The present invention relates generally to scaffolding. The invention has been developed especially but not exclusively, for use in multistorey scaffolding for use in the construction, renovation or maintenance of buildings and other structures, and is herein described in that context. However, it is to be appreciated that aspects of the invention may have broader application, and is not limited to that use.
The use of scaffolding for construction, renovation or maintenance of buildings is well known. Scaffolding provides a working platform for workers to safely access areas of the building that would otherwise be too high or inaccessible from the floor. Scaffolding may also incorporate safety barriers, which reduces the chance of the workers, tools, loose material and debris from falling from the confines of the scaffolding. Thus the use of scaffolding is important in ensuring a safe work site.
Conventional scaffolding can take varying forms, although it generally consists of vertical and horizontal members supporting a platform. In the past, scaffold structures were constructed from wood, and in some countries, bamboo scaffolding comprising of lengths of bamboo tied together is still used.
Modern day scaffolding generally comprises of a system of tubular metal pipes coupled together, and tied to the building to form the overall scaffolding framework. Scaffold planks, supported by the transoms of scaffolding framework provide the working platform. Such systems are known as “modular scaffolding”, with individual tubular metal pipes, coupling and ties as the basic modular units.
Such prior art scaffolding require experienced scaffolders to carefully assemble the tubes, couplers and boards together to form the scaffolding. Consequently, for a large structure this requires significant skilled labour, time and cost to safely erect the scaffolding.
Furthermore, even a scaffolding of modest size would contains hundreds of components to be fit together and checked. Thus the integrity of the scaffolding structure is dependent on the scaffolder diligently installing and checking each component. With the pressure of time, fatigue or inclement weather, the scaffolder may be overburdened, leading to possible errors. Also the large number of components of the prior art system requires significant time to erect, and during this erection stage of the scaffolding, the workers around the unfinished scaffold would be working under perilous, and potentially hazardous conditions.
In prior art systems, the design of metal tubular pipes, also pose rigidity problems when coupling the scaffold together. As couplers generally rely on passing a section of the tubular pipe through an aperture or clamp in the coupler, there is little resistance to rotation around the axis of the pipe. That is, the coupling and tubular pipes may act as a pivot, rather than a rigid joint. Therefore, in prior art systems, it is essential to incorporate braces to increase rigidity of a large scaffold system.
In a first aspect of the invention, there is provided a scaffolding module comprising a frame that, when in an erected configuration, defines an interior space; and a plurality of mounting regions that allow the module to be mounted with other scaffolding modules, wherein when so mounted, the module frames are able to be interconnected to form a support structure for one or more scaffolding platforms. By providing modules with a frame, the overall scaffold is simplified by having fewer individual components.
In one form, the module further comprises at least one scaffolding platform section disposed in and supported by the frame, wherein the module includes mounting regions on opposite side faces of the frame so that the module may be mounted with other modules in a side by side relation. When so mounted, the respective scaffolding platform sections of the modules form at least part of one or more said scaffolding platforms that extends across the side by side mounted modules.
In one form, the platform section in the modules is mounted on a lower portion of the frame.
In one form, the scaffolding module includes mounting regions on the upper and lower faces of the frame so that the module may be mounted with other said modules one on top of the other. This enables the modules to be stacked one on top of each other, and the weight of a modules is distributed across the mounting regions of the rigid frame of the module below. Advantageously, the load is distributed, unlike conventional scaffold systems where loads are often concentrated at particular points where couples or joint pins join two tubular pipes.
In one form, the mounting regions are configured as surfaces which are arranged to abut in face to face relation with a corresponding mounting surface of another said module. Advantageously, the corresponding surfaces of two modules are in parallel planes, thereby spreading the load across the mounting surface without vectoring the load in another direction.
In another aspect, the present invention provides a scaffolding module comprising; a frame that, when in an erected configuration, defines an interior space; and a plurality of mounting regions that allow the module to be mounted with other scaffolding modules, wherein at least some of the mounting regions are configured as surfaces which are arranged to abut in face to face relation with a corresponding mounting surface of another said module. In one form, when the module is mounted with other said scaffolding modules, the modules form a support structure for one or more scaffolding platforms.
