This disclosure relates to architectures for high-availability multi-processing computing platforms, and more particularly to techniques for scalable leadership election using a global witness process in a multi-cluster computing environment.
Some computing tasks are parallelized such that there is a master (or leader) and many slaves (or followers). Often, the software images that are executed by the instance of the leader and the instances of followers is the same image, and the determination as to whether a particular instance is to act as the leader or act as a follower is made on the basis of the existence and/or contents of a status file that is accessed by the image. Under such a scenario, it can happen that a group of instances are deployed (e.g., started up as individual processes or individual threads) and the determination as to which one member of the group becomes the leader is made by the first instance to “come up” and create and/or write a value into the aforementioned status file. The file system serves as a sequencer/arbiter as to which one process or thread from the group becomes the leader.
At some point after initial determination of the leader, the leader might “die” (e.g., the thread stops unexpectedly, or the process runs into a segmentation or other fault). This leaves the aforementioned file in a state that does not reflect the actual state (e.g., that there is no leader anymore). Additional functions need to be provided so as to “re-elect” a leader in the case that the former leader no longer has the capacity to serve in the leader's role. Some mechanisms have been attempted where all processes or threads periodically check for a “heartbeat” or other periodic liveness signal from the leader, and if such a heartbeat or other periodic liveness signal from the assigned leader is not detected, then the followers will vote among themselves to determine a majority and, in turn, a new leader. In some cases an independent witness task process that functions other than as a leader or other than as a slave can be deployed, and can thenceforth be consulted to break a tie so that a majority can be formed.
Unfortunately, there are some deployments that have a leader-follower relationship between just two actors (e.g., processes, threads, virtual machines, etc.). In such cases, a majority cannot be formed after loss of leadership—since there then remains only one process. For example, in a disaster recovery situation, there might be a block change monitor that detects and forwards changed storage blocks to a listening backup process at another location (e.g., located on another cluster in a geographically distal location). If a leader (e.g., the block change monitor) were to die or become unreachable, the remaining slave (e.g., the listening backup process) by itself cannot use the aforementioned legacy techniques to reestablish a new leader.
Worse, in a large computing environment, such as an environment having multiple clustered computing platforms, there might be multiple file systems in operation. Legacy approaches that rely on leadership determination based on the first to create (or write to) the aforementioned status file cannot be used to elect just one leader from among the group of instances.
Still worse, legacy approaches that involve a witness deploy witness processes on a one-to-one basis with respect to the deployed master/slave images. Managing witnesses that are deployed one-to-one with respect to clusters (e.g., many actively involved witness processes) presents a management task that does not scale as the number of clusters increases.
What is needed is a technique or techniques to improve over legacy and/or over other considered approaches. Specifically, what is needed is a technique that provides a single witness process for an arbitrarily large number of clusters. Moreover, what is needed is a way for a single witness process to perform the functions of a witness or arbiter that is resilient to temporary or permanent node or cluster outages. Some of the approaches described in this background section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
The present disclosure provides a detailed description of techniques used in systems, methods, and in computer program products for scalable leadership election using a centralized witness process in a multi-processing computing environment, which techniques advance the relevant technologies to address technological issues with legacy approaches. More specifically, the present disclosure provides a detailed description of techniques used in systems, methods, and in computer program products for scalable leadership election using a centralized witness process in a multi-processing computing environment. Certain embodiments are directed to technological solutions for breaking a tie by using a centralized witness process that accesses a data structure under a compare-and-swap (CAS) access regime, which embodiments advance the relevant technical fields as well as advancing peripheral technical fields.
The disclosed embodiments modify and improve over legacy approaches. In particular, the herein-disclosed techniques provide technical solutions that address the technical problems attendant to in many modern computing deployments where a plurality of processes need to reach a consensus as to leader/follower relationships. Such technical solutions serve to reduce the demand for computer memory, reduce the demand for computer processing power, and reduce the demand for inter-component communication. Some embodiments disclosed herein use techniques to improve the functioning of multiple systems within the disclosed environments, and some embodiments advance peripheral technical fields as well. As one specific example, use of the disclosed techniques and devices within the shown environments as depicted in the figures provide advances in the technical field of high-performance computing as well as advances in various technical fields related to distributed storage systems.
