SCAFFOLD PLANK WITH END CONNECTOR AND METHOD OF MAKING THE SAME

Information

  • Patent Application
  • 20070289813
  • Publication Number
    20070289813
  • Date Filed
    June 06, 2007
    17 years ago
  • Date Published
    December 20, 2007
    16 years ago
Abstract
A scaffold plank assembly for engagement to a scaffolding frame. The scaffold plank assembly comprises an elongate, non-metal plank which defines opposed first and second ends and at least one interior cavity. Attached to respective ones of the opposed ends of the plank is a pair of end connectors. The end connectors each comprise a main body, and at least two arms which are attached to the main body. Attached to and extending from the main body is at least one attachment finger which is extensible into the interior cavity of the plank. The main body also includes at least two notches formed therein which are sized and configured to receive respective ones of the arms of another end connector in a nesting fashion. Additionally, disposed within the attachment finger of the end connector is an aperture which may be coaxially aligned with a pair of apertures disposed within the plank when the attachment finger is fully advanced into the interior cavity thereof. These coaxially aligned apertures are adapted to receive an elongate pin which, when advanced through the apertures and secured to the plank, maintains the end connector in firm engagement to the plank. The plank itself may further be provided with a non-slip texture which is formed directly within the outer, top surface of the top wall thereof.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

The present invention relates generally to scaffolding systems, and more particularly to a scaffold plank fabricated from a plastic material and optionally including end connectors which are configured to facilitate the firm engagement of the plank to a support frame structure.


As is well known in the building industry, scaffolding is virtually always employed during various facets of exterior and/or interior building construction or refurbishment. Known scaffolding systems typically comprise steel support frame structures which are selectively engageable to each other in a stacked fashion for achieving a desired overall height. In addition to the support frame structures, the scaffolding system includes a multiplicity of elongate scaffold planks, each of which is horizontally extensible between a respective pair of the support frame structures. The prior art scaffold planks are most typically fabricated from wood. Indeed, the use of wood for the prior art scaffold planks has been a long standing tradition in the building industry


Though wood scaffold planks have been and continue to be generally suitable for use in scaffolding systems, the use of wood for the scaffolding planks gives rise to certain shortcomings and deficiencies which detract from their overall utility. More particularly, scaffold planks fabricated from wood are susceptible to splitting as well as to dry rot. Additionally, when exteriorly used scaffolding systems are subjected to rain or thunder storms as often occurs, the resultant water soaking of the wood scaffold planks virtually doubles their weight as compared to when dry, thus substantially increasing the difficulty by which they are moved or otherwise manipulated. Such water soaking of the wood scaffold planks also often results in the warping or twisting thereof. As will be recognized, due to their susceptibility to splitting, dry rot and warping/twisting, the prior art wood scaffold planks have a reasonably limited life span and require moderately frequent replacement.


Another drawback associated with the use of wood scaffold planks is the common occurrence of scaffold setters experiencing splinters in their hands when working with the same. Indeed, occurrences of splinters can reach a level of severity resulting in the initiation of a workers compensation claim. Moreover, because nails are also often used in conjunction with wood scaffold planks, workers are more susceptible to being injured by nails which are left there within.


A further problem associated with the use of wood scaffold planks is the relatively high cost thereof attributable to diminishing supplies of lumber. Indeed, ongoing extensive worldwide deforestation and the related environmental and ecological problems has, in addition to resulting in increases in the price of lumber, stimulated a movement to adopt lumber alternatives for purposes of contributing to the conservation and restoration of forests. These diminishing supplies of lumber also frequently give rise to delays in the delivery of lumber raw material to those mills which manufacture wood scaffold planks, thus resulting in periodic problems in meeting the supply demands of the building industry. Though metal (e.g., aluminum) scaffold planks have been developed in the prior art as an alternative to wood planks, such aluminum planks are extremely costly. Additionally, both the wood and aluminum scaffold planks of currently known scaffolding systems lack connectors which are suited to allow the plank to be quickly and easily engaged to a support frame structure.


The present invention addresses these concerns by providing a scaffold plank which is manufactured or fabricated from a plastic material and may optionally be provided with end connectors which are specifically sized and configured to facilitate the quick and easy interface of the plank to a scaffolding system support frame structure. As will be discussed below, the plastic scaffold plank of the present invention, though possessing the same level of structural integrity or rigidity as the prior art wood scaffold planks, does not have the same susceptibility to splitting, dry rot or warping/twisting. Additionally, the weight of the scaffold plank of the present invention is the same whether wet or dry. The use of plastic for the scaffold planks of the present invention also eliminates occurrences of splinters, and substantially eliminates injuries potentially caused by nails left therein. Further, since the scaffold planks of the present invention may be fabricated from recycled/recyclable plastic material, they address the need of recycling used plastic into a useful product, in addition to satisfying the increasing desire in industry for lumber alternatives. These, and other features of the present invention will be described in more detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided a scaffold plank assembly for engagement to a scaffolding frame. The scaffold plank assembly comprises an elongate, non-metal plank which defines opposed first and second ends and at least one interior cavity. Attached to respective ones of the opposed ends of the plank is a pair of end connectors. The end connectors each comprise a main body defining an arcuate engagement surface, and at least two arms which are attached to the main body. Each of the arms defines an arcuate engagement surface which is substantially continuous with the body engagement surface. Attached to and extending from the main body is at least one attachment finger which is extensible into the interior cavity of the plank. The body and arm engagement surfaces are sized and configured to be cooperatively engageable to the scaffolding frame.


In addition to the arcuate body engagement surface, the main body includes at least two notches formed therein. The notches are sized and configured to receive respective ones of the arms of another end connector in a nesting fashion, thus allowing the end connectors of two adjacent scaffold planks to be cooperatively engaged to a common support bar of the scaffolding frame. Additionally, disposed within the attachment finger of the end connector is an aperture which may be coaxially aligned with a pair of apertures disposed within the plank when the attachment finger is fully advanced into the interior cavity thereof. These coaxially aligned apertures are adapted to receive an elongate pin which, when advanced through the apertures and secured to the plank, maintains the end connector in firm engagement to the plank. The plank itself may further be provided with a non-slip texture which is formed directly within the outer, top surface of the top wall thereof.




BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a top perspective view of a scaffold plank constructed in accordance with a first embodiment of the present invention;



FIG. 1A is a partial bottom perspective view of the scaffold plank shown in FIG. 1, illustrating the optional inclusion of a frame setting notch in the underside thereof;



FIG. 2 is a partial top perspective, cut-away view of the scaffold plank constructed in accordance with the first embodiment of the present invention, illustrating its end cap as being exploded from the main body thereof;



FIG. 2A is a front perspective view of the end cap of the scaffold plank of the first embodiment of the present invention, the rear perspective view of the end cap being shown in FIG. 2;



FIG. 3 is a partial top perspective, cut-away view of a scaffold plank constructed in accordance with a second embodiment of the present invention;



FIG. 4 is a partial bottom perspective, cut-away view of the scaffold plank shown in FIG. 3, illustrating its bottom cover as being exploded from the main body thereof;



FIG. 5 is an exploded view of a scaffold plank constructed in accordance with a third embodiment of the present invention, and the end connector used in conjunction therewith:



FIG. 6 is a cross-sectional view of the end connector shown in FIG. 5, further illustrating the manner in which the end connector is engaged to a segment of a support frame structure;



FIG. 7 is a top perspective view of a steel reinforcement plate of the end connector shown in FIGS. 5 and 6;



FIGS. 8 and 9 are top perspective views illustrating the manner in which the scaffold planks of the third embodiment including the end connectors shown in FIGS. 5-7 are interfaced to a support frame structure;



FIG. 10 is a perspective view illustrating the manner in which scaffold planks of the third embodiment and the corresponding end connectors may be interfaced to a support frame structure in side-by-side relation, and further illustrating an optional corner connector which may be used in conjunction with the scaffold planks of the third embodiment;



FIG. 11 is top perspective view of a scaffold plank constructed in accordance with a fourth embodiment of the present invention having a pair of end connectors cooperatively engaged to respective ones of the opposed ends thereof;



FIG. 12 is bottom perspective view of the scaffold plank shown in FIG. 11;



FIG. 13 is top perspective view of the scaffold plank of the fourth embodiment similar to FIG. 11, but further illustrating one of the end connectors as partially exploded from one end of the scaffold plank;



FIG. 14 is bottom perspective view of the scaffold plank shown in FIG. 13;



FIG. 15 is top plan view of the scaffold plank of the fourth embodiment similar to FIG. 13, but further illustrating one of the end connectors as fully exploded from one end of the scaffold plank;



FIG. 16 is side perspective view of one end of the scaffold plank of the fourth embodiment with the corresponding end connector removed therefrom; and



FIG. 17 is top plan view of a connector pin which is used to secure each of the end connectors to the scaffold plank of the fourth embodiment of the present invention.




DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 perspectively illustrates a scaffold plank 10 constructed in accordance with a first embodiment of the present invention. The scaffold plank 10 has an elongate, generally rectangular configuration and includes a main body 12 which defines opposed ends. Attached to the respective ones of the opposed ends of the main body 12 is a pair of identically configured end caps 14, the precise structural attributes of which will be described in more detail below. In the first embodiment, the preferred height or thickness of the scaffold plank 10 is in the range of from about 1.0 inch to about 2.50 inches, and is preferably about 1.50 inches. The preferred width of the scaffold plank 10 is in the range of from about 6.0 inches to about 15.0 inches, and is preferably about 9.50 inches. The overall length of the scaffold plank 10 (including the main body 12 and end caps 14) is variable. In this respect, it is contemplated that the scaffold plank 10 may be provided to have an overall length of either 6 feet, 9 feet, 12 feet, or 16 feet. However, those of ordinary skill in the art will recognize that the scaffold plank 10 of the present invention may be fabricated to have length, width, and/or height dimensions differing from those described above.


As seen in FIGS. 1 and 1A, the scaffold plank 10 may be provided with two pairs of pre-formed nail holes 16, with each pair of the nail holes 16 being disposed within the body 12 in relative close proximity to a respective one of the end caps 14. In addition to the nail holes 16, the main body 12 of the scaffold plank may be formed to include a spaced pair of arcuately contoured, concave frame setting notches 18 in the underside or bottom surface 20 thereof. As will be described in more detail below, the nail holes 16 and/or frame setting notches 18, if included, are preferably formed in the main body 12 via finishing operations conducted subsequent to the fabrication of the main body 12. The nail holes 16 and/or frame setting notches 18 are used to facilitate the engagement or interface of the scaffold plank 10 to a conventional steel frame support structure of a scaffolding system.


Referring now to FIGS. 2 and 2A, the main body 12 of the scaffold plank 10 itself comprises a top wall 22 which defines a top surface 24, a bottom wall 26 which defines the bottom surface 20, and an opposed pair of longitudinally extending sidewalls 28 which are integrally connected to the top and bottom walls 22, 26. Integrally connected to and extending perpendicularly between the top and bottom walls 22, 26, and in particular the inner surfaces thereof, are five (5) reinforcement webs 30. The reinforcement webs 30 extend in generally parallel relation to each other, thus defining six (6) compartments of cavities which extend longitudinally within the interior of the main body 12. In the scaffold plank 10, the preferred thickness of the top, bottom and sidewalls 22, 26, 28 and reinforcement webs 30 is approximately 0.1875 inches.


As further seen in FIG. 2, formed on the inner surface of the top wall 22 and extending longitudinally therealong in spaced, generally parallel relation to each other are seven (7) ribs 32. Similarly, formed on and extending longitudinally along the inner surface of the bottom wall 26 in spaced, generally parallel relation to each other are seven (7) ribs 34 which are disposed in opposed, aligned relation to respective ones of the ribs 32. The ribs 32, 34 extend generally perpendicularly from the inner surfaces of the top and bottom walls 22, 26, respectively. In the scaffold plank 10, the top, bottom and sidewalls 22, 26, 28 and ribs 32, 34 extending within the outermost pair of cavities collectively form a pair of slots which are each adapted to accommodate an elongate, rectangularly configured reinforcement bar 36. The centermost pair of ribs 32, 34, top and bottom walls 22, 26, and centermost reinforcement web 30 also collectively define a slot which is adapted to accommodate a third reinforcement bar 36. The four remaining ribs 32 and four remaining ribs 34 collectively define two more slots which extend within respective ones of those cavities disposed adjacent the outermost pair and are adapted to accommodate two additional reinforcement bars 36. In the scaffold plank 10, the reinforcement bars 36 are each preferably fabricated from steel having a thickness of approximately 0.1875 inches.


In the scaffold plank 10 shown in FIG. 2, three (3) reinforcement bars 36 are depicted as being disposed within respective ones of the five (5) slots extending within the interior of the main body 12. Those of ordinary skill in the art will recognize that no reinforcement bars 36 need to be provided within the main body 12, and that less than three or up to five reinforcement bars 36 may be included therein. The number of reinforcement bars 36, if any, included in the interior of the main body 12 of the scaffold plank 10 is dependent upon the level of structural integrity or rigidity desired in relation thereto. In the scaffold plank 10, each of the reinforcement bars 36 is preferably sized such that when disposed within the interior of the main body 12 in the above-described manner, the opposed ends thereof do not protrude beyond respective ones of the opposed ends of the main body 12.


As indicated above, in addition to the main body 12, the scaffold plank 10 includes the end caps 14 which are attached to respective ones of the opposed ends of the main body 12. As seen in FIGS. 2 and 2A, each of the end caps 14 has a generally rectangular configuration, and includes an outer surface 38 which defines a pair of beveled or concave corner regions adjacent respective ones of the lateral sides thereof. In addition to the outer surface 38, each end cap 14 has an inner surface 40 which includes an elongate channel 42 formed therein. The channel 42 is formed within each end cap 14 for purposes of reducing the overall weight thereof. As seen in FIG. 2, the channel 42 terminates inwardly of the lateral sides of the end cap 14.


Formed on the inner surface 40 of each end cap 14 are a total of eight (8) rectangularly configured attachment tabs 44. The attachment tabs 44 are arranged in two sets of four, with the attachment tabs 44 of each set being disposed in spaced relation to each other along a respective one of the longitudinal sides of the channel 42. Additionally, the attachment tabs 44 of one set are disposed in opposed, linear alignment with respective ones of the attachment tabs 44 of the other set. Importantly, the attachment tabs 44 are oriented so as to be advanceable into respective ones of the cavities defined within the main body 12 and not interfere with any of the reinforcement webs 30 thereof. In this respect, the attachment tabs 44 are sized and configured such that when each opposed pair thereof is received into a respective one of the cavities of the main body 12, those edges of the attachment tabs 44 disposed furthest from the channel 42 are in abutting contact with the inner surfaces of respective ones of the top and bottom walls 22, 26 of the main body 12. Those of ordinary skill in the art will recognize that different numbers of attachment tabs 44 arranged in alternative patterns are contemplated in relation to the end caps 14. In the scaffold plank 10, each of the end caps 14 may be sonically welded to the main body 12, or may alternatively be attached to the main body 12 through the use of fasteners such as pins, snap fit, or an adhesive. However, those of ordinary skill in the art will recognize that other methods may be employed to facilitate the attachment of the end caps 14 to the main body 12. As is seen in FIG. 1, the end caps 14 are sized relative to the main body 12 such that when attached thereto, the longitudinal sides of the end caps 14 are substantially flush with the bottom surface 20 of the bottom wall 26 and top surface 24 of the top wall 22, with the lateral sides of the end caps 14 being substantially flush with respective ones of the outer surfaces of the sidewalls 28.


Both the main body 12 and end caps 14 of the scaffold plank 10 are preferably fabricated from a plastic material. A preferred plastic material is a ten percent to fifty percent glass-filled polypropylene/nylon blend. Such plastic material may alternatively comprise either virgin or recycled plastic. It is contemplated that the plastic or nylon material may be filled with either glass or another suitable reinforcement material to increase the structural integrity/rigidity thereof. Those of ordinary skill in the art will further recognize that the main body 12 and end caps 14 need not necessarily be fabricated from identical materials. In this respect, each of the end caps 14 could be fabricated from a metallic material such as aluminum. As indicated above, each of the reinforcement bars 36 is preferably fabricated from steel.


