The problems the invention solves are applicable to router, server process control and other machine farms and/or network-based implementations and network based computer architectures including wiring for chips and other artifices for electronic, optic and other processing as follows:
1. Battle hardening. [dynamic multi-module and/or nested modules with fail-over.]
2. Near universal standardized form factors for macroscopic packaging in which space is of cost and its conservation is of economic benefit.
3. Supercomputing and technology dependent high interconnect speeds.
4. Optimized industrial or military floor and volumetric space as measured by cost per area or volume.
5. New building construction and old building build out optimization for router farms, server farms, other network-based implementations and general machine farms.
6. Allows manual and/or electromechanical and/or automated individual [sub-]module access in one, two or three dimensional [sub-]tiered stacks and/or arrays with or without nesting for service including internal and external [re-]wiring, repair or replacement of inter-/intra-module communications interconnects and (sub-) modules with or without nesting, whereby such packaging may be manipulated for placement either manually or electro-mechanically.
7. Provides multiple thermal management options to minimize heat dissipation impact on module density.
8. To provide a near universal design platform for black-box/object based modular and nested/compartmentalized design and storage allowing economic trade-offs between battle hardening and green design.
9. Extended depth module and array stacking.
10. Hot swap.
11. Radiation containment, absorption and directionality/gain for approximated tessellations/tilings with sliding fit keyed or un-keyed radiation guides.
12. Geometry and/or wiring scalable from the module, assembly and chip level to the molecular and atomic levels.
The invention solves the above problems as follows:
1. Battle hardening, pending component selection, utilizing both inter- and/or intra- multi-module and nested inter- and/or intra-multi-module redundancy and wiring for fail-over and re-routing wiring with bypass based on approximated tessellation/tiling geometries with a sliding fit and with or without retractable interconnects and with or without quick-disconnects. Reference patent two incorporated herein by reference.
2. The invention provides near universal standardized form factors for macroscopic packaging by employing approximated tessellations/tilings. Module scale, layout and nesting are dictated by components including retractable interconnects with or without quick disconnects, bezels, patch panels, backing and mounting plates and pc boards with external side wall wire and cable guides and end cap interconnection baskets and covers. These features, conjunct [sub-] module hull to [sub-] module hull sliding fit and combined with suspension cabling, cable grippers and support hardware and guides make the system.
3. The invention provides integration/migration from a single module to massively parallel router, server, supercomputer or other technology based machine/process and super-computing/server/router farms. This is accomplished by enhancing command, data, and/or process and/or sensor communication by minimizing and standardizing path lengths for these functions within and without [sub-] module to [sub-] module vertice to vertice, flat to flat and end cap to end cap overall lengths and inter-module sliding-fit interconnect lengths. Examples in this environment include module and nested module active and passive hydraulic, fluidic, electrical, optical, nanotech and quantum components and their associated mechanical, electrical, optical, wave or particle propagation lengths, impedances and capacitances with associated circuitry, which dictate absolute circuit speeds. Fiber optics has similar limits, which may be boiled down to media propagation speed. Separately, hoses and other materials process-supply mechanisms will be similarly limited by speeds, feed rates and flow rates. The same is true for all analog or digital data transfer, and their DAC, ADC, transducers and their support circuitry.
4. For human touch and FCC compliance, the module hull, end basket cover, and handle are internally and/or externally coated or infused with EM and/or RF conductive and/or insulative material or shielding, with or without reinforcing frequency dependent mesh(-es) as necessary or for Tempest and anti-EMP applications. This is also done where wave-guides are formed by sliding-fit inter-module hull interfaces. Frequency appropriate absorptive and/or anti-reflective coatings are used beyond the delineated edges of open wave-guide and/or optical light guides with coatings for the operative radiation being used as part of the external hull.