Further details of aspects, objectives, and advantages of the technological embodiments are described herein and in the following descriptions, drawings, and claims.
The drawings described below are for illustration purposes only. The drawings are not intended to limit the scope of the present disclosure.
FIG. 1A1 and FIG. 1A2 depict distributed processing environments.
FIG. 1B1 and FIG. 1B2 depict uses of a global witness process in a distributed processing environment having a leader on one cluster and multiple followers on other clusters, according to some embodiments.
Some embodiments of the present disclosure address the problems exhibited in many modern computing deployments where a plurality of processes need to reach a consensus as to leader/follower relationships. Some embodiments are directed to approaches for breaking a tie by using a centralized witness process that accesses a data structure under a compare-and-swap (CAS) access regime. More particularly, disclosed herein and in the accompanying figures are exemplary environments, systems, methods, and computer program products for scalable leadership election using a centralized witness process in a multi-processing computing environment.
In an a priori manner (e.g., before deployment of any processes to perform any jobs) a single witness process is started up at one node that is accessible by any process or thread that is/are expected to perform either as a leader or as a follower.
Deployments that have various processes spread out over multiple clusters (e.g., over wide geographic areas) are often interconnected (e.g., over a cloud backbone, or over the internet) such that the various processes make continuous progress in synchronicity, where an agent/leader process or thread sends data to one or more listener/follower processes or threads. If it happens that an agent fails or ceases to communicate with the one or more listener/follower, then the synchronized progress stops and a new agent/leader is needed. In leader-follower scenarios, if it happens that a leader fails or ceases to communicate with the one or more followers, then the synchronized progress stops and a new leader is needed. In some deployments (e.g., clustered deployments) the nodes need to form a majority to form a consensus. An alternative method which is disclosed herein is to organize around an arbitrator, which arbitrator can pick a node to become the leader. A global witness service serves to bring the deployment back into service (e.g., with a newly elected leader and with all followers in agreement with the newly elected leader).
As can be understood, techniques that rely on multiple process access to a disk-based (e.g., SCSI) operation semaphore are only applicable when all of the processes to perform any jobs are in the same disk access group (e.g., in the same processor group, or cluster). Furthermore, legacy techniques that rely on a witness process to break a tie between a leader and follower are only applicable when all of the processes to perform any jobs are in cluster.
What is described herein is a global witness service. The figures provide successive disclosure of the concepts involved, including functions of a global witness service and including a range of implementation options. Strictly as an overview, the global witness service concept relies in part on a global witness process that provides leadership determination among a set of nodes. The global witness service uses a database that provides compare-and-swap properties. Each node in a deployment that offers to become a leader (e.g., upon detection or determination that the services of a leader has been lost) uses the same application programming interface to query the service, and the herein-disclosed global witness service will pick exactly one of the offerors in the cluster to become a leader. A database access method and data structure is disclosed. The service operates in conjunction with the data structure. For example the service, upon receiving a leadership offer from a node, will attempt to write a particularly-formed key/value pair using a compare-and-swap operation. If the particular compare-and-swap operation (e.g., using the particularly-formed key/value pair) succeeds, then the offeror becomes the leader. Otherwise, the global witness service deems that a leader has already been selected, and the offeror is so advised.
Various embodiments are described herein with reference to the figures. It should be noted that the figures are not necessarily drawn to scale and that elements of similar structures or functions are sometimes represented by like reference characters throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the disclosed embodiments—they are not representative of an exhaustive treatment of all possible embodiments, and they are not intended to impute any limitation as to the scope of the claims. In addition, an illustrated embodiment need not portray all aspects or advantages of usage in any particular environment. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated. Also, references throughout this specification to “some embodiments” or “other embodiments” refers to a particular feature, structure, material or characteristic described in connection with the embodiments as being included in at least one embodiment. Thus, the appearance of the phrases “in some embodiments” or “in other embodiments” in various places throughout this specification are not necessarily referring to the same embodiment or embodiments.
Some of the terms used in this description are defined below for easy reference. The presented terms and their respective definitions are not rigidly restricted to these definitions—a term may be further defined by the term's use within this disclosure. The term “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application and the appended claims, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or is clear from the context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A, X employs B, or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. As used herein, at least one of A or B means at least one of A, or at least one of B, or at least one of both A and B. In other words, this phrase is disjunctive. The articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or is clear from the context to be directed to a singular form.
