The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is the creation of low-cost, flexible displays allowing smart objects to better communicate with their users. Researchers estimate that in 2017 there were 20 billion devices connected to the Internet that were not computers, estimated to grow to 125 billion by 2025. These Internet of Things devices are already used in many applications for transportation, health and wellness, factory production, public safety, retail, agriculture, homes, and offices. These devices can enable better resource allocation, predictive maintenance, operations management, worker training, task automation, energy management, and safety; they will require displays that are thin, low power, flexible or curved, and easy to read. A near-term need is autonomous transportation, which will need a method of visual communication between vehicle and rider. This project will develop organic light emitting diode (OLED) displays; just this initial transportation application will help improve mobility for the elderly and disabled, traffic safety, and related needs. In the longer term, this project will enable manufacturing of improved displays with reduced processing waste.<br/><br/>This Small Business Innovation Research (SBIR) Phase II project will develop roll-to-roll printed passive matrix (OLED) displays. These displays are built upon a patterned transparent conductive anode that defines the pixels. To date, the only method used in industry to create this anode is photolithography, a slow and expensive process. The high-resolution printable anode developed here replaces both the incumbent material and the lithographic process, laying the foundation for fully roll-to-roll printed displays.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.