In one form, at least some of the mounting regions include pre-formed holes to receive mechanical fasteners to secure respective ones of the mounted modules together. The mechanical fasteners may be in the form of nut and bolts that pass through the holes and secure two respective mounting regions to each other. Other fasteners such as clamps or clips may be used.
In one form, the frame is rigid when in its erected configuration. A rigid frame provides strength to the scaffold system, thereby reducing the need or reliance on braces to increase rigidity as in prior art systems.
In one form, the frame is formed from a plurality of frame members. In a further form, the frame members are interconnected by rigid connections. The rigid connection may be welds between the frame members. Other types of rigid connections such as brackets or the like may be used.
In one form, at least some of the frame members are interconnected by releasable connections to allow the module to adopt a collapsed configuration.
In another form, at least some of the frame members are formed from profiled sections having an outer surface that forms a respective mounting region of the module.
In one form, at least one of the frame members is formed from an angle section. Angle sections are readily available, thus lowering the costs of manufacturing the modules. Furthermore, steel angle sections with flat and straight surfaces may be easily welded together.
In another form, the angle section is arranged to abut with a corresponding angle section of another module to form a T-section.
In one form, when the module is interconnected with another module, at least one of the sections of respective ones of the mounting regions are interconnected so as to be in intimate contact so as to act effectively as a unitary structure.
In one form, the frame has a plurality of external faces formed from respective ones of the frame members.
In one form, the module is arranged to be interconnected to another module with one face of the frame being in opposing relation with a face of the frame of the other module.
In one form, the respective opposing faces contain the mounting region which are in abutting relation with one another when the modules are interconnected.
In one form, the frame of the module is shaped as a prism. In a further form, the frame is cuboid. At least part of the frame defines the edges of the module shape, and the planar faces of the shape provide the faces of the module. It is to be appreciated the face of the frame is the planar face of that shape, and is not restricted to the actual surface of the members comprising the frame.
In one form, the module further comprises a guide arrangement to align at least one mounting region of the module with a mounting region of another module in mounting of the modules. Advantageously, a guide arrangement aids in aligning two modules together, allowing higher efficiency in the erection process. This may be of particular advantage where the modules are large or bulky, where it would be difficult for an worker to reposition and align modules with human effort.
In a further form, the guide arrangement is operative to align the mounting regions when mounting one module on top of another module. Advantageously, this allows a module, during positioning into the scaffold system to self align itself with another module disposed below. This reduces the effort required by the scaffolders to precisely manipulate the modules, cranes or other equipment during the erection process, thereby saving time and improving efficiency.
In one form, the guide arrangement comprises a guide structure that extends from one of an upper or lower face of the frame, and a recess in an opposite one of the upper or lower face of the frame. The guide structure and/or the recess may have ramped surfaces so that as a module is mounted on top of another module, the module is guided towards alignment.
In one form, the guide structure also provides a lifting point for the module. The lifting point provides a location to attach the module to a lifting device, such as a crane.
In another form, the guide arrangement comprises of at least one guide lug that extends from an upper face of the frame, and a recess in a lower face of the frame.
In one form the guide lug and/or recess comprises at least one ramped surface for aligning one module on top of another module.
In one form, an eyelet is provided in the guide lug for providing a lifting point for the module.
In one form, the module further comprises a barrier structure extending across an outer face of the module. The barrier structure may comprise of a safety mesh, kickboard and/or handrails for the protection of workers.
In another aspect, the present invention provides a panel comprising: a panel frame; and at least one mounting region that allows the panel to be mounted to at least one of the mounting regions of the scaffolding module, wherein when so mounted to a scaffolding module, the panel covers at least part of one face of the scaffolding module.
In another aspect, the present invention provides a scaffolding assembly comprising: a support structure comprising the frames of a plurality of scaffolding modules according to any form described above that are connected together; and one or more work platforms supported on the support structure.