Reference is now made in detail to certain embodiments. The disclosed embodiments are not intended to be limiting of the claims.
FIG. 1A1 depicts an environment 1A100 having multiple clusters, each cluster having a respective leader and multiple followers. Each cluster accesses intra-cluster shared metadata that is shared between nodes within the cluster. Intra-cluster shared metadata can be used to organize leader-follower activities within a cluster, but the intra-cluster data cannot be relied upon to organize leader-follower activities between the clusters. Inter-cluster shared data can be stored and accessed so as to facilitate organization of leader-follower activities between clusters. One example is given in the following FIG. 1A2.
FIG. 1A2 depicts an environment 1A200 having multiple clusters, with each cluster having a respective leader and multiple followers. A leader process on one platform communicates over a network to one or more follower processes on any cluster. In some situations the leader process (e.g., agent 104) is configured so as to detect system changes (e.g., storage operations, block changes, configuration changes, etc.) and to communicate a copy of those changes to a listener 118A process in a different cluster, such as might be located in a geographically distant location accessible over a network.
The shown inter-cluster shared metadata is used by the agent and listeners to organize their relationships to each other (e.g., leader or follower). Leadership determination and follower determination can be used in a variety of multiple cluster scenarios. For example, in a disaster recovery scenario, the leader process in a first cluster is configured to detect and/or receive storage block changes (e.g., see agent 104) and to communicate copies of those storage block changes to one or more different clusters that run follower tasks (e.g., see listener 118A).
Architectures that involve deployment of a leader process on one cluster and one or more follower processes on a different cluster sometimes precipitate an unwanted task interaction scenario termed “split brain”. Often, split-brain scenarios exhibit unwanted interactions, especially when sharing data. In scenarios that rely on uninterrupted availability of a leader task, even in high-availability scenarios, intended uninterrupted availability of a leader task can be interrupted (e.g., due to failure of a node or network or due to a cluster-wide outage or cluster-wide disaster). A witness process serves to avoid split-brain conflicts that can precipitate shared data corruption. A witness process resides in a failure domain that is separate from the leader process failure domain.
FIG. 1B1 and FIG. 1B2 depict uses of a global witness process in a distributed processing environment having a leader on one cluster and multiple followers on other clusters. As an option, one or more variations of distributed processing environment or any aspect thereof may be implemented in the context of the architecture and functionality of the embodiments described herein. In addition, the distributed processing environment or any aspect thereof may be implemented in any environment.
The embodiment shown in FIG. 1B1 is merely one example. As shown, a leader node (e.g., see the node of clusterA) interfaces to an application programming interface (e.g., witness API 106A). In addition, a follower node (e.g., see the node of clusterC) is interfaced to an application programming interface (e.g., witness API 106B). A global witness process 110 runs in a compare-and-swap server 108. The embodiment of FIG. 1B1 is merely an illustrative embodiment where the leader, any number of followers and the compare-and-swap server are each in separate failure domains, however, the global witness process 110 in the compare-and-swap server 108 can run on any node in any cluster.
The embodiment shown in FIG. 1B2 depicts, a receiver-transmitter embodiment of an agent 104 that is interfaced to an application programming interface (e.g., witness API 106A). In addition, a listener 118B is interfaced to an application programming interface (e.g., witness API 106B). Additional clusters (e.g., cluster, clusterD, etc.) can each support nodes with additional listeners.
In certain deployments, a particular process image (e.g., binary image) is constructed (e.g., by a developer) such that the functions of a transmitter (e.g., a block change transmitter agent) as well as the functions of a receiver (e.g., a disaster recovery change listener) are included in the same image. The particular parameters that pertain to the setting (e.g., in a branch deployment or in a remote office deployment) and/or the particular parameters that pertain to respective roles of leader or follower are determined at run-time based, for example, on conditions and/or parameter that are present and/or determined at the time of invocation. A particular process image can be deployed as a task or process or thread, or a virtual machine (VM) or as a container. Further, the topology of nodes or clusters as interconnected by a network can include spoke-and-wheel topologies, mesh topologies, ring topologies, etc.
