and the clamping member 20 in the contact area 18.
The described design according to the invention, wherein the clamping member 20, which is supported coaxially and rotationally fixed to the drive member 11, is axially movable towards and away from and tiltable relative to the drive member 11, provides a very advantageous method of driving a cutting member 4 in a saw 1 for cutting harder materials. This is done by the fact that the drive force of the drive motor 2 is here first transmitted to the drive member 11 and then, by the biasing force FK applied by the biasing means 30 and acting between the drive surface 24 of the clamping member 20 and the side 13 of the drive member 11, to the cutting member. The application of the biasing force FK between the drive and clamping members 11 and 20, respectively, which together form the transmission assembly, causes this force FK to bias at least portions of the drive and clamping members 11 and 20, respectively, against each other for cooperation with one of the drive portions 7A of the rider members 7 that during operation of the saw 1 are successively introduced between the drive member 11 and clamping member 20. Thereby, drive force is transmitted through friction drive, and thus with an upper load limit, from the drive motor 2 to the rider members 7 and through them to the cutting member 4. As a result thereof the friction drive also functions as an overload slip coupling. This counteracts wire break and overload damages to the cutting member 4 as well as to the motor 2. Not least does this slip function also increase user safety, since kick-backs and violent jerks are eliminated. Preferably the size of the biasing force FK of the transmission assembly 11, 20 is adjustable for adaption to different operating conditions. Said adjustment may be easily provided by e.g. loading the springs 31 by means of nuts 33 provided on the pins or bolts 32 onto which the springs are passed.
The application of the relieving force AK against the clamping member 20 in the relieving area 23 that is located substantially opposite the cutting member supporting portion 3 does, through the tilting of the clamping member 20, cause the contact between this and the drive member 11, or actually the rider members 7 introduced there between, in friction drive contact with the latter, to be concentrated to the engagement area 18 that is remote from the relieving area 23. The function of the roller 41 is simultaneously to push away the spring loaded clamping member 20 so that the rider members 7 of the cutting element carriers 6 may be securely introduced into and removed from, respectively, the friction drive. In particular, the separation of the clamping member 20 and the drive member 11 in the relieving area 23, in combination with the outwardly angled outer surface 25 of the clamping member 20, results in that one of the drive portions 7A of the rider members 7 may without problems, i.e. without any risk of getting stuck, be introduced between the drive and clamping members and may exit therefrom at the opposite side of the drive transmission 11, 20.
Compared to conventional drive arrangements the invention provides an essential improvement for saws in general and for saws for cutting harder materials in particular. The advantages basically consist of the discussed improvement that involves the fact that by frictionally driving the cutting member that is provided with spaced links or cutting element carriers, driving thereof may be performed independently of any fixed, exact pitch between the carriers. The distance between the cutting element carriers is thus of no or of essentially smaller importance than if the drive/driving is fixed and is performed e.g. through a chain and sprocket having a fixed pitch. This means that manufacture of the cutting member may be simplified and more economical and also that the load on and wear of the drive transmission as well as of the cutting member may be significantly reduced. Furthermore, an advantage is also obtained in the form of an overload protection that prevents or at least counteracts wire break and damage to the cutting member and the motor as well as also personal injuries.
Other advantages of the invention consist in that the direction of rotation of the cutting member may be optionally reversed so that the saw is easily turned around to admit inverted cutting. By changing the direction of rotation, and at the same time turning the entire saw 180 degrees, the saw will be changed from a left-hand to a right-hand saw. This is advantageous for left-handed and right-handed operators. It is likewise advantageous when cutting is to be done adjacent a corner. Depending upon whether the hindering wall is on the right or the left side, the saw is turned so that it will be possible to cut close to the corner/obstacle. Saws lacking this quality have caused accidents when the operator has turned the saw to obtain the desired result and thereby has operated the saw in a manner for which it was not intended. The result has been that the saw has “got stuck” and kicked-back, with resulting operator injuries.
In the illustrated basic design where the clamping member 120, like in the first embodiment, is coupled rotationally fixed to the drive member 111, the drive member 111 hub 115 is also, at least at the part where the clamping member 120 is supported, designed having an outer contour 117 that is not rotationally symmetrical and that is intended for cooperation, with play, with an opening 126 in the centre of the clamping member 120 that is complementary thereto as far as the shape is concerned (see especially
Like before, the clamping member 120 and the drive member 111 are essentially centered on a common geometrical axis GA and the clamping member 120 is, through the mentioned play, supported on the drive member 111 so as to be axially moveable and tiltable thereon. In this case too, the clamping member 120 has a circular disc shape with a side 121 facing the drive member 111 having a substantially flat surface 124 facing the drive member and an opposite side 122, i.e. a side facing away from the drive member. The clamping member 120, or in particular its surface 124, is in its radially outer area or edge angled or beveled outwardly, away from the drive member for forming a surface 125 that in this embodiment serves as a drive surface and also to perform the tilting of the clamping member 120 in combination with biasing means 130.