In one form, the scaffolding assembly further comprises at least one base module supporting the support structure formed from scaffolding modules, wherein the base module(s) is adjustable in height and/or orientation. An adjustable base is advantageous in areas where the underlying ground surface is not perfectly flat. Adjusting the height and/or orientation of the base module, advantageously provides a method of compensating for uneven ground surfaces. Thereby erecting the overlying support structure may maintain a desired vertical orientation.
In one form, the at least one base module further comprises of a plurality of height adjustable legs. The adjustable legs may be in the form of screw jacks, allowing the scaffolder to infinitely adjust the height and/or orientation of the base module. The legs may have feet to distribute the weight of the support structure to the ground.
In one form, the scaffolding assembly further comprising ties for securing the scaffolding assembly to an adjacent structure. Ties advantageously provide stability for the scaffolding assembly relative to another structure, such as a building. Conversely, a scaffolding assembly tied to a less stable structure, may provide support to the less stable structure.
In one form, the scaffolding assembly further comprises at least one panel, wherein the panel is mounted on at least part of one face of at least one of the plurality of scaffolding modules.
In another aspect, the present invention provides a method of erecting scaffolding comprising: providing a plurality of modules; arranging the plurality of scaffolding modules in a predetermined manner; and securing scaffolding modules together.
In one form, the method further comprises arranging the plurality of scaffolding modules in a predetermined manner by hoisting and locating the modules with a crane.
In one form of the method, before arranging the plurality of scaffolding modules in a predetermined manner, at least two scaffolding modules are mounted to each other. It may be advantageous to mount two or more modules together before hoisting the mounted modules to their respective predetermined position in the support structure. Firstly this would reduce the number of hoisting operation by the crane. Furthermore, this advantageously reduces the number of final mounting operations required by the scaffolder once the modules are in place. Thus the erection of the support structure may be achieved in less time, and increasing the level of safety at the work site.
In one form, the method further comprises: providing at least one base module; adjusting the height and/or orientation of the base module; arranging the plurality of scaffolding modules on the at least one base module.
In one form of the method of erecting scaffolding, wherein each module has an in-use outer face, inner face, and two side faces, each face including a mounting region, the method includes locating the side face of at least one module in an abutting relationship with an inner face of another module, and securing the abutting mounting regions together.
In one form of the method of erecting scaffolding, wherein the predetermined arrangement includes one module spaced from another module, and the method further comprises; providing at least one panel; and mounting the at least one panel to at least one mounting region on each of the spaced modules, wherein the panel assembly interconnects the spaced modules.
In one form of the method, the method further comprises transporting the rigid framed scaffolding modules to a first site. In a further form of the method, after use of the scaffolding at the first site has ceased, the scaffolding modules may be relocated and erected at a second site. The method comprises demounting at least one scaffolding module from another scaffolding module in the support structure at the first site; transporting some of the rigid framed scaffolding modules from the first site to the second site; arranging the plurality of scaffolding modules in a predetermined manner at the second site; and mounting at least one scaffolding module to another scaffolding module to form a support structure at the second site.
The modules may be demounted to individual modules for transportation. Alternatively, two or more modules may maintain a mounted relationship during transportation, providing the overall size of the mounted modules can fit within the transport.
As illustrated, the scaffolding assembly 1, may be erected by hoisting module 5 with a crane 7, and arranging the module(s) into the desired scaffold arrangement.
The modules 5 will now be described in detail with reference to
The flat surfaces of the horizontal 13 and vertical 15 frame members provide mounting regions for mounting with corresponding mounting regions of adjacent modules 5. The mounting regions are provided with a series of apertures 17. This allows adjacent modules to be coupled to each other with a combination of bolts and nuts, or other suitable mechanical fasteners. In a one form, the apertures are 18 mm in diameter, with the corresponding bolts having a shank diameter of 16 mm. This advantageously provides a degree of tolerance to the overall scaffolding assembly 1.