Additionally, the main body 12 of the scaffold plank 10 is preferably fabricated via an extrusion process. If one or more reinforcement bars 36 is to be included within the interior of the main body 12, it is preferred that the plastic material used to form the main body 12 will be extruded about the reinforcement bar(s) 36. However, those of ordinary skill in the art will recognize that the reinforcement bars 36 may be inserted into the interior of the main body 12 via a separate procedure which is conducted subsequent to the formation of the main body 12 via the extrusion process. The end caps 14 are preferably fabricated through the use of an injection molding or vacuum forming process and, as indicated above, secured to respective ones of the opposed ends of the main body 12 subsequent to the fabrication of the same.


Subsequent to the fabrication of the main body 12 via the extrusion process, it is contemplated that the nail holes 16 may be formed therein via a follow-up drilling operation. Additionally, the frame setting notches 18 may be formed in the bottom surface 20 via a follow-up grinding or machining operation. Moreover, the top surface 24 of the top wall 22 may be subjected to a grinding or machining operation for purposes of applying a texture or roughened feature thereto. Though not shown, it is further contemplated that the cavities defined by the main body 12 may be filled with structural foam or some equivalent thereto prior to the attachment of the end caps 14 to the main body 12 for purposes of increasing the structural strength or rigidity of the completed scaffold plank 10.


Referring now to FIGS. 3 and 4, there is depicted a scaffold plank 100 constructed in accordance with a second embodiment of the present invention. The scaffold plank 100 also has an elongate, generally rectangular configuration and includes a main body having a top wall 104 which defines a top surface 106, an opposed pair of longitudinally extending sidewalls 108 which are integrally connected to the top wall 104, and an opposed pair of end walls 110 which are integrally connected to the top and sidewalls 104, 108 and define respective ones of the opposed ends of the scaffold plank 100. Though the scaffold plank 100 of the second embodiment preferably does not include the previously described end caps 14 since the opposed ends thereof are defined by the end walls 100 of the main body 102, those of ordinary skill in the art will recognize that such end caps 14 may be employed as an alternative to the integrally formed end walls 100. Similar to the configuration of the outer surfaces 38 of the end caps 14, the end walls 110 of the main body 102 may be formed to include beveled corner regions adjacent respective ones of the sidewalls 108.


As is seen in FIGS. 3 and 4, the main body 102 of the scaffold plank 100 is formed to include four (4) channel members 112 which are integrally connected to the inner surface of the top wall 104 and extend longitudinally therealong in spaced, generally parallel relation to each other. The outermost pair of channel members 112 each has a generally L-shaped configuration and, in addition to being integrally connected to the inner surface of the top wall 104, are integrally connected to the inner surfaces of respective ones of the sidewalls 108. The central two channel members 112 each have a generally U-shaped configuration and are integrally connected to only the inner surface of the top wall 104. In the scaffold plank 100, the outermost pair of channel members 112 and inner surfaces of the top and sidewalls 104, 108 collectively define a pair of slots, with another pair of slots being collectively defined by the central two channel members 112 and inner surface of the top wall 104. Each of these four (4) slots has a generally rectangular configuration and extends substantially along the length of the main body 102. Additionally, each of these slots is sized and configured to accommodate a reinforcement bar 114 which is identically configured to the previously described reinforcement bar 36 and preferably fabricated from steel.


In addition to the channel members 112, integrally connected to and extending perpendicularly from the inner surface of the top wall 104 are three (3) longitudinally extending primary reinforcement webs 116. In the scaffold plank 100, each of the primary reinforcement webs 116 is disposed equidistantly between an adjacent pair of channel members 112 and extends in generally parallel relation thereto. Integrally connected to and extending angularly between each of the primary reinforcement webs 116 and the channel members 112 of the corresponding pair are a plurality of secondary reinforcement webs 118 which are also integrally connected to the inner surface of the top wall 104 and extend generally perpendicularly relative thereto. As is best seen in FIG. 4, the channel members 112 and primary and secondary reinforcement webs 116, 118 are each sized and configured such that the distal surfaces thereof (i.e., those surfaces disposed furthest from the inner surface of the top wall 104) and are oriented inwardly from the distal edges of the sidewalls 108 and end walls 110 (or end caps 14) of the main body 102. In this respect, the distal edges of the side and end walls 108, 110 of the main body 102 protrude slightly outwardly from the distal surfaces of the channel members 112 and primary and secondary reinforcement webs 116, 118 for reasons which will be described in more detail below.


In addition to the main body 102, the scaffold plank 100 of the second embodiment may comprise a cover member 120 which also has an elongate, generally rectangular configuration and define opposed, generally planar surfaces. In the scaffold plank 100, the cover member 120 is attached to the main body 102 such that the inner surface of the cover member 120 lies in abutting contact with the distal surfaces of the channel members 112 and primary and secondary reinforcements webs 116, 118. In this respect, the length and width dimensions of the cover member 120 are slightly smaller than those of the main body 102 such that when the inner surface of the cover member 120 is placed in abutting contact with the channel members 112 and primary and secondary reinforcement webs 116, 118 in the aforementioned manner, the outer surface of the cover member 120 is substantially flush or continuous with distal edges of the side and end walls 108, 110 of the main body 102.


The attachment of the cover member 120 to the main body 102 is preferably facilitated through the use of sonic welding, pins, or an adhesive. However, those of ordinary skill in the art will recognize that other methods may be employed to facilitate the attachment of the cover member 120 to the main body 102. Since the cover member 120, when attached to the main body 102, does not protrude beyond the side and end walls 108, 110 of the main body 102, the overall length, width and height dimensions of the scaffold plank 100 are governed by the main body 102 thereof. Though not shown, it is contemplated that a sealing strip will be compressed between the cover member 120 and the main body 102 when the cover member 120 is attached to the main body 102.


In the second embodiment, the preferred height or thickness of the main body 102, and hence the scaffold plank 100, is in the range of from about 1.0 inch to about 2.50 inches, and preferably about 1.50 inches. The preferred width of the main body 102 is in the range of from about 6.0 inches to about 15.0 inches, and is preferably about 9.50 inches. The overall length of the main body 102 is variable, with it being contemplated that the same may be provided in lengths of either 6 feet, 9 feet, 12 feet, or 16 feet.


Like the main body 12 and end caps 14 of the scaffold plank 10 of the first embodiment, both the main body 102 and cover member 120 of the scaffold plank 100 of the second embodiment are preferably fabricated from a plastic material. As is the first embodiment, a preferred plastic material is a ten percent to fifty percent glass-filled polypropylene/nylon blend. An alternative plastic material may be either virgin or recycled plastic. It is contemplated that the plastic or nylon material may be filled with either glass or another suitable reinforcement material to increase the structural integrity/rigidity thereof. As indicated above, each of the reinforcement bars 114 is preferably fabricated from steel. However, the reinforcement bars 114 as well as the above-described reinforcement bars 36 may each be fabricated from a material other than steel.


In the scaffold plank 100 shown in FIGS. 3 and 4, four (4) reinforcement bars 114 are depicted as being disposed within respective ones of the four (4) slots extending within the interior of the main body 102. Those of ordinary skill in the art will recognize that no reinforcement bars 114 need be provided within the main body 102, and that less than four (4) reinforcement bars 114 may be included therein. The number of reinforcement bars 114, if any, included in the interior of the main body 102 of the scaffold plank 100 is dependent upon the level of structural integrity or rigidity desired in relation thereto. Additionally, though the main body 102 is shown as including four (4) channel members 112 and three (3) primary reinforcement webs 116, those of ordinary skill in the art will recognize that the main body 102 may be formed to include greater or fewer channel members 112 and/or primary reinforcement webs 116.


As indicated above, no reinforcement bars 114 need to be provided within the main body 102. In this respect, it is contemplated that as an alternative to the reinforcement bars 114 being included in the main body 102, the channel members 112 may be formed to be of a solid cross-sectional configuration as opposed to partially defining the above-described rectangularly configured slots. In this respect, based upon the particular plastic material used to form the main body 102, the formation of the same with the solid channel members 102 may be sufficient to impart the desired amount of structural integrity/rigidity to the scaffold plank 100.


