This Small Business Innovation Research (SBIR) Phase I project aims to develop a tumor-specific delivery technology based on the use of superparamagnetic nanoparticles as vehicles for the delivery of paclitaxel. The magnetic vectoring drug delivery platform uses external shaped magnetic field gradients to concentrate nanoparticle-drug constructs at a target site, followed by tumor extravasation. This project will focus on the treatment of superficial tumors, such as locally advanced breast cancers (LABC). These tumors pose a difficult and, as yet, unresolved clinical problem as most patients presenting with this disease will experience resistance and pronounced toxicity for current therapeutics. Therefore, a significant need exists for advanced therapies that can improve patient outcomes. A key distinguishing feature of this technology is the potential to overcome tumor interstitial pressure that normally tends to thwart free drug penetration. <br/><br/>The broader/commercial impact of this project will be the potential to provide localized delivery of therapeutics in a manner that improves both therapeutic and economic benefits to patients. The urgency for such advanced delivery methods is increasing as new classes of pharmaceuticals, such as siRNAs and stem cells, are being developed and brought to market. Because these new therapeutics are more effective through localized therapy, advanced delivery systems that support their full therapeutic potential must be developed. The capacity to magnetically vector therapeutics, tumor-specifically, will have a significant impact on both patient treatment strategies and outcomes.