5. The approximated hexagon shape is assumed herein as follows by way of example. The preferred embodiments are processor pipeline, stream and/or cluster-centric regarding communication channels as represented at the pallet level and/or any other multi-module “center of mass”. Accordingly, single modules [for non-polling systems] and three module sets [for polling systems] on center lines corresponding to the six (6) directions of the x-y-z planes and their corresponding diagonals and/or the hexagonal functional equivalent, six (6) directions per horizontal plane [(truncated) apex (6) and/or side centered diagonals (6)] derive said “center of mass” for a possible total of 12. Separately each vertical cross-section, again by apex (6) or flat side wall (6) allows for eight (8) directions and the associated wiring, cabling, etc. interconnects, axially [top-bottom], side to side [left right], diagonally [top left, bottom right] and last diagonally [bottom left, top right]. The concept is also incorporated by reference to the other submitted patent for those shape delineated elsewhere which include the standard regular or irregular tessellation/tilings as the as approximated with or without the dumbbell modifications. [An irregular tessellation/tiling is defined herein as an assymetrical tessellation/tiling as when the wiring at the edges of a column, row or array or attendant patch panels or other external or internal intra-module level interstitial support structure is not symmetrical by connection or by geometry.
6. Connection lengths in particular module directions, be they vertical or horizontal axes or diagonals are set equal by frequency, wavelength, impedance isotropically for all [stopped here] particular direction whereby parallel modules for a particular direction embody parallel processors for alternate logic trees and or polling, pending centering as indicated above. In these constructs, each direction corresponds to a critical time delay path for any form of circuitry, bus, communications protocol or process between modules and/or clusters regardless of technology. Examples include technology based on RC and RLC time constants, phase-locked loops, optical loops, parametrons, etc. The system employs delay line signal conditioning and/or optics to equalize and electrical lengths and delays as necessary for all directions.
7. The invention's near universal form factor utilizes approximated tessellation/tiling with a sliding fit and vertical bulkhead. Wire, wave, optical and radiation guides conjunct quick disconnects to approximate maximum co-planar surface area coverage which is extended into the third dimension by extruding the 2D [sub-]modules basic footprint into the third dimension thus forming the [sub-]module's 3D form-factor. In this way the (sub-)]modules optimize industrial or military floor space or volume and hence internal rate of return (IRR) for project comparison by hurdle rates as measured by square area projected volumetrically into the third dimension less a tolerance for the sliding fit] thus lowering costs while maintaining service access for equipment. Accordingly, designs are judged by comparative layout efficiency of equipment utilization by hurdle rates as applied, and realized in one, two or three-dimensional arrays.
8. The invention uses standard heavy duty industrial warehouse style shelving with a multilevel mezzanine option above the first floor. This allows for the build out of pre-existing industrial warehouse and other space to realize scalable integration/migration from a single unit to a router, server and supercomputer machine farms incorporating high-density multilevel facilities interconnected as required by catwalks and corridors. This utilizes cheaper industrial warehouse space for machine farms. In this embodiment, due to the portable nature of the shelving with or without multilevel mezzanine enhancements, pending implementation details, the build out itself may be portable, and therefore allows the possibility of site movement, pending more favorable lease, rent or other financial opportunities, including lower tax rates, as given under various governmental programs and negotiations, including between states.
9. The invention expands this technique to include standard building practices by adding standard external wall and roofing systems available for said mezzanine style shelving systems for new construction of buildings to purpose, utilizing palletization techniques and approximated tessellation/tiled enclosures described and incorporated by reference by the other provisional patent most closely submitted in time. In this way, new building construction is optimized as the shelving supports do double duty as ceiling and wall supports.
10. Service access to individual modules in stacks and arrays are aided by groupings based on pallets equipped with pallet dollies to give access [for repair, replacement and connection maintenance] to and from warehouse and mezzanine style industrial shelving or equivalent with flooring inserts inside said shelving, level with mezzanine and separately, by level, ground level flooring, thereby creating functional, “drawer” assemblies for said pallet-racked and dollied palletized module arrays, with drawbridge access by tier and cat walks, stairwells, elevators, etc. as necessary, incorporated by reference from patent two. External peripheral nonstandard palletized or otherwise arrayed shapes are used for support machinery such as cooling, etc. or as otherwise required for any miscellaneous purpose. Further, the approximated tessellation/tilings conjunct individual palletized arrays and stacks conjunct industrial shelving, give an industrial standard readily recognizable and easily duplicated and understood as a spatial commodity and form factor in industry, replete with pre-existing off the shelf robotic automation ready to be tasked to this new purpose. Of course standard modules may be pressed into any such service at required.