Certain aspects in some embodiments of the present application are related to material disclosed in U.S. patent application Ser. No. 14/144,520, issued as U.S. Pat. No. 9,286,344 titled, “METHOD AND SYSTEM FOR MAINTAINING CONSISTENCY FOR I/O OPERATIONS ON METADATA DISTRIBUTED AMONGST NODES IN A RING STRUCTURE” filed on Dec. 30, 2013 the content of which is incorporated by reference in its entirety in this Application.[RB1]
As heretofore discussed, a particular process image (e.g., binary image) is constructed (e.g., by a developer) such that the functions of a transmitter as well as the functions of a receiver are included in the same image. One method for run-time determination of a role (e.g., transmitter or receiver) and relationship (e.g., leader or follower) and is given infra.
The elected leader and any number of followers process continuously, until such time as a leader process is deemed to have crashed or is otherwise unreachable. As earlier described, any of the aforementioned processes can access a global witness process 110 that consults a relationship database 113. Such a relationship database consultation can be performed on a compare-and-swap server 108 that resides in a failure domain separate from the shown clusterA. A relationship database stores one or more state values, which can be used to determine and/or establish a relationship (e.g., leader, follower, owner, etc.) of a process.
Any of a variety of information that is passed to and from the global witness process can be stored in a relationship storage area. One possible organization of computing infrastructure includes a relationship storage area and logic needed for leadership election using a centralized witness process in a multi-processing computing environment, such as in a remote office, branch office environment (ROBO) scenario.
The embodiment shown in
When a leader process is deemed to have crashed (see
Several approaches to implement hosting a global witness process 110 are considered herein. In one approach, the global witness process is configured as an “active witness”. Such an active witness periodically pings all the sites (e.g., clusters) in a deployment and stores the health information. In another approach the witness and/or ancillary or constituent data structures are updated by the participating sites based on a predetermined compare and swap (CAS) protocol.
This latter approach includes the notion of a local witness function in addition to the aforementioned global witness process. Specifically, a local witness function is implemented as a one-per-site entity that communicates with a global witness process. The local witness functions to pass information to and from the global witness process. A local witness process can be implemented as a standalone process, and/or can be implemented as a thread, and/or can be implemented using an application programming interface.
Certain aspects in some embodiments of the present application are related to material disclosed in U.S. patent application Ser. No. 14/610,285 titled, “PULSED LEADER CONSENSUS MANAGEMENT” filed on Jan. 30, 2015, the content of which is incorporated by reference in its entirety in this Application.
Various logic can be implemented in a central location, or can be distributed. The following
The flow shown in
Liveness determination operates as follows:
By following all or parts of the flow, multiple nodes in various computing clusters that are connected over a network to the global witness process can determine if a resource owner is alive. In exemplary embodiments, resources are exposed so as to be accessed by the multiple nodes. A first node contacts the global witness process to establish ownership the resource. A second node of the multiple nodes may deem that the it is unable to contact the first node, and may then seek a witness determination that the first node is indeed down (e.g., by contacting the global witness process to get a second opinion that that the first node is not operational). The others of the multiple nodes may also contact the global witness process (e.g., to get a second opinion that that the first node is not operational). One of the multiple nodes will be successful in establishing new ownership of the resource (e.g., since the former owner cannot be contacted and is deemed to be down). The others of the multiple nodes will not be successful in establishing new ownership, so there will be only one owner. A resource can be a role, such as a leadership role. In such situations, one of the multiple nodes will be successful in establishing a new leadership role (e.g., since the former owner cannot be contacted and is deemed to be down). The others of the multiple nodes will not be successful in establishing new leadership role, and may take on the role of a follower.
A relationship storage area is maintained such that a leader assignment can be determined, and can be reassigned (e.g., to a replacement leader) by any process in the ecosystem. A leadership role can be established at any level of granularity over any entity or resource. For example, a leader can be established to oversee a particular job running on a particular VM on a particular node in a particular cluster. Entities and relationships thereto can be stored in a relationship storage area (e.g., a widely-accessible relationship storage area). One example of a relationship storage area is given in
The embodiment shown in
A global state table can comprise columns having entries for any domain or granularity. As shown, a global state table 304 might include domains at a relatively low levels of granularity (e.g., at the level of resources) and/or can include domains at relatively higher levels of granularity (e.g., cluster level). Such a table can have columns having additional entries for identification (e.g., entries for a set of nodes). One column in each row holds a state value. The state value is managed by the aforementioned compare-and-swap operations.