In the second embodiment, the main body 102 of the scaffold plank 100 is preferably fabricated via an injection molding process, as is the cover member 120 thereof. If one or more reinforcement bars 114 is to be included within the interior of the main body 102, such reinforcement bar(s) 114 will typically be pre-positioned within the mold, with the plastic material thereafter being injection molded about the same, thus resulting in the reinforcement bars 114 being molded in place. Additionally, as seen in FIG. 3, it is contemplated that the mold may be formed to provide the top surface 106 of the top wall 104 with non-skid characteristics through the formation of multiple, generally circular protuberances 122 thereon, with such protuberances 122 being arranged in generally parallel rows. As an alternative to being formed to include the protuberances 122, the top surface 106 of the top wall 104 may be subjected to a follow-up grinding or machining operation subsequent to the molding of the main body 102 for purposes of applying a texture or roughened feature thereto. The outer surface of the cover member 120 may also be formed to include a texture or roughened feature. Though the main body 102 and the cover member 120 are preferably fabricated via an injection molding process, it is contemplated that either or both of the main body 102 and cover member 120 may be fabricated via a vacuum forming or extrusion process. Additionally, though not shown, it is contemplated that the previously described nail holes 16 and/or frame setting notches 18 may be formed within the scaffold plank 100 via processes/techniques similar to those previously described in relation to the scaffold plank 10 of the first embodiment.


It is contemplated in the scaffold plank 100 of the second embodiment, the cover member 120 may be formed as an integral portion of the main body 102 as opposed to a separate component attached thereto. In this respect, the main body 102 including the cover member 120 as an integral portion thereof may be formed or fabricated as a totally symmetrical component or part. Both of the sides or faces of such symmetrical part could be provided with a texture or roughened feature, with the absence of any nail holes 16 and frame setting notches 18 allowing the same to be positioned upon scaffolding in any orientation. If formed to include the cover member 120 as an integral portion thereof, it is contemplated that the main body 102 will be molded in two identical halves defined by bisecting the side walls 108 along a common plane. These two symmetrical halves of the main body 102 (one of which would include the integrally formed cover member 120) would be attached to each other via sonic welding or an adhesive to facilitate the formation of the scaffold plank 100. Each of the symmetrical halves could be individually fabricated via injection molding, rotational molding, or a vacuum forming process.


Referring now to FIG. 5, there is shown a scaffold plank 200 constructed in accordance with a third embodiment to the present invention. The scaffold plank 200 is preferably outfitted with a pair of end connectors 202 which are cooperatively engaged to respective ones of the opposed ends of the scaffold plank 200. The structural and functional attributes of each end connector 202 (one of which is shown in FIG. 5 as exploded from the scaffold plank 200) will be described in more detail below.


As seen in FIG. 5, the scaffold plank 200 is preferably a unitary structure which defines a generally planar, sheet-like top wall 204 and a generally planar, sheet-like bottom wall 206. The top and bottom walls 204, 206 extend in spaced relation to each other along respective ones of a generally parallel pair of planes. Extending perpendicularly between corresponding pairs of the longitudinal edges of the top and bottom walls 204, 206 is a spaced, generally parallel pair of side walls 208. Though the inner surfaces of the side walls 208 are generally planar, the outer surfaces thereof each include an integral upper rail 210 and an integral lower rail 212 extending longitudinally therealong in spaced, generally parallel relation to each other. The upper rails 210 extend along respective ones of the opposed longitudinal sides of the top wall 204, and are each substantially flush with the outer surface of the top wall 204. Similarly, the lower rails 212 extend along respective ones of the opposed longitudinal sides of the bottom wall 206 and are each substantially flush with the outer surface of the bottom wall 206. As shown in FIG. 5, each of the upper and lower rails 210, 212 is preferably hollow, though the same may alternatively be formed to have solid cross-sectional configurations. Due to the inclusion of the upper and lower rails 210, 212 thereon, each side wall 208 defines an elongate slot 214, the use of which will also be discussed in more detail below.


The scaffold plank 200 further comprises a plurality of reinforcement walls 216 which extend perpendicularly between the inner surfaces of the top and bottom walls 204, 206. The reinforcement walls 216 extend longitudinally along the length of the scaffold plank 200 in spaced, generally parallel relation to each other. Though the reinforcement walls 216 are equidistantly spaced relative to each other, the spacing between the outermost pair of reinforcement walls 216 and respective ones of the side walls 208 is reduced in comparison to the spacing between the reinforcement walls 216. As a result, an outer pair of cavities collectively defined by the top and bottom walls 204, 206, outermost pair of reinforcement walls 216, and side walls 208 each have a width which is less than that of multiple inner cavities which are each collectively defined by the top and bottom walls 204, 206 and an adjacent pair of the reinforcement walls 216. As seen in FIG. 5, the scaffold plank 200 is formed to include five reinforcement walls 216. As a result, the scaffold plank 200 includes four inner cavities and two outer cavities which, as indicated above, are of reduced width as compared to the inner cavities. However, those of ordinary skill in the art will recognize that the number of reinforcement walls 216 included in the scaffold plank 200 as shown in FIG. 5 is exemplary only, in that greater or fewer reinforcement walls 216 may be formed to extend between the top and bottom walls 204, 206. Also exemplary is the spacing between the reinforcement walls 216, in that it is contemplated that the reinforcement walls 216 may be equidistantly spaced relative to each other and to the side walls 208, thus causing all of the cavities defined by the scaffold plank 200 to be of equal size.


It is contemplated that the scaffold plank 200 of the third embodiment will be fabricated in its entirety from a non-metal material via an extrusion or injection molding process. Exemplary materials for the scaffold plank 200 include various types of plastics (e.g., glass-filled polyethylene), fiber reinforced composites, or combinations thereof. In this regard, it is further contemplated that the extrusion process preferably used to facilitate the formation of the scaffold plank 200 may be carried out in a manner wherein various portions of the scaffold plank 200 are fabricated from a fiber reinforced plastic or composite, with other portions simply being fabricated from a non-reinforced plastic material. More particularly, depending on the level of structural integrity desired for the scaffold plank 200, one or more of the reinforcement walls 216 may be fabricated from a fiber reinforced composite material, with the remainder of the scaffold plank 200 being fabricated from a plastic material. As indicated above, the extrusion process preferably used to facilitate the formation of the scaffold plank 200 may be completed such that the scaffold plank 200 is a unitary structure, despite proscribed areas of the scaffold plank 200 being fabricated from differing non-metallic materials. As a further variation, the scaffold plank 200 as shown in FIG. 5 may be fabricated entirely from a non-reinforced plastic material, with reinforcing sheets of a fiber reinforced composite material being applied to the outer surface of the top wall 204 and/or the outer surface of the bottom wall 206 for purposes of increasing the structural integrity/rigidity of the scaffold plank 200. In the scaffold plank 200, the outer surface of the top wall 204 and the outer surface of the bottom wall 206 are preferably formed to have a roughened or textured feature to provide the scaffold plank 200 with non-slip characteristics. However, those of ordinary skill in the art will recognize that the non-skid, roughened texture may be included on only the outer surface of the top wall 204.


Referring now to FIGS. 5-7, as indicated above, the scaffold plank 200 of the third embodiment preferably includes a pair of end connectors 202 cooperatively engaged to respective ones of each of the opposed ends thereof. Each end connector 202 includes an engagement portion 218 having a main body 220 which defines an arcuate, generally concave body surface 222. The body surface 222 spans approximately ninety degrees. Formed within the main body 220 is a spaced pair of notches 224, each of which has a generally V-shaped configuration defining an arcuate lower apex. In addition to the main body 220, the engagement portion 218 of the end connector 202 includes a spaced, identically configured pair of arms 226 which are integrally connected to the main body 220. Each of the arms 226 defines an arcuate, generally concave arm surface 228 which, like the body surface 222, also spans approximately ninety degrees. The main body 220 and arms 226 are oriented relative to each other such that one of the notches 224 is disposed between the arms 226, with the remaining notch 224 being disposed between one arm 226 and one lateral end of the main body 220. Importantly, the main body 220 and arms 226 are oriented relative to each other such that the arms surfaces 228 of the arms 226 are continuous with the body surface 222 of the main body 220. Thus, the arms surfaces 228 and portions of the body surface 222 collectively define engagement surfaces which span, in total, approximately 180°. Each arm 226 also has a generally V-shaped configuration when viewed from a top perspective, with the side walls of the arm 26 oriented between the notches 224 being continuous with the side walls of such notches 224. One side wall of the remaining arm 226 is continuous with the side wall of the notch 224 disposed between the arms 226. As seen in FIG. 5, due to the shape of the engagement portion 218 of the end connector 202, the depth of the notch 224 located between the arms 226 appears to be greater than that of the remaining notch 224 due to the side wall of the notch 224 between the arms 226 being continuous with one side wall of each of the arms 226.


