SBIR Phase I: Power Management for Energy Harvesting

Information

  • NSF Award
  • 1013282
Owner
  • Award Id
    1013282
  • Award Effective Date
    7/1/2010 - 14 years ago
  • Award Expiration Date
    6/30/2011 - 13 years ago
  • Award Amount
    $ 180,000.00
  • Award Instrument
    Standard Grant

SBIR Phase I: Power Management for Energy Harvesting

This Small Business Innovation Research (SBIR) Phase I project will research and develop state-of-the-art ultra-low power management integrated circuits (IC) for portable and energy harvesting solutions. The creation of floating gate technology for analog and power management applications will provide new methods and building blocks for solving ultra-low power consumption challenges needed for mobile and autonomous solutions. The novel modification of existing and newly developed analog processes and components will enable revolutionary high power, quality and reliable circuits, while maintaining an extremely low quiescent operating current. This is closely tied to energy harvesting solutions as the efficiency of transferring stored scavenged energy to electronic loads defines the size, cost, and adoption of autonomous systems.<br/>To make a harvesting system viable the modules will be highly efficient in their use of the available energy. An off-active switch module and an ultra-low quiescent current regulator will be developed utilizing floating gate techniques to obtain significant reductions in power consumption. The revolutionary off-active switch module, a function which does not exist in the market today, requires drawing near zero current from the battery when in the off-state. Low power regulators require ultra-low operating current levels needed to realize a harvesting system.<br/><br/>The broader impact/commercial potential of this project is to provide circuit module building blocks for energy harvesting systems in market spaces such as wireless sensor networks. This will enable several of the harvesting and storage technologies currently under development in the US, gain greater market acceptance, reduce energy demand from non-renewable sources, and create technical leadership in the US for this market space. With the availability of these building blocks and making them readily available, system designers will have IC solutions in place to reduce their time in creating their systems to leverage energy harvesting. Up-integration of these modules can then be tailored for each application quickly, reducing the system cost and time to market.

  • Program Officer
    Muralidharan S. Nair
  • Min Amd Letter Date
    5/11/2010 - 14 years ago
  • Max Amd Letter Date
    12/9/2010 - 14 years ago
  • ARRA Amount

Institutions

  • Name
    Triune Systems
  • City
    Richardson
  • State
    TX
  • Country
    United States
  • Address
    681 N Plano Rd
  • Postal Code
    750812960
  • Phone Number
    9722311606

Investigators

  • First Name
    Wayne
  • Last Name
    Chen
  • Email Address
    wtfc@triunesystems.com
  • Start Date
    5/11/2010 12:00:00 AM