Service access for rewiring of inter-module communications is accomplished by:
Service access for module removal is accomplished by:
11. Thermal management includes options for internal and external cooling/refrigeration including liquid, air/gas and other solutions for installations from single units to palletized modular arrays utilizing individual coolant intake and exhaust plenums incorporated in the modules. This is incorporated by reference from patent 2. The invention employs standard industry stack-rack or pallet-rack caging of either corner or side fastening design, for palletization with pallet bolt on plywood or other pallet floor/bed for fastening master cooling plenum overlay with embedded matching terminations for module suspension cables, creating a bolt-on support bed for individual arrays. Modules are fitted together in three-dimensional arrays over this master coolant intake plenum on the pallets face. A master exhaust plenum is suspended from a pallet rack above, with an attendant end cap wiring basket cover for the top of each individual stack and provides exhaust handling for same. This includes utilization of standard large scale HVAC, air supply and shop vacuum systems on machine farms through master plenums, on both top and bottom of rollout pallet dollied and racked palletized modules, stacks and arrays in single and multi-tier industrial shelf based storage at drawers. [Reference
The module hull includes a thermally insulative impregnation or a layer internally and/or externally, hereinafter “thermal layer” for simplicity. The module hull thermal layer directs heat from the central cavity to be carried off by internal plenums, fans, cooling tubes and associated ductwork, end cap fans, master intake and exhaust plenums and arrays of the same, and/or other thermal management.
The hull is also thermally insulated with a view to human touch. To this end, the end cap wiring basket, cover and handle are also thermally insulated.
12. Module and nested sub-module design conjunct peripheral odd shape support modules allow economic trade-offs between battle hardening redundancies and green design based on [sub-]system(s) consolidation(s).
13. Extended depth stacking of modules is accomplished by rotating the electrical interconnection by module or [sub-] module through multiple electrical plug connections per module from 1 to n, where n the maximum number of power plugs per module is matched on both top and bottom for each module. Vertical module position in the stack dictates which plug daisy chain series to which that module will be connected in rotation.
14. Hot swap is accomplished by using a double-ended “closed loop” [for each conductor] bus bar. This means that for each power source there are two feeds, for which loads are daisy-chained in stacked fashion. The daisy-chained loads are fed from both top and bottom from the same source, thus forming a double-ended bus bar. If power is disconnected from one end, it is still available from the alternate powered end of the daisy chain. Further, in a pinch such wiring may be (re-)wired to alternate power sources, for damage control.
15. Unlike other patents and/or products, radiation reflective paint or impregnation is utilized to establish preferred non-isotropic directionalities and hence gain in the preferred directions, and radiation absorbent paint is used to absorb and hence retard radiation in non-preferred directionalities when light and wave guides are used on outer hull. The module hull includes thermal insulative and/or conductive layers to establish preferred heat flow patterns, covered or included in the radiation absorbing media. The module hull end basket cover and handle are RF and thermally insulated for human touch, and the thermal layer directs heat into the central cavity to be carried off by the ductwork and/or other thermal management.
16. Wiring as put forth herein extends to the interconnection of conductive paths between layers of substrate and attendant masked material deposits or subtractions in chips and/or boards envisioning the fundamental wiring layout of the modules as put forth in drawings 8A-C for layout between layers of said constructs. This includes Futjitsu's use of composite carbon nanotube-graphene conductive molecularly bonded arrays. All wiring as put forth herein and in patents incorporated by reference shall b3e inclusive and include chip socketing as a symbolically represented in all drawings on a molecular and nanoscale and chip level.
17. Further, wiring as put forth in Dwg. 8 is extended to the atomic level by utilizing drawings 8A-C symbolically in conjunct with constructs of wires utilizing lead or other high conductivity atoms three or more or more atoms thick.
18. In all cases, the bypass feature, as posited in drawings 8a-c allows for mono-planar and multi-planar re-configurable variable length push pull bus shortest path with optical and other direct memory link processing between the processors in single and multi-planar arrays. The key is moving between the linearly displaced first and third modules, chips or atomic circuits as delineated above.
The invention differs from already patented and/or made inventions as follows:
Said drawings and their attendant FIGS. (1-16) are enumerated as follows:
Structure to Hexagon, Square and Fractal Larger Equilateral Triangle with Implicit Nesting and Array.
Approximations as Representative Tile/Tesselations Appro with symbolic Array Representation.
The parts of my invention and how they relate to each other follow:
Patent application Ser. No. 12/806,211 is incorporated by reference.
Dwg. 1 shows Module Type 1 from patent application Ser. No. 12/806,211 incorporated by reference.
Dwg. 2 shows Module Type 2 from patent application Ser. No. 12/806,211 incorporated by reference.