The clusterID can take the form of a unique identifier to refer to a respective cluster. The set of nodes can be a list of one or more identifiers to refer to a processing entity in a cluster. The identifier referring to a processing entity need not be unique, so long as the combination of the clusterID and any identifier referring to a processing entity is a unique combination. The state value can be a monotonically increasing number (e.g., a logical timestamp). The state value can be initialized to some initial value that is different from any of the monotonically increasing numbers that might be stored in this column.
Following this embodiment, an update to the relationship storage area succeeds in the case of a TRUE condition for any the following tests:
The global witness service is granted exclusive write access to the relationship database. Any one or more processes running on any one or more clusters can send a request (e.g., an offer to assume leadership) to the global witness service. Leadership offers and any other sorts of commands or requests are serialized, such as is shown in
The shown clusterM 402 is a cluster that defines, or is in a failure domain separate from, the leader process failure domain. ClusterM receives leadership offers and any other sorts of commands or requests (e.g., requests1, request2, request3, etc.) over a network. The requests are queued into a first-in-first-out (FIFO) facility (e.g., FIFO queue 404) before being passed to a database operation processor (e.g., database I/O module 408). A request is taken out of the queue and the request is parsed (see parser 410). A database query or other sort of access to the relationship storage area is made, possibly using a database I/O (input/output or IO) module. In this embodiment, the global state table 304 is accessed and, in some cases, a state value is changed. Examples of situations where a state value is changed are given in
Serialization can be performed over any received request, regardless of origin and/or regardless of the nature of the request. In some cases, a request is made as pertaining to a particular job that is being performed in a particular cluster.
A global state table can comprise rows that correspond to entities under management. The entities can refer to a particular object (e.g., a file) or a process (e.g., a job or function such a backup or recovery jobs), or a relationship (e.g., leader). The global state table can be initially populated and then managed on an ongoing basis so as to maintain integrity of ownership of a particular entity or leadership among a group of contenders. As shown, a global state table can include data (e.g., columns) that track states and state transitions pertaining to ownership or leadership. In some cases, a time indication can be used as one of several state variables. Any number of tasks or processes or threads can run concurrently and can access the global state table. The global state table can be used in conjunction with a global witness so as to reassign ownership of an entity and/or to re-assign (e.g., re-elect) a leadership relationship.
As earlier indicated, a particular process image can be deployed as a task or process or thread, or a virtual machine (VM) or as a container.
As shown in
As earlier indicated, each node in a deployment that offers to become a leader uses the same application programming interface to query the service. The herein-disclosed global witness service will pick exactly one of the offerors in the cluster to become a leader. In this example, the virtual machine VM2CA takes on the leader role (see entry “t=1”) for processing job=“J1”.
It can happen that a failure event occurs (see
The embodiment shown in
Referring to the timeline of
As can be understood from the foregoing, virtual machines, including virtual machines that are running in different clusters that issue the later-processed resource ownership requests, all receive negative acknowledgements along with identification of the owner and the logical timestamp as of the “OK” acknowledgement that was sent to the owning process. This regime works as well even when the two or more requestors over a particular resource are running in the same cluster (e.g., see the example shown at T5 and T6).
The embodiment shown in
Referring to the timeline of
The foregoing is an example of operation of the global witness service. Specifically, upon receiving a leadership offer from a node, global witness service will attempt to write a particularly-formed key/value pair using a compare-and-swap operation. If the particular compare-and-swap operation (e.g., using the particularly-formed key/value pair) succeeds, then the offeror becomes the leader. Otherwise, the global witness service deems that a leader has already been selected, and the offeror is so advised. In the example of
Merely as additional examples:
Note that at this point in the timeline, even if the formerly-assigned leader VM2CA that was deemed to be “crashed” was restarted, it would receive a negative acknowledgement from the global witness process 110, since VM1CA had requested and received leadership.
