This Small Business Innovation Research (SBIR) Phase I project offers a completely new and novel approach to convert biomass to a gasoline-replacing mixed alcohol biofuel. The new approach uses a unique reactor called a controlled cavitation reactor (CCR). Specifically, the CCR provides a uniform source of heat by use of small bubbles in a non-reactive liquid; thus, facilitating heat transfer and the interaction of the reactants with the suspended solid catalyst. These improvements will improve the productivity of the reaction while decreasing the energy inputs; thus, decreasing the operating costs. The intellectual merit of this project is the demonstration of the three-phase (gas-solid-liquid) catalytic reactions by CCR to produce more of the desired product with less energy and lower capital cost.<br/>The broader commercial impacts of this research are that Maverick Biofuels is commercializing a technology to convert biomass to a mixed alcohol bio-fuel that can be easily blended with gasoline. This process requires that the feedstocks such as timber, crop residues and municipal solid waste (garbage going to the landfill) be converted to synthesis gas. The synthesis gas is then reacted using the CCR to produce a mixed-alcohol biofuel. Overall, this method for converting biomass to biofuel results in high yields of gasoline-compatible alcohols. Since a major deterrent to the commercialization of biofuels is the high capital costs, success in this project can change that economic equation. In addition, this concept has broader commercial application in the production of surfactants and other high value chemicals.