At the bottom face of the module 5 transoms 19 are provided to support part of the scaffolding platform section 21. The transoms 19 may be welded or integrally formed with the frame 11 or alternatively a separate component mounted to the frame. The scaffolding platform section 21 is in the form of a metal floor mesh, such as pierced steel secured to the frame 11. The floor mesh may comprise of 50 mm×50 mm×4 mm mesh, or expanded metal mesh for better grip and smaller holes. Advantageously, the floor mesh provides a light weight working platform for construction workers, as well as overhead protection from large debris. The floor mesh, also allows wind and water to pass through during inclement weather, thereby reducing the effects on the scaffolding. However, it is to be appreciated that other platforms, such as wooden floorboards or steel floorboards may be used as the scaffolding platform section 21.
As illustrated in
A barrier in the form of a safety mesh 23 is provided on one face of the module. In use the modules are usually positioned so that the safety mesh 23 is on the outer face of the module facing away from the building 3. The safety mesh 23 may be 50 mm×50 mm×4 mm metal mesh. A handrail 25 is also provided for workers, and may be constructed of steel angle welded to the frame 11. The safety mesh 23 and handrail 25 provide a safety barrier for workers, as well as preventing the transgression of large debris or other objects through the scaffolding. The lower part of the safety mesh 23 is provided with a kickboard 24 for additional protection. The kickboard 24 may be constructed of denser metal mesh than the safety barrier, for example 50 mm×10 mm×4 mm, and extend approximately 150 mm above the scaffolding platform section 21.
At the top portion of module 5 is a guide structure 28, forming part of the guide arrangement. The construction and operation of the guide arrangement is best shown with reference to
The guide structure 28 comprises a pair of bars 27 and associated supporting members protruding from the frame 11, as illustrated in
Referring to
The angled end portions 29 and 33, provide angled ramp surfaces to the guide structure 28. This allows the guide structure 28 of one module to enter the recess 12 of another module, and causing the two modules to self align as they are drawn together. As the bars 27 and 31 are generally perpendicular to each other, the angled end portions 29 and 33, provide self alignment in the two horizontal axes.
The bars 27 are preferably welded to the frame 11, and are of sufficient strength to function as lifting points for the modules 5. The bars 27 may be lashed to an overhead crane, which can then hoist the module into position.
As illustrated in
The scaffold bases 9 are then adjusted to ensure the scaffold bases 9 are level. This may be achieved by altering the height of legs 10 of the scaffold base 9. In one embodiment the legs 10 comprise of adjustable screw jacks. The level of the scaffold bases may be monitored by a spirit level, or other suitable equipment. Once the scaffold bases 9 are satisfactorily level, adjacent scaffold bases 9 are secured to each other. Optionally, the scaffold bases may also be tied to the building 3 or other support structure.
The modules 5 of the scaffold assembly 1 may then be arranged onto the scaffold bases 9. A hoist 7 is attached to the bars 27 of a module, and the module is hoisted onto a corresponding scaffold base 9. The module 5 is then fastened to the scaffold base 9, by bolts and nuts through apertures 17 on the lower members of the frame 11, and corresponding apertures on the scaffold base 9. Subsequent modules 5 are then hoisted and located onto the remaining scaffold bases 9, and fastened therein. Optionally, the scaffolding modules 5 are further fastened to one another and/or tied to the building 3.
Further modules 5 are arranged above the scaffold bases 9 and preceding modules 5, until the desired scaffolding assembly 1 is erected. For better efficiency in erection, it may be desirable to mount two or more modules 5 together before hoisting the mounted modules to the desired location on the scaffolding assembly 1 as illustrated in
As illustrated in
In a further embodiment illustrated in
Dismantling the scaffolding assembly 1, is achieve by substantially reversing the erection procedure. The top most module 5 is first demounted from the scaffolding assembly 1, allowing a crane 7 to hoist and lower the module 5 to ground level. To increase speed, two or more modules may remain coupled to each other and removed simultaneously from the scaffolding assembly 1. This process is repeated until the scaffolding assembly is disassembled. The module may then be transported for storage or to the next worksite. Advantageously, the rigid framed modules 5, with few or no working parts requires little setting up or configuration before use. Therefore, the modules 5 may simply be transported to the worksite by truck, and a crane can simply hoist the modules 5 from the truck to the scaffolding assembly 1.
