This Small Business Innovation Research (SBIR) Phase I project makes significant advances in the field of photonics by developing a cutting-edge performance, cost effective and compact ultrafast laser light amplifier. The amplifier is a key element in generating this compelling form of light for revolutionary materials processing capabilities. Ultrafast lasers enable athermal ablation of nearly any material with micron-scale precision. Historically, ultrafast lasers have been confined to bulky, optical breadboard systems?ideal for academic environments but unsuitable for practical commercial applications owing to their ambient temperature sensitivity and tendency to drift out of alignment. The technology developed under this SBIR leverages novel laser amplifier glass material development to support a planar waveguide amplifier architecture. When combined with recent advances in fiber-optic ultrafast laser technology, the herein developed amplifier module will produce a high power, compact, and cost efficient ultrafast laser integrated system. In addition, the advances made in planar waveguides under this program have utility in compact, high performance long pulse and continuous wave lasers. The technology will advance the state of the art in photonics to yield cheap, efficient and rugged amplifier architectures which can be used in a variety of applications. <br/><br/>The broader impact/commercial potential of this project is to provide a pragmatic architecture for ultrafast lasers which enables discovery and the application of this light in the commercial marketplace. The inherent capability for the short bursts of light from ultrafast lasers to ablate any material?including novel glasses, noble metals, modern alloys, polymers, and other hard-to-machine materials?will create substantial value by enabling a new generation of manufacturing techniques, products and services, and the businesses to drive these innovations. As a salient example, ultrafast lasers are capable of cutting and shaping bio-absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), now in development for the next generation of cardiovascular stents. These slowly dissolve in the human body in order to avoid complications from restenosis. PLGA is extraordinarily difficult to machine with conventional lasers?due to melting?or mechanical techniques?due to loss of structural integrity. Other examples include precise, efficient cutting of organic light emitting diode (OLED) substrates and precision thin film removal for high efficiency, large area solar panels. This technology will broadly impact business processes in multiple industries by advancing manufacturing fidelity-to-design and by making obsolete the incumbent defect removal methods such as hot acid etching.