Dwg. 3 shows a top view conjoining multiple modules [part 10], with an unpopulated intake plenum [part 20] and populated exhaust plenum [part 30].
Inter-module interface sides must be recessed the width of the full cavity enclosures plus the tolerance for a sliding fit. This recess with or without keys and keyways must have landings and stops for guide retention. Bottom stops must have matching top/stops on abutting modules.
Combo Units are allowed and are shown symbolically as parts 110-130 with outward faces 40-70.
Parts 40-130 in the preferred embodiment are made out of solid metal and/or absorptive/coating with reflective coating overlay and/or gasketry. Gasketry includes Mu-metal, EMI field conductive material [copper, iron, carbon, silver, gold, nickel, beryllium copper, impregnated gel/silicone, o-rings, mesh, etc. Outlying or abutting areas and/or the remainder of adjoining internal or external areas are coated with applicable radiation/energy absorbing materials as necessary, obviating the necessity of a full seal in some instances, while allowing looser tolerances in a sliding fit without cross-talk or other interference from nearby or neighboring guides.
Actual geometry may vary pending frequency, energy, collimation, polarization and/or propagation mode(s) and includes standard and/or special-order catalog and/or by design items.
Cables used in such embodiments must not be conductive for the energy spectrum and/or radiation characteristics to be used.
Dwg. 4 shows an individual male base upon which a type 1, 2 or 3 module may be seated.
In the preferred embodiment, the area between the outside of the three (3) individual intake ducts, where the ducts' curve as they slope down toward the fan intakes is the area for pass through wiring, cabling, plumbing, and other standard and common non-thermal management connections, etc.
Seals may be upgraded to be hermetic, explosion-proof and/or degassed pending usage.
Dwg. 5 Shows a single of wiring basket cover exhaust plenum cap.
In the preferred embodiment, the area abutting the outside of the plenum's three (3) individual intake ducts, where the ducts' curve as they slope down toward the fan intakes is the area for pass-through wiring, cabling, plumbing, and other non-thermal management connections, etc.
Seals may be upgraded to be hermetic, explosion-proof and/or degassed pending usage.
Dwg. 6. shows a module hanger assembly, incorporated by reference from patent two as used in top and bottom master exhaust and intake plenums with cable assemblies for stack alignment in palletized module arrays.
Dwg. 7
Both
Heavy line: Used for router/computer or other connection.
Light line: Used for router/computer or other connection.
Dashed line: Used for router/computer or other connection.
Fill: Not used or used for cooling machinery or other support equipment.
Dwg. 9 shows a Master Intake Palletized Plenum Array designed to work with various heat transfer mechanisms as indicated, as referenced, but not limited to,
Dwg. 10 shows the master air exhaust plenum, upper termination hooks, three per module, in alignment with one-to-one correspondence with the suspension alignment hooks of the master air intake plenum with the same sealing system of Dwg. 9.
Dwg. 11 shows a blank pallet with corner-mount pallet rack installed, side mount, although not shown, should be blatantly obvious to those versed in the art. [Bottom] master intake, and [top] master exhaust plenums are next shown installed.
Dwg. 12 shows a palletized “sliding drawer” assembly constituted by addition of a pallet dolly with wheels or rollers set offside of the center cable gutter pending size, weight load and economic requirements.
Dwg. 13.
Dwg. 14 shows the shelf support structure for stored, dollied and palletized module arrays with an external wire guide armature to prevent entanglement of pallet wiring connections when rolling out the palletized dolly from its shelf bay for work.
The
Dwg. 15 shows the scalable computer/router farm, utilizing standard warehouse shelving with mezzanine option above single floor installations for pre-existent warehouse space build out and new construction steel building with integrated industrial walls and roofing.
Dwg. 16 shows a drawbridge arrangement for bin height dollied and palletized module array extraction from second-tier and above multi-tier industrial shelving bins onto the fold-down flat work area provided for by said “draw bridge” for service, replacement, etc. The minimalist embodiment comprises two base shelving units with appropriate sized dollied, palletized and pallet-racked modules with master plenums separated by an appropriate number of drawbridges sized for the selected pallet shelf combination shared by the pallets of each base shelf, allowing full-motion and access to all dollied pallets and modules.
Dwg. 17 symbolically references flow charts of probable cooling schema and as such are self-explanatory as expressed in