In this embodiment tilting of the clamping member 120 as well as biasing thereof against the drive member 111 is brought about by means of a biasing means 130 in the form of a biasing roller 131 that engages the clamping member 120 and that for applying the biasing force FK thereto is biased towards a radially outer area of the clamping member 120 at a contact area 118 in the transmission assembly 111, 120 of the saw. With respect to the drive member 111 this contact area 118 is located substantially diametrically opposite the cutting member supporting portion 3 of the saw. The biasing roller 131 is rotatably supported, preferably freely rotatable, on a shaft 132 that is journalled in the saw in a manner that is appropriate and that is not described any further. In particular, the tilting of the clamping member 120 is in this case brought about by angling the shaft 132 slightly so that the biasing roller 131 is thereby tilted such that the direction of action of its biasing force FK forms a small angle β with a normal to the flat sides 112, 113 of the drive member 111, said angle preferably being between 0 and 5° especially about 0.5-3°, optimally about 1° (see
As is shown in the following embodiments, the shaft of the roller does not have to be tilted to provide the same effect. Alternatively it is possible to use e.g. a biasing roller with inclined peripheral surface (
The biasing roller 131 is preferably resiliently and/or adjustably biased against the clamping member 120, whereby the adjustability may preferably be provided by appropriately supporting the shaft 132 in an adjustable position in the saw and the resiliency of the biasing is either provided by an equivalent resilient support of the shaft 132, in a manner not specifically shown, or by supporting the actual biasing roller 131 on the shaft 132 by means of a rubber bushing 134 indicated in
In
To the drive member 211 is attached a shaft 202B that is in turn rotatably supported (not shown in detail) in the saw. Here too, the clamping member 220 and the drive member 211 are essentially centered on a common geometrical axis GA and the clamping member 220 is supported axially movable and tillable on the hub 215 of the drive member 211. Like in the second embodiment a rotationally fixed (here with the clamping member 220 as the driving part) or alternatively mutually freely rotatable support of the clamping member 220 and the drive member 211 may be provided. The clamping member 220 is basically designed as in the second embodiment, having a radially outer drive surface 225 that is correspondingly angled. In this case too the biasing means 230 is in the form of a biasing roller 231 engaging the clamping member 220 to apply biasing force FK thereto at the transmission assembly 211, 220 contact area 218. In this design biasing force FK is applied substantially perpendicularly against the flat sides 212, 213 of the drive member, i.e. coinciding with a normal to said sides, and the peripheral surface 231A of the roller 231 is instead angled for obtaining optimal conditions for the tilting of the clamping member 220. Here, drive force is thus transmitted from the drive motor 202 to the biasing roller 231 and by the biasing force FK, which through the biasing roller 231 is applied to the biasing means 230 and acts between the drive surface 225 of the clamping member 220 and the corresponding side 213 of the drive member 211, further to the cutting member.
In
It shall be emphasized that in the designs according to
A variant of the embodiment illustrated in
In alternative embodiments of the invention variations of the transmission assembly and the parts of the cutting member cooperating therewith may be employed without deviating from the scope of the invention. For the contact between the cutting member and the saw guide bar the use of rolls, preferably of metal, has further been described, said rolls being slidingly supported in the cutting element carriers and rolling around a metal guide bar. In other solutions, not shown, it is theoretically conceivable to omit the rolls and to simply apply a slide layer surface treatment to the saw guide bar and to the underside of the segments. In case it is feasible to omit the rolls in this manner, an essentially less expensive solution is achieved. However, said solution will require special qualities for the slide layers that with such a solution will be exposed to the water and concrete mixture that is formed during concrete cutting. It has also been indicated above, that a wire is employed as a carrying unit for the cutting member. It shall be emphasized that this shall not restrict the invention to the use of a traditional steel wire as a carrying unit for the cutting member, but that other appropriate, presently available as well as future materials may be used, such as Kevlar® or other polymers. Although it is preferable in most applications that the drive member also in the variant where the clamping member is directly driven is rotatably journalled in the saw, it falls within the scope of the inventions to provide the drive member completely fixed in the saw instead. The basic principles of the invention are not restricted to applications with the illustrated type of saw for harder materials either, but may preferably be employed by other types of presently available as well as future saws. Thus, these basic principles of the invention may be used by any type of practically suitable saw.
The invention has been described in connection with what is presently regarded as the most practical and preferred embodiments, but it shall be realized that the invention is not restricted to the illustrated and described designs. As an example, details and features may be freely combined among the different illustrated and described embodiments, without deviating from the scope of the invention. Thus the invention shall cover different modifications and equivalent arrangements falling within the basic idea and scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
0801987 | Sep 2008 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2009/000414 | 9/17/2009 | WO | 00 | 7/6/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/033063 | 3/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1667347 | Field | Apr 1928 | A |
2184461 | Mall | Dec 1939 | A |
2610657 | Kiekhaefer | Sep 1952 | A |
2675835 | Kiekhaefer | Apr 1954 | A |
3498346 | Ehlen et al. | Mar 1970 | A |
3530909 | Scharpf | Sep 1970 | A |
4282958 | Zindler | Aug 1981 | A |
4683659 | Wunsch et al. | Aug 1987 | A |
5303477 | Kuzarov | Apr 1994 | A |
5353506 | Muller et al. | Oct 1994 | A |
Number | Date | Country |
---|---|---|
2 674 173 | Sep 1992 | FR |
1180403 | Sep 1987 | IT |
691307 | Oct 1979 | SU |
Number | Date | Country | |
---|---|---|---|
20110253122 A1 | Oct 2011 | US |