In addition to the engagement portion 218, the end connector 202 includes a plurality of elongate attachment fingers 230 which protrude perpendicularly from the side of the main body 220 opposite that including the body surface 222 formed therein. The fingers 230 extend in spaced, generally parallel relation to each other, and are each preferably hollow. As is best seen in FIG. 5, the fingers 230 are sized and configured to be advanceable into respective ones of the cavities defined by the scaffold plank 200. In this regard, since the cavities of the scaffold plank 200 are of differing widths as indicated above, the outermost pair of fingers 230 of the end connector 202 are of reduced width as compared to the remaining fingers 230. In this regard, the outermost pair of fingers 230 are sized and configured to be advanceable into respective ones of the outer pair of cavities defined by the scaffold plank 200, with the remaining fingers 230 being sized and configured to be advanceable into respective ones of the inner cavities defined by the scaffold plank 200. The advancement of the fingers 230 into respective ones of the cavities is limited by the abutment of a peripheral portion of the surface of the main body 220 from which the fingers 230 extend against corresponding lateral edges of the top and bottom walls 204, 206 and side walls 208 of the scaffold plank 200, in the manner shown in FIG. 6.


It is contemplated that the end connector 202 will be fabricated from a plastic material via an injection molding process, with the attachment fingers 230 being integrally connected to the main body 220 of the engagement portion 218. As seen in FIGS. 6 and 7, it is further contemplated that the structural integrity of each end connector 202 may optionally be increased through the inclusion of a reinforcement plate 244 therein. The reinforcement 244 is preferably fabricated from a metal material (e.g., steel), and has a shape which is complimentary to that of the main body 220, arms 226, and fingers 230. More particularly, the reinforcement plate 244 includes a plurality of reinforcement fingers 246 which are sized and configured to be advanceable into the interiors of respective ones of the attachment fingers 230. Additionally, the reinforcement plate 244 includes a pair of arcuate reinforcement arms 248 which are extensible into the interiors of respective ones of the arms 226. Since the end connector 202 is preferably fabricated via an injection molding process, it is contemplated that the reinforcement plate 244 will initially be included in the mold cavity, with the plastic material used to form the remainder of the end connector 202 being injected into the mold cavity in a manner effectively encapsulating the reinforcement plate 244 in the manner shown in FIG. 6.


As indicated above, the cooperative engagement of each end connector 202 to a respective end of the scaffold plank 200 is facilitated by the advancement of the fingers 230 of the end connector 202 into respective ones of the elongate cavities defined by the scaffold plank 200, such advancement terminating when the end of the scaffold plank 200 is abutted against the main body 220 of the engagement portion 218 in the above-described manner. It is contemplated that each end connector 202 will be maintained in firm engagement to the scaffold plank 200 through the use of multiple fasteners such as screws 250. As seen in FIGS. 5 and 6, one pair of screws 250 is advanced through respective ones of a pair of openings disposed within one side wall 208 of the scaffold plank 200 and into respective ones of a complimentary pair of internally threaded apertures 252 disposed within one of the outer pair of fingers 230 of the end connector 202. A second pair of screws 250 is extended through openings in the remaining side wall 208 and into a complimentary pair of internally threaded apertures 252 disposed in the remaining finger 230 of the outer pair. Since the openings in the side walls 208 of the scaffold plank 200 are disposed within the bottom surfaces of respective ones of the slots 214, the heads of the screws 250 do not protrude beyond the outermost surfaces of the upper and lower rails 210, 212 of each side wall 208, i.e., the heads of the screws 250 are effectively contained within respective ones of the slots 214. It is contemplated that the mechanical interlock between the end connectors 202 and scaffold plank 200 facilitated by the screws 250 may be supplemented by the application of an adhesive to prescribed portions of each end connector 202 prior to the advancement of the attachment fingers 230 thereof into the interior of the scaffold plank 200. Additionally, the screws 250 may be omitted in their entirety as a result of the use of an adhesive.



FIGS. 8 and 9 depict the manner in which a pair of scaffold planks 200 which each include the end connectors 202 attached to each of the opposed ends thereof are interfaced to a horizontal support bar 254 of a scaffolding support frame 256. As seen in FIGS. 6, 8 and 9, the end connector 202 is engaged to the support bar 254 such that the arms 226 extend about the support bar 254. More particularly, the outer surface of the support bar 254 is abutted directly against the arcuate body surface 222 of the main body 220 and against the arms surfaces 228 of the arms 226. Advantageously, since the body surface 222 spans the entire length of the main body 220, the scaffold plank 200 is not susceptible to rocking or tipping when weight or downward force is applied to the longitudinal edges thereof.


Once one end connector 202 of one scaffold plank 200 is cooperatively engaged to the support bar 254 in the above-described manner, one end connector 202 of the remaining scaffold plank 200 is itself cooperatively engaged to the same support bar 254. In this regard, the arms 226 of the end connector 202 of one scaffold plank 200 are nested into respective ones of the notches 224 of the corresponding end connector 202 of the other scaffold plank 200 in the manner shown in FIG. 9. When the corresponding end connectors 202 of the scaffold planks 200 are interfaced to the common support bar 254 as shown in FIG. 9, the contours of the top surfaces of the arms 226 results in the distal portions thereof being recessed downwardly relative to the top surfaces of the main bodies 220 of the engagement portions 218 of the corresponding end connectors 202.


As seen in FIG. 6, further in accordance with the present invention, it is contemplated that each end connector 202 of each scaffold plank 200 may optionally be provided with a locking clip 258 which is preferably fabricated from a resilient metallic material (e.g., steel) and secured to the main body 220 of the engagement portion 218 via one or more fasteners such as screws 260. It will be recognized that each end connector 202 may be outfitted with one relatively large locking clip 258, or multiple, smaller identically configured locking clips 258 disposed in spaced relation to each other. The locking clip 258 is sized and configured to frictionally engage the support bar 254 in the manner shown in FIG. 6, thus inhibiting the easy uplift of the end connector 202 out of engagement to the support bar 254. Those of ordinary skill in the art will recognize that the inclusion of the locking clip(s) 258 are optional, and that alternative locking mechanisms may be included in each end connector 202 to facilitate the secure connection thereof to the scaffolding support frame 256.


Referring now to FIG. 10, further in accordance with the present invention, it is contemplated that the slots 214 included in the side walls 208 of each scaffold plank 200 may be used to accommodate edge connectors (not shown) which effectively maintain two or more scaffold planks 200 in side-by-side attachment to each other, i.e., the longitudinal side wall 208 of one scaffold plank 200 is cooperatively engaged to a corresponding side wall 200 of an adjacent scaffold plank 200. In FIG. 10, three scaffold planks 200 are shown in such side-by-side engagement, with the end connectors 202 of each set of three interconnected scaffold planks 200 themselves being cooperatively engaged to a common horizontal support bar 254 of the scaffolding support frame 256. As further shown in FIG. 10, it is also contemplated that a corner connector 260 may be used in conjunction with two interconnected sets of scaffold planks 200, the corner connector 260 being sized and configured to allow the interconnected sets of scaffold planks 200 to be effectively joined to each other, despite being disposed at a prescribed angular displacement relative to each other. As shown in FIG. 10, the corner connector 260 includes an opposed pair of side edges, each of which is formed to include an arcuate, generally concave engagement surface 262, a plurality of arms 264, and a plurality of notches 266. The engagement surface 262, arms 264 and notches 266 of each side edge are structurally and functionally identical to the body surface 222, notches 224, and arms 226 of each end connector 202. In this regard, when the end connectors 202 of the interconnected scaffold planks 200 of one set are cooperatively engaged to the common support bar 254, one side edge of the corner connector 260 may be cooperatively engaged to the same support bar 254, with the arms 264 of the corner connector 260 being nested within respective ones of the notches 224 of the interconnected scaffold planks 200, and the arms 226 of the interconnected scaffold planks 200 being nested within respective ones of the notches 266 of the corner connector 260.