The modules 5 may be stored in a storage yard when not in use at worksites. The modules may be arranged in a three dimensional matrix, with modules mounted side by side, front to rear, and stacked above each other. This storage arrangement, similar to storage of shipping containers, allows maximum use of storage yard space. The modules 5 may be mounted to each other for security and stability. The modules 5 may also be mounted to each other in clusters, for example 3 or 5 units in a vertical stack. The vertical stack of modules 5 can then be handled as one during storage and transportation, thereby obtaining better economy of effort and time.
In alternative embodiments, the modules may comprise of the frame without the scaffolding platform sections. The scaffolding platform sections may be positioned and mounted to the scaffolding assembly, after the modules comprising the frames are erected.
In another alternative embodiment the scaffolding module may comprise of a rigid frame, wherein part of the frame is formed from at least one scaffolding platform section. Advantageously, this may reduce the number of parts when manufacturing the modules.
In the illustrated embodiments, the modules are stacked vertically above one another. However, it is to be appreciated other bond patterns, such as a stretcher bond pattern may be used for erecting the scaffolding assembly 1. In such an arrangement, the modules are staggered in adjacent rows.
Another embodiment of the scaffolding module 205 will now be illustrated with reference to
In this embodiment, handrails 222, 225 are provided in pairs to provide an upper and lower handrail for additional use for workers. A transom 220 is provided at the top portion of the frame 211, to enhance rigidity of the module 205. The floor mesh 321 may be made of expanded metal floor or decking.
The kickboard 224 is constructed of steel sheet, which can by permanently fixed or removable. In one form, it can be permanently welded to the frame 211. Advantageously a sheet steel kickboard is easily welded and prevents transgression of fine debris.
A distinguishing feature of this embodiment of the scaffolding module 205 is the alternative guide arrangement comprising of a guide lug assembly 261 located at corners 270 at the top portion of the module 205. Part of the guide lug assembly 261 is adapted to be received into a recess 12 in the bottom face of the module 205, which is substantially the same as the recess 12 described in the earlier embodiments.
The construction of the guide lug assembly 261 will now be described with reference to
The lug 265 is angled towards the corner 270 of the frame 211 at an angle of approximately 45° from the horizontal members 213. The ramp 267 of the lug 265, on entering the recess 12 of another module and bearing on the frame of the other module, will guide the two modules to self align as they are drawn together. Since the lug 265 is angled at 45°, it will provide alignment in two horizontal axes. It would be appreciated the method of lowering one module on top of another with this alternative guide arrangement is similar to the previously described methods.
As previously described, the frame members 213, 215 are constructed of steel angles, having a right angle profile 271 as illustrated in
A panel 305 for use with the scaffolding modules 205 will now be described with reference to
In the illustrated embodiment, the panel 305 is dimensioned to have the same height as the scaffolding module 205, and a width equivalent to the sides of the modules 205. However, it is to be appreciated panels of other dimensions may be used.
The use of the panel 305 as an end piece will now be described with reference to
An alternative use of the panel 305 to interconnect spaced modules 205 will now be described with reference to
As illustrated, the panel assemblies 511, overlap and are mounted to a surface of modules 502 and 503 to bridge the space between the modules. A plank 513 may be placed over the floor mesh 221 of modules 502 and 503, to provide a bridging platform for workers to walk across.
Advantageously, this allows continuity of the scaffolding where the space between two modules 205 is not large enough accommodate a single module 205. This also allows the dimensions of the scaffolding assembly 501 to be adjustable to a degree finer than the size of the discrete scaffolding modules 205.
