SBIR Phase II: Iptymer Low-k Dielectric Materials

Information

  • NSF Award
  • 0450507
Owner
  • Award Id
    0450507
  • Award Effective Date
    4/15/2005 - 19 years ago
  • Award Expiration Date
    3/31/2007 - 17 years ago
  • Award Amount
    $ 500,000.00
  • Award Instrument
    Standard Grant

SBIR Phase II: Iptymer Low-k Dielectric Materials

This Small Business Innovative Research (SBIR) Phase II project will develop and introduce new low-dielectric constant polymers as a new dielectric material for the fabrication of interconnect systems in integrated circuits. The continuing drive for denser integrated circuits and faster interconnects requires the development of new interlayer dielectric materials. The proposed materials rely on newly defined, so called Iptymer molecular design concepts, to create intrinsic free volume within the material. This approach is distinctly different than the current methods under investigation that introduce extrinsic pores into a material to lower its dielectric constant. The standout thermal stability, mechanical strength, and processability of Iptymer materials will enable facile integration into semiconductor fabrication processes. The research objectives of the Phase II program will introduce and supply Iptymer materials into semiconductor fabrication process development programs. This effort builds on Phase I results that demonstrated scaled synthesis of key Iptymer monomers and polymers and validated the dielectric performance, mechanical strength and processability of Iptymer polymers. The Phase II program will demonstrate pilot production of Iptymer materials that possess a dielectric constant less than 2.0 and have superior mechanical and thermal integrity. In addition integration of Iptymers in semiconductor fabrication processes will be demonstrated.<br/><br/>Commercially, the impact of reliable low-k dielectric materials is considerable. Higher bandwidth processing and communication for the same cost will be possible with improved materials. Present day microprocessors have a range of clock speeds determined from post-fabrication testing. Superior low- dielectric materials will not only increase the ultimate clock speeds, but will also improve the yield of the highest speed devices. Every country, economic group, and industry will benefit from such advances. The societal benefits realized through the extension of electronic tools into areas where their use is now impractical or not affordable will be tremendous. Widespread availability of computers throughout primary and secondary education will reap tremendous gains in education.

  • Program Officer
    William Haines
  • Min Amd Letter Date
    4/13/2005 - 19 years ago
  • Max Amd Letter Date
    4/13/2005 - 19 years ago
  • ARRA Amount

Institutions

  • Name
    NOMADICS, INC
  • City
    STILLWATER
  • State
    OK
  • Country
    United States
  • Address
    1024 S INNOVATION WAY
  • Postal Code
    740744150
  • Phone Number
    4053729535

Investigators

  • First Name
    Lawrence
  • Last Name
    Hancock
  • Email Address
    lhancock@nomadics.com
  • Start Date
    4/13/2005 12:00:00 AM

FOA Information

  • Name
    Information Systems
  • Code
    522400