SBIR Phase I: PAX Rotor Development for Flexible Power Take-Off

Information

  • NSF Award
  • 1548324
Owner
  • Award Id
    1548324
  • Award Effective Date
    1/1/2016 - 9 years ago
  • Award Expiration Date
    8/31/2016 - 8 years ago
  • Award Amount
    $ 150,000.00
  • Award Instrument
    Standard Grant

SBIR Phase I: PAX Rotor Development for Flexible Power Take-Off

The broader impact/commercial potential of this project lies in the development of a flexible micro-hydro energy generation system that can provide clean, reliable and affordable energy for individuals and small communities/cooperatives in remote and developing regions. It promises to have clear performance advantages over competing solutions at Watt and Kilowatt scale while providing the lowest cost of total ownership. This is relevant to the global marine hydrokinetic (MHK) market which applies to energy generation from the world's rivers, tides, ocean currents and even manmade constructions such as irrigation canals and effluent pipes. MHK energy is a socially and environmentally friendly alternative to hydroelectric power as no dam is required to extract energy. This market is potentially lucrative but is still very nascent due to high technology costs, concerns over turbine survivability, fish friendliness, and difficulty in permitting these deployments, especially in the US and Western Europe.<br/><br/><br/>This Small Business Innovation Research (SBIR) Phase I project will transform a biomimicry-based design into a stable MHK rotor that can support flexible power take-off configurations. The baseline design was created by reverse-engineering the ultra-efficient, low-turbulence flow geometry of mammalian cardiovascular systems. When applied to a MHK rotor, the resulting geometry allows for the conversion of energy from a longer stretch of flowing water, which can lead to similar power/energy generation to that of traditional MHK rotors but with half the required depth. During the project, the shape will be varied to result in a predictable, stable design with maximum efficiency of output under variable flow conditions. The proposed R&D plan is a primary research effort in identifying the variables that lead to predictable, high performance, MHK rotor design utilizing such methodologies as computational fluid dynamics (CFD), prototyping and water tank testing. In addition, greater understanding of this design will also expand the body of knowledge in the rapidly emerging field of biomimicry.

  • Program Officer
    Rajesh Mehta
  • Min Amd Letter Date
    12/17/2015 - 9 years ago
  • Max Amd Letter Date
    12/17/2015 - 9 years ago
  • ARRA Amount

Institutions

  • Name
    PAX Scientific, Inc.
  • City
    San Rafael
  • State
    CA
  • Country
    United States
  • Address
    999 Andersen Dr Ste 100
  • Postal Code
    949011808
  • Phone Number
    4152569900

Investigators

  • First Name
    Jayden
  • Last Name
    Harman
  • Email Address
    jharman@paxscientific.com
  • Start Date
    12/17/2015 12:00:00 AM

Program Element

  • Text
    SMALL BUSINESS PHASE I
  • Code
    5371

Program Reference

  • Text
    SMALL BUSINESS PHASE I
  • Code
    5371
  • Text
    Manufacturing
  • Code
    8029
  • Text
    Chemical Technology
  • Code
    8030