The corner connector 260 is preferably fabricated from a plastic material via an injection molding process, with the top surface of the corner connector 260 also being provided with a roughened, non-slip texture. As seen in FIG. 10, the corner connector 260 is sized to span approximately 30°, though those of ordinary skill in the art will recognize that the corner connector 260 may be formed to span differing angular intervals. Additionally, multiple corner connectors 260 may be cooperatively engaged to the scaffolding support frame 256 proximate to each other so as to collectively define a span of more than 30°. For example, two corner connectors 260 as shown in FIG. 10 disposed in side-by-side relation to each other would span approximately 60°, with three corner connectors 260 interlocked to the scaffolding support frame 256 in side-by-side relation to each other spanning approximately 90°. Though the corner connector 260 shown in FIG. 10 is shown as being sized to be interfaced to two sets of three interconnected scaffold planks 200, the corner connector 260 may alternatively be sized and configured to span between only two interconnected scaffold planks 200, or even individual scaffold planks 200 which are angularly displaced relative to each other.


Referring now to FIGS. 11-16, there is shown a scaffold plank 300 constructed in accordance with a fourth embodiment to the present invention. The scaffold plank 300 is preferably outfitted with a pair of end connectors 302 which are cooperatively engaged to respective ones of the opposed ends of the scaffold plank 300. The structural and functional attributes of each end connector 302 (one of which is shown in FIGS. 13-15 as exploded from the scaffold plank 300) will be described in more detail below.


As best seen in FIG. 16, the scaffold plank 300 is preferably a unitary structure which defines a generally planar, sheet-like top wall 304 and a generally planar, sheet-like bottom wall 306. The top and bottom walls 304, 306 extend in spaced relation to each other along respective ones of a generally parallel pair of planes. Extending perpendicularly between corresponding pairs of the longitudinal edges of the top and bottom walls 304, 306 is a spaced, generally parallel pair of side walls 308. Though the inner surfaces of the side walls 308 are generally planar, the outer surfaces thereof each include an integral upper rail 310 and an integral lower rail 312 extending longitudinally therealong in spaced, generally parallel relation to each other. The upper rails 310 extend along respective ones of the opposed longitudinal sides of the top wall 304, and are each substantially flush with outer surface of the top wall 304. Similarly, the lower rails 312 extend along respective ones of the opposed longitudinal sides of the bottom wall 306 and are each substantially flush with the outer surface of the bottom wall 306. Each of the upper and lower rails 310, 312 preferably defined a continuous slot or channel 314. The use of these channels 314 will be discussed in more detail below.


The scaffold plank 300 further comprises a plurality of reinforcement walls 316 which extend perpendicularly between the inner surfaces of the top and bottom walls 304, 306. The reinforcement walls 316 extend longitudinally along the length of the scaffold plank 300 in spaced, generally parallel relation to each other. Though the reinforcement walls 316 are equidistantly spaced relative to each other, the spacing between the outermost pair of reinforcement walls 316 and respective ones of the side walls 308 is slightly increased in comparison to the spacing between the reinforcement walls 316. As a result, an outer pair of cavities collectively defined by the top and bottom walls 304, 306, outermost pair of reinforcement walls 316, and side walls 308 each have a width which is slightly greater than that of multiple inner cavities which are each collectively defined by the top and bottom walls 304, 306 and an adjacent pair of the reinforcement walls 316. As seen in FIG. 16, the scaffold plank 300 is formed to include four (4) reinforcement walls 316. As a result, the scaffold plank 300 includes three (3) inner cavities and two (2) outer cavities which, as indicated above, are of increased width as compared to the inner cavities. However, those of ordinary skill in the art will recognize that the number of reinforcement walls 316 included in the scaffold plank 300 as shown in FIG. 16 is exemplary only, in that greater or fewer reinforcement walls 316 may be formed to extend between the top and bottom walls 304, 306. Also exemplary is the spacing between the reinforcement walls 316, in that it is contemplated that the reinforcement walls 316 may be equidistantly spaced relative to each other and to the side walls 308, thus causing all of the cavities defined by the scaffold plank 300 to be of equal size.


In the scaffold plank 300, a pair of apertures 317 is disposed within each of the side walls 308 and within each of the reinforcement walls 316. In FIG. 16, only one aperture 317 of the pair included in each of the side walls 308 and each of the reinforcement walls 316 is shown, the remaining such aperture 317 being located in the same proximity to the opposite end of the scaffold plank 300 as the depicted aperture 317. Thus, the apertures 317 are provided in two sets, with the apertures 317 of one set being disposed within the side walls 308 and reinforcement walls 316 in equidistantly spaced relation to one end of the scaffold plank 300, and the apertures 317 of the remaining set being disposed within the side walls 308 and reinforcement walls 316 in equidistantly spaced relation to the remaining, opposite end of the scaffold plank 300. As is apparent from FIG. 16, the apertures 317 of each set are also positioned in respective ones of the side and reinforcement walls 308, 316 so as to extend in coaxial alignment with each other. The use of each coaxially aligned set of apertures 317 will be described in more detail below.


It is contemplated that the scaffold plank 300 of the fourth embodiment will be fabricated in its entirety from a non-metal material via an extrusion or injection molding process. Exemplary materials for the scaffold plank 300 include various types of plastics (e.g., glass-filled polyethylene), fiber reinforced composites, or combinations thereof. In this regard, it is further contemplated that the extrusion process preferably used to facilitate the formation of the scaffold plank 300 may be carried out in a manner wherein various portions of the scaffold plank 300 are fabricated from a fiber reinforced plastic or composite, with other portions simply being fabricated from a non-reinforced plastic material. More particularly, depending on the level of structural integrity desired for the scaffold plank 300, one or more of the reinforcement walls 316 may be fabricated from a fiber reinforced composite material, with the remainder of the scaffold plank 300 being fabricated from a plastic material. As indicated above, the extrusion process preferably used to facilitate the formation of the scaffold plank 300 may be completed such that the scaffold plank 300 is a unitary structure, even if prescribed areas of the scaffold plank 200 are fabricated from differing non-metallic materials. As a further variation, the scaffold plank 300 may be fabricated entirely from a non-reinforced plastic material, with reinforcing sheets of a fiber reinforced composite material being applied to the outer surface of the top wall 304 and/or the outer surface of the bottom wall 306 for purposes of increasing the structural integrity/rigidity of the scaffold plank 300.


In the scaffold plank 300, the outer surface of the top wall 304 is preferably formed to have a roughened or textured feature to provide the scaffold plank 300 with non-slip characteristics. More particularly, it is contemplated that prescribed areas of the outer surface of the top wall 302 will be formed to include the roughened, textured feature, such feature being provided as three elongate textured strips 319 which extend longitudinally along the outer surface of the top wall 304 in spaced, generally parallel relation to each other. In this regard, two of the textured strips 319 extend along and in spaced relation to respective ones of the longitudinal sides or edges of the top wall 304, with the third, remaining textured strip 319 extending substantially intermediate the outer pair of textured strips 319. It is further contemplated that each of the three textured strips 319 will be formed directly in the outer surface of the top wall 304 during the process of extruding the scaffold plank 300 by embedding three separate strips of roughened fabric within the outer surface of the top wall 304 immediately upon the same exiting the extrusion die. Subsequent to the cooling of the non-metal material used to form the scaffold plank 300, the removal or peeling of the fabric strips from the top wall 304 result in the formation of the textured strips 319 therein. Thus, due to the textured strips 319 constituting part of the top wall 304 as opposed to a separate substance applied thereto, such textured strips 319 are not susceptible to chipping, flaking off or otherwise wearing away during normal use of the scaffold plank 300. Those or ordinary skill in the art will recognize that the inclusion of three textured strips 319 as shown in FIG. 16 is exemplary only, in that the possible inclusion of greater or fewer textured strips 319 of greater or lesser width than that shown in FIG. 16 is contemplated to be within the spirit and scope of the present invention. Those of ordinary skill in the art will also recognize that the non-skid, roughened texture described above may also be included on the outer surface of the bottom wall 306.


