SBIR Phase II: Novel Wafer Fabrication Technology for Semiconductor Sensors

Information

  • NSF Award
  • 0522039
Owner
  • Award Id
    0522039
  • Award Effective Date
    9/1/2005 - 19 years ago
  • Award Expiration Date
    2/28/2009 - 16 years ago
  • Award Amount
    $ 471,833.00
  • Award Instrument
    Standard Grant

SBIR Phase II: Novel Wafer Fabrication Technology for Semiconductor Sensors

This Small Business Innovation Research (SBIR) Phase II project is directed toward the development of cadmium zinc telluride (CdZnTe) single crystal films by using an ion beam layer separation process from bulk single crystals. The separated layers will be transferred and bonded on to silicon (Si) wafers for applications as substrates for epitaxial growth of mercury cadmium telluride (HgCdTe) films. HgCdTe films are of interest in infrared detectors. The ion beam layer separation process will allow the fabrication of a large number of films from a single bulk crystal, thus providing an economical wafer production technology for infrared detector materials. High-energy (MeV) light ions will be used to produce a buried damaged layer in the bulk crystal. Thermal annealing at elevated temperatures may generate lateral crack enabling the layer separation. Phase I has shown the feasibility of this approach. Phase II research objectives are to optimize the process parameters for wafer-scale separation without breaking and develop the process to transfer the separated films on to Si wafers. The wafers thus fabricated will be used for epitaxial growth of HgCdTe and fabrication of IR detectors. CdTe and (Cd,Zn)Te alloy crystals have been grown by various techniques including zone refining, vertical gradient freeze (VGF), liquid encapsulated Czochralski (LEC) methods, horizontal and vertical Bridgman techniques. Due to variable yields, none of these methods have produced enough material with the quality needed for today's infrared (IR) detector applications. <br/>The proposed method has been developed to overcome these limitations.<br/><br/>Commercially, the proposed technique has the advantage of producing many good quality substrates from a single bulk crystal by ion beam slicing, thus providing an economic way of producing reliable and reproducible quality material. Also, large area CdZnTe substrate for the growth of HgCdTe will be possible by stacking smaller slices in a floor tile pattern on cheaper Si substrates. Bonding with Si substrate will also allow the integration of IR detectors with electronics on a single chip. IR photodetectors and focal plane arrays are of interest in many industrial and scientific applications including environmental monitoring, chem-bio detection, medical and space sensors.

  • Program Officer
    William Haines
  • Min Amd Letter Date
    8/23/2005 - 19 years ago
  • Max Amd Letter Date
    8/22/2008 - 16 years ago
  • ARRA Amount

Institutions

  • Name
    UES, Inc.
  • City
    DAYTON
  • State
    OH
  • Country
    United States
  • Address
    4401 DAYTON XENIA RD
  • Postal Code
    454321894
  • Phone Number
    9374266900

Investigators

  • First Name
    Rabi
  • Last Name
    Bhattacharya
  • Email Address
    rbhattacharya@ues.com
  • Start Date
    8/23/2005 12:00:00 AM

FOA Information

  • Name
    Materials Research
  • Code
    106000
  • Name
    Industrial Technology
  • Code
    308000