Another embodiment of the scaffolding module 705 will now be described with reference to
To save space during transportation or storage, the scaffolding module 805 may be collapsed as illustrated in
An embodiment of the tie 8 will now be described with reference to
The first element 901 is fastened to frame member 211 of a scaffolding module 205 at 923. The second element 902 is fastened to the building at 925. Thus the tie 8 ensures the scaffolding 1 and building 3 maintain constant spacing, as well providing mutual support.
Referring to
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
Number | Date | Country | Kind |
---|---|---|---|
2010900812 | Feb 2010 | AU | national |
2010904143 | Sep 2010 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2011/000213 | 2/25/2011 | WO | 00 | 10/15/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/103639 | 9/1/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3500595 | Bennett | Mar 1970 | A |
3550334 | Van Der Lely | Dec 1970 | A |
3564802 | Dreyfus | Feb 1971 | A |
3613321 | Rohrer | Oct 1971 | A |
3638380 | Perri | Feb 1972 | A |
3703058 | Klett et al. | Nov 1972 | A |
3722168 | Comm | Mar 1973 | A |
3750366 | Rich et al. | Aug 1973 | A |
3807120 | Viandon | Apr 1974 | A |
3822519 | Antoniou | Jul 1974 | A |
3849952 | Hanaoka | Nov 1974 | A |
3866672 | Rich et al. | Feb 1975 | A |
3881571 | Moulton | May 1975 | A |
3903664 | Doriel | Sep 1975 | A |
4059931 | Mongan | Nov 1977 | A |
4073100 | DiGiovanni, Jr. | Feb 1978 | A |
4364206 | Wybauw | Dec 1982 | A |
4620404 | Rizk | Nov 1986 | A |
4723381 | Straumsnes | Feb 1988 | A |
4858726 | Preston | Aug 1989 | A |
5127492 | Preston | Jul 1992 | A |
5491939 | Wang | Feb 1996 | A |
5625998 | Madsen | May 1997 | A |
5755063 | Ohnishi et al. | May 1998 | A |
5765248 | Ono | Jun 1998 | A |
5810114 | White | Sep 1998 | A |
6601716 | Hayman et al. | Aug 2003 | B1 |
7069701 | Chen | Jul 2006 | B2 |
8356446 | Takeda et al. | Jan 2013 | B2 |
8439166 | Kreller | May 2013 | B2 |
8499527 | Kobayashi et al. | Aug 2013 | B2 |
20050263351 | Hayes | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
2447820 | Apr 1976 | DE |
754819 | Jan 1997 | EP |
2129905 | May 1984 | GB |
55-47520 | Mar 1980 | JP |
57-56938 | Apr 1982 | JP |
4-277261 | Oct 1992 | JP |
4-350255 | Dec 1992 | JP |
05-033498 | Feb 1993 | JP |
2003-138742 | May 2003 | JP |
2004-218282 | Aug 2004 | JP |
2004-346552 | Dec 2004 | JP |
2004-346652 | Dec 2004 | JP |
3121964 | May 2006 | JP |
10-2002-0025073 | Apr 2002 | KR |
228864 | Aug 1994 | TW |
307656 | Mar 2007 | TW |
369362 | Nov 2009 | TW |
WO-9014479 | Nov 1990 | WO |
Entry |
---|
International Search Report for Application No. PCT/AU2011/000213, dated Jun. 6, 2011. |
International Preliminary Report on Patentability for Application No. PCT/AU2011/000213, dated Jun. 26, 2012. |
Office Action in JP Application No. 2012-554173 dated Feb. 18, 2014. |
Extended European Search Report in Application No. 11746766.2 dated Jul. 7, 2014. |
Office Action in Taiwan Application No. 100106559 dated Dec. 4, 2014. |
Office Action in KR Application No. 10-2012-7025093 dated Nov. 20, 2015, 27 pages. |
Office Action in JP Application No. 2015-101528 dated Mar. 7, 2017, 5 pages. |
Examination Report in AU Application No. 2011220341 dated Oct. 7, 2014. |
Examination Report in GCC Application No. GC 2011-17863 dated Aug. 25, 2014. |
Number | Date | Country | |
---|---|---|---|
20130048430 A1 | Feb 2013 | US |