SBIR Phase I: Low cost shortwave infrared (SWIR) spectral imaging microscope camera based on Compressive Sensing

Information

  • NSF Award
  • 1315515
Owner
  • Award Id
    1315515
  • Award Effective Date
    7/1/2013 - 11 years ago
  • Award Expiration Date
    12/31/2013 - 10 years ago
  • Award Amount
    $ 149,272.00
  • Award Instrument
    Standard Grant

SBIR Phase I: Low cost shortwave infrared (SWIR) spectral imaging microscope camera based on Compressive Sensing

This Small Business Innovation Research (SBIR) Phase I project is focused on technology to improve microscopy through the development of a highly-innovative, low-cost, high-resolution, spectral (multi-color) imaging video microscope camera architecture for use in the shortwave infrared (SWIR) waveband. Low cost SWIR microscopy supports compelling medical applications in microcirculation imaging and infrared (IR) fluorescence microspectroscopy. Although ubiquitous and cheap, CMOS cameras have low sensitivity in near-infrared (NIR) and no sensitivity at SWIR wavelengths. This project proposes to apply recent scientific advances in the area of Compressive Sensing to the design of a uniquely capable scientific instrument at a fraction of the cost of current cameras. This instrument will achieve a multi-color, staring high-resolution imaging capability while requiring only a one-dimensional detector array and no steering mirror, significantly reducing system cost and increasing acquisition speed. This project will develop advanced algorithms, a compact opto-mechanical design, and high-speed, low-noise data capture and processing electronics.<br/><br/>The broader impact/commercial potential of this research is to open the multi-billion dollar microscopy community to the benefits of low-cost, multi-color, SWIR video imaging. This will enhance and possibly transform clinical modalities in dynamic multi-fluorescence imaging, in vivo functional imaging, tissue viability and pathology studies, and advanced imaging modalities such as optical coherence tomography. Medical imaging research is showing growing interest in the NIR and SWIR wavelengths, particularly in the development of IR fluorophores which produce practically no autofluorescence background while simultaneously enhancing tissue penetration depth. Additionally, multispectral IR detectors acquire a wealth of chemical information for chemically complex, heterogeneous biomaterials. However, investigations have been hampered in this regime because reasonably-priced, multi-color, SWIR cameras are not available. Microcirculation imaging for microvascular distributions and flow mapping represents an excellent entry point and a good match for the optical and electronic capabilities of this technology. Also, SWIR fluorescence molecular imaging with wavelength-tuned, single-walled carbon nanotubes will benefit in biological and material science applications. An affordable multispectral SWIR imaging platform will advance many other commercial applications including food safety, solar panel and semiconductor inspection, machine vision, navigation, security and surveillance.

  • Program Officer
    Muralidharan S. Nair
  • Min Amd Letter Date
    5/31/2013 - 11 years ago
  • Max Amd Letter Date
    5/31/2013 - 11 years ago
  • ARRA Amount

Institutions

  • Name
    InView technology Corporation
  • City
    Austin
  • State
    TX
  • Country
    United States
  • Address
    6201 E. Oltorf
  • Postal Code
    787417509
  • Phone Number
    5122438751

Investigators

  • First Name
    Lenore
  • Last Name
    McMackin
  • Email Address
    Lenore.McMackin@InViewCorp.com
  • Start Date
    5/31/2013 12:00:00 AM

Program Element

  • Text
    SMALL BUSINESS PHASE I
  • Code
    5371

Program Reference

  • Text
    Light generation & detection
  • Text
    Optoelectronic devices
  • Text
    SMALL BUSINESS PHASE I
  • Code
    5371
  • Text
    Hardware Components
  • Code
    8034
  • Text
    Hardware Devices
  • Code
    8035