As indicated above, the scaffold plank 300 of the fourth embodiment further includes a pair of end connectors 302 cooperatively engaged to respective ones of each of the opposed ends thereof. Each end connector 302 includes an engagement portion 318 having a main body 320 which defines an arcuate, generally concave body surface 322. The body surface 322 spans approximately ninety degrees. Formed within the main body 320 is a spaced pair of notches 324, each of which defines an arcuate, concave apex. In addition to the main body 320, the engagement portion 318 of the end connector 302 includes a spaced, identically configured pair of arms 326 which are integrally connected to the main body 320. Each of the arms 326 defines an arcuate, generally concave arm surface 328 which, like the body surface 322, also spans approximately ninety degrees. The main body 320 and arms 326 are oriented relative to each other such that one of the notches 324 is disposed between the arms 326, with the remaining notch 324 being disposed between one arm 326 and one lateral end of the main body 320. Importantly, the main body 320 and arms 326 are oriented relative to each other such that the arms surfaces 328 of the arms 326 are continuous with the body surface 322 of the main body 320. Thus, the arms surfaces 328 and portions of the body surface 322 collectively define engagement surfaces which span, in total, approximately 180°. As seen in FIG. 15, the side walls of the arm 326 oriented between the notches 324 is continuous with the side walls of such notches 324. One side wall of the remaining arm 326 is continuous with the side wall of the notch 324 disposed between the arms 326. As also seen in FIG. 15, due to the shape of the engagement portion 318 of each end connector 302, the depth of the notch 324 located between the arms 326 appears to be greater than that of the remaining notch 324 due to the side wall of the notch 324 between the arms 326 being continuous with one side wall of each of the arms 326.


In addition to the engagement portion 318, each end connector 302 includes a plurality of elongate, identically configured attachment fingers 330 which protrude perpendicularly from the side of the main body 320 opposite that including the body surface 322 formed therein. The fingers 330 extend in spaced, generally parallel relation to each other. As shown in FIGS. 13-15, five (5) attachment fingers 330 are depicted as protruding from a common side of the main body 320. As is best seen in FIGS. 13 and 14, the fingers 330 are sized and configured to be advanceable into respective ones of the cavities defined by the scaffold plank 300. Disposed within each of the attachment figures 330 is a coaxially aligned set of apertures 331. In this regard, the apertures 331 are positioned within each of the attachment figures 330 such that the apertures 331 of each set, in addition to being coaxially aligned with each other, are also coaxially aligned with the apertures 331 of each remaining set thereof. The advancement of the fingers 330 into respective ones of the cavities is limited by the abutment of a peripheral portion of the surface of the main body 320 from which the attachment fingers 330 extend against corresponding lateral edges of the top and bottom walls 304, 306 and side walls 308 of one end of the scaffold plank 300, in the manner shown in FIGS. 11 and 12. Importantly, when each end connector 302 is fully advanced into a respective end of the scaffold plank 300 in the aforementioned manner such that the main body 320 is abutted against the scaffold plank 300, all of the coaxially aligned apertures 331 of the end connector 302 will further be coaxially aligned with the apertures 317 of that set adjacent the end of the scaffold plank 300 into which the end connector 302 is inserted. Thus, upon the full insertion of the end connectors 302 into respective ones of the opposed ends of the scaffold plank 300, all of the apertures 331 of each end connector 302, in addition to being coaxially aligned with each other, are also coaxially aligned with one set of the apertures 317. Though each end connector 302 is depicted as including five (5) attachment fingers 330 as described above, those of ordinary skill in the art will recognize that end connectors 302 having greater or fewer attachment fingers 330 are contemplated to be within the spirit and scope of the present invention, the precise number of attachment fingers 330 being dependent upon the corresponding number of cavities defined by the scaffold plank 300.


It is contemplated that each end connector 302 will be fabricated from a plastic material via an injection molding process, with the attachment fingers 330 being integrally connected to the main body 320 of the engagement portion 318. As best seen in FIG. 15, it is further contemplated that the structural integrity of each end connector 302 may optionally be increased through the inclusion of a reinforcement plate 344 therein. The reinforcement plate 344 is preferably fabricated from a metal material (e.g., steel), and has a shape which is complimentary to that of the main body 320, arms 326, and fingers 330. Though not shown, like the reinforcement plate 244 described above, the reinforcement plate 344 includes a plurality of reinforcement fingers which are sized and configured to be advanceable into the interiors of respective ones of the attachment fingers 330. Additionally, the reinforcement plate 344 includes a pair of arcuate reinforcement arms which are extensible into the interiors of respective ones of the arms 326. Since the end connector 302 is preferably fabricated via an injection molding process, it is contemplated that the reinforcement plate 344 will initially be included in the mold cavity, with the plastic material used to form the remainder of the end connector 302 being injected into the mold cavity in a manner effectively encapsulating the reinforcement plate 344 in the manner similar to that shown in FIG. 6 in relation to an end connector 202.


As indicated above, the cooperative engagement of each end connector 302 to a respective end of the scaffold plank 300 is facilitated by the advancement of the fingers 330 of the end connector 302 into respective ones of the elongate cavities defined by the scaffold plank 300, such advancement terminating when the end of the scaffold plank 300 is abutted against the main body 320 of the engagement portion 318 in the above-described manner. It is contemplated that each end connector 302 will be maintained in firm engagement to the scaffold plank 300 through the use of an elongate connector pin 350 which is shown in FIG. 17. As shown, the pin 350 includes an enlarged, button-like head 352 which is formed at one end thereof. That end of the connector pin 350 opposite the head 352 defines a juxtaposed pair of ear portions 354 which are separated from each other by an elongate slot 356. Extending laterally outward from the distal end of each ear portion is an integral flange portion. The pin 350 is fabricated from a plastic material of sufficient resiliency such that the ear portions 354 thereof may be selectively flexed inwardly into contact with each other.


To facilitate the attachment of each end connector 302 to the scaffold plank 300, one pin 350 is advanced through the coaxially aligned apertures 331 of the end connector 302, and the coaxially aligned apertures 317 of the corresponding set of the scaffold plank 300. The advancement of the pin 350 through such coaxially aligned apertures 317, 331 is continued until such time as the head 352 of the pin 350 is abutted against the outer surface of one of the side walls 308 of the scaffold plank 300. Advantageously, the pin 350 is sized such that once the abutment of the head 352 against one side wall 308 occurs, the flange portions of the ear portions 354 at the opposite end of the pin 350 will protrude from the opposite, remaining side wall 308, and flex outwardly into engagement with the outer surface of such side wall 308 in a manner preventing the pin 350 from easily being removed from within the coaxially aligned apertures 317, 331. In the event that any end connector 302 is to be separated from the scaffold plank 300, the flange portions of the ear portions 354 of the corresponding pin 350 may be severed through the use of an appropriate cutting tool, thus allowing the pin 350 to be removed from within the coaxially aligned apertures 317, 331, and further allowing the end connector 302 to be separated from the scaffold plank 300. Thus, the pins 350 are intended to be sacrificial, with the re-attachment of the end connector 302 to the scaffold plank 300 being achieved by advancing a new pin 350 into the coaxially aligned apertures 317, 331.


In the scaffold plank 300 including the end connectors 302, the manner in which the such assembly is cooperatively engaged to a scaffolding support frame occurs in the same manner described above in relation to FIGS. 8 and 9 regarding the engagement of the scaffold planks 200 including the end connectors 202 to the scaffolding support frame 256. The channels 314 included in the side walls 308 of the scaffold plank 300 may be used to accommodate edge connectors which effectively maintain two or more scaffold planks 300 in side-by-side attachment to each other, i.e., the longitudinal side wall 308 of one scaffold plank 300 is cooperatively engaged to a corresponding side wall 308 of an adjacent scaffold plank 300. Moreover, it is further contemplated that a corner connector similar to the corner connector 260 shown and described above in relation to FIG. 10 may be used in conjunction with the scaffold planks 300 including the end connectors 302 when such scaffold planks 300 are placed side-by-side.


Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. In this respect, the planks formed in accordance with the present invention may be used in applications other than for scaffolding. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention.

Claims
  • 1. A scaffold plank assembly for engagement to a scaffolding frame, the scaffold plank assembly comprising: an elongate, non-metal plank defining opposed first and second ends; and a pair of end connectors attached to respective ones of the opposed ends of the plank, each of the end connectors comprising: a main body defining an arcuate body engagement surface; an attachment portion which is integrally connected to the main body and cooperatively engageable the plank; and at least two arms attached to the main body, each of the arms defining an arcuate arm engagement surface, the body and arm engagement surfaces being sized and configured to be cooperatively engageable to the scaffolding frame; the main body including at least two notches formed therein which each have a shape that is complementary to the arms, at least one of the notches being disposed between the arms for matingly receiving one of the arms of a similar adjacent end connector therein; and a pair of elongate pins, each of the pins being extensible through the attachment portion of a respective one of the end connectors and through a portion of the plank adjacent one of the first and second ends thereof.
  • 2. The scaffold plank assembly of claim 1 wherein each of the end connectors is fabricated from a non-metal material.
  • 3. The scaffold plank assembly of claim 2 wherein each of the end connectors further comprises an internal metallic reinforcement plate which extends at least partially within the main body and arms thereof.
  • 4. The scaffold plank assembly of claim 1 wherein each of the end connectors further comprises at least one locking clip attached to the main body and frictionally engageable to the scaffolding frame.
  • 5. The scaffold plank assembly of claim 1 wherein the arcuate arm engagement surfaces are substantially continuous with the body engagement surface in each of the end connectors.
  • 6. The scaffold plank assembly of claim 1 wherein the attachment portion comprises at least one elongate attachment finger which is extensible into an interior cavity defined by the plank and includes an aperture disposed therein which is sized and configured to accommodate the advancement of a respective one of the pins therethrough.
  • 7. The scaffold plank assembly of claim 6 wherein the attachment portion comprises a plurality of attachment fingers which extend in spaced, generally parallel relation to each other and are each extensible into the interior cavity of the plank, each of the attachment fingers including an aperture disposed therein, the apertures of the attachment fingers being generally coaxially aligned with each other and sized and configured to accommodate the advancement of a respective one of the pins therethrough.
  • 8. The scaffold plank assembly of claim 7 wherein the plank is fabricated from a plastic material.
  • 9. The scaffold plank assembly of claim 8 wherein the plank includes: an elongate, generally planar top wall defining inner and outer surfaces and opposed pairs of longitudinal and lateral sides; an elongate, generally planar bottom wall defining inner and outer surfaces and opposed pairs of longitudinal and lateral sides; an opposed pair of sidewalls integrally connected to the top and bottom walls and extending along respective pairs of the longitudinal sides of the top and bottom walls in generally parallel relation to each other; and a plurality of reinforcement walls integrally connected to and extending perpendicularly between the inner surfaces of the top and bottom walls and in spaced, generally parallel relation to each other and to the side walls; the attachment fingers of each of the end connectors being extensible between respective adjacent pairs of the sidewalls and reinforcement walls of the plank.
  • 10. The scaffold plank assembly of claim 9 wherein: each of the sidewalls and reinforcement walls of the plank includes a spaced pair apertures disposed therein, the apertures of the sidewalls and reinforcement walls being segregated into two generally coaxially aligned sets which are disposed in relative close proximity to respective ones of the opposed first and second ends of the plank; the apertures of each set are coaxially alignable with the apertures of the attachment fingers of respective ones of the end connectors when the attachment fingers of each of the end connectors are extended between respective adjacent pairs of the sidewalls and reinforcement walls of the plank; and the coaxially aligned apertures of the plank and each of the end connectors are sized and configured to accommodate the advancement of a respective one of the pins therethrough.
  • 11. The scaffold plank assembly of claim 9 wherein at least the outer surface of the top wall includes a textured pattern integrally formed therein.
  • 12. An end connector for attachment to an elongate plank defining opposed first and second ends, the end connector being engageable to a scaffolding frame and comprising: a main body defining an arcuate body engagement surface; a plurality of attachment fingers which are integrally connected to the main body and extend in spaced, generally parallel relation to each other, each of the attachment fingers being extensible into an interior cavity of the plank and including an aperture disposed therein, the apertures of the attachment fingers being generally coaxially aligned with each other; and at least two arms attached to the main body, each of the arms defining an arcuate arm engagement surface, the body and arm engagement surfaces being sized and configured to be cooperatively engageable to the scaffolding frame; the main body including at least two notches formed therein which each have a shape that is complementary to the arms, at least one of the notches being disposed between the arms for matingly receiving one of the arms of a similar adjacent end connector therein.
  • 13. The end connector of claim 12 wherein the end connector is fabricated from a non-metal material.
  • 14. The end connector of claim 13 wherein the end connector further comprises an internal metallic reinforcement plate which extends at least partially within the main body and arms thereof.
  • 15. The end connector of claim 12 wherein the end connector further comprises at least one locking clip attached to the main body and frictionally engageable to the scaffolding frame.
  • 16. The end connector of claim 12 wherein the arcuate arm engagement surfaces are substantially continuous with the body engagement surface.
  • 17. A scaffold plank assembly for engagement to a scaffolding frame, the scaffold plank assembly comprising: an elongate, non-metal plank defining opposed first and second ends; a pair of end connectors attached to respective ones of the opposed ends of the plank, each of the end connectors comprising: a main body defining an arcuate body engagement surface; at least two attachment fingers which are integrally connected to the main body and extend in spaced, generally parallel relation to each other, each of the attachment fingers being extensible into an interior cavity of the plank and including an aperture disposed therein, the apertures of the attachment fingers being generally coaxially aligned with each other; and at least two arms attached to the main body, each of the arms defining an arcuate arm engagement surface which is substantially continuous with the body engagement surface, the body and arm engagement surfaces being sized and configured to be cooperatively engageable to the scaffolding frame; the main body including at least two notches formed therein which each have a shape that is complementary to the arms, at least one of the notches being disposed between the arms for matingly receiving one of the arms of a similar adjacent end connector therein; and a pair of elongate pins, each of the pins being extensible through the coaxially aligned apertures of a respective one of the end connectors and through a portion of the plank adjacent one of the first and second ends thereof.
  • 18. The scaffold plank assembly of claim 17 wherein the plank includes: an elongate, generally planar top wall defining inner and outer surfaces and opposed pairs of longitudinal and lateral sides; an elongate, generally planar bottom wall defining inner and outer surfaces and opposed pairs of longitudinal and lateral sides; an opposed pair of sidewalls integrally connected to the top and bottom walls and extending along respective pairs of the longitudinal sides of the top and bottom walls in generally parallel relation to each other; and a plurality of reinforcement walls integrally connected to and extending perpendicularly between the inner surfaces of the top and bottom walls and in spaced, generally parallel relation to each other and to the side walls; the attachment fingers of each of the end connectors being extensible between respective adjacent pairs of the sidewalls and reinforcement walls of the plank.
  • 19. The scaffold plank assembly of claim 18 wherein: each of the sidewalls and reinforcement walls of the plank includes a spaced pair apertures disposed therein, the apertures of the sidewalls and reinforcement walls being segregated into two generally coaxially aligned sets which are disposed in relative close proximity to respective ones of the opposed first and second ends of the plank; the apertures of each set are coaxially alignable with the apertures of the attachment fingers of respective ones of the end connectors when the attachment fingers of each of the end connectors are extended between respective adjacent pairs of the sidewalls and reinforcement walls of the plank; and the coaxially aligned apertures of the plank and each of the end connectors are sized and configured to accommodate the advancement of a respective one of the pins therethrough.
  • 20. The scaffold plank assembly of claim 17 wherein at least the outer surface of the top wall includes a textured pattern integrally formed therein.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/804,162 entitled SCAFFOLD PLANK WITH END CONNECTOR AND METHOD OF MAKING THE SAME filed Jun. 7, 2006.

Provisional Applications (1)
Number Date Country
60804162 Jun 2006 US