In this embodiment, a centralized witness process processes in accordance with the CAS flow 700. Specifically, the centralized witness process receives a “last time value” (e.g., “[T=1]”) taken from a leadership offer (see step 702). The centralized witness process checks the current time and forms a logical timestamp (see step 704). The last time value is compared (e.g., see step 706) to a stored value (e.g., the stored value in the global state table) to determine if the offer is to be accepted (e.g., with a positive acknowledgement) or denied (e.g., with a FAIL negative acknowledgement). In cases when the offer is accepted, then the new time value is swapped-in to the stored location (see step 708). In some situations, techniques other than compare-and-swap can be used to police consistency pertaining to rights and/or accesses, and/or to facilitate leadership election. For example, locks or semaphores can be used.
The embodiment shown in
The system 900 comprises at least one processor and at least one memory, the memory serving to store program instructions corresponding to the operations of the system. As shown, an operation can be implemented in whole or in part using program instructions accessible by a module. The modules are connected to a communication path 905, and any operation can communicate with other operations over communication path 905. The modules of the system can, individually or in combination, perform method operations within system 900. Any operations performed within system 900 may be performed in any order unless as may be specified in the claims.
The shown embodiment implements a portion of a computer system, presented as system 900, comprising a computer processor to execute a set of program code instructions (see module 910) and modules for accessing memory to hold program code instructions to perform: invoking a global witness process on a first computing platform that communicates over one or more networks to at least one second computing platform and to at least one third computing platform (see module 920); listening on the network for occurrences of leadership requests from a plurality of requestors, wherein a leadership request comprises a last known state value (see module 930); queueing, in a first-in-first-out queue, incoming occurrences of leadership requests (see module 940); retrieving a queued leadership request and a respective last known state value (see module 950); comparing the respective last known state value to a stored state value (see module 960); storing a new state value when the respective last known state value is equal to the stored state value (see module 970); and rejecting the leadership request when the respective last known state value is not equal to the stored state value (see module 980).
Many embodiments or variations are possible, some of which embodiments or variations are given below:
In addition to block IO functions, the configuration 1001 supports IO of any form (e.g., block IO, streaming IO, packet-based IO, HTTP traffic, etc.) through either or both of a user interface (UI) handler such as UI IO handler 1040 and/or through any of a range of application programming interfaces (APIs), possibly through the shown API IO manager 1045.
The communications link 1015 can be configured to transmit (e.g., send, receive, signal, etc.) any types of communications packets comprising any organization of data items. The data items can comprise a payload data area as well as a destination address (e.g., a destination IP address), a source address (e.g., a source IP address), and can include various packet processing techniques (e.g., tunneling), encodings (e.g., encryption), and/or formatting of bit fields into fixed-length blocks or into variable length fields used to populate the payload. In some cases, packet characteristics include a version identifier, a packet or payload length, a traffic class, a flow label, etc. In some cases the payload comprises a data structure that is encoded and/or formatted to fit into byte or word boundaries of the packet.
In some embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement aspects of the disclosure. Thus, embodiments of the disclosure are not limited to any specific combination of hardware circuitry and/or software. In embodiments, the term “logic” shall mean any combination of software or hardware that is used to implement all or part of the disclosure.
The term “computer readable medium” or “computer usable medium” as used herein refers to any medium that participates in providing instructions a data processor for execution. Such a medium may take many forms including, but not limited to, non-volatile media and volatile media. Non-volatile media includes, for example, solid-state storage devices (SSD), or optical or magnetic disks such as disk drives or tape drives. Volatile media includes dynamic memory such as a random access memory. As shown, the controller virtual machine instance 1030 includes a content cache manager facility 1016 that accesses storage locations, possibly including local DRAM (e.g., through the local memory device access block 1018) and/or possibly including accesses to local solid state storage (e.g., through local SSD device access block 1020).
Common forms of computer readable media includes any non-transitory computer readable medium, for example, floppy disk, flexible disk, hard disk, magnetic tape, or any other magnetic medium; CD-ROM or any other optical medium; punch cards, paper tape, or any other physical medium with patterns of holes, or any RAM, PROM, EPROM, FLASH-EPROM, or any other memory chip or cartridge. Any data can be stored, for example, in any form of external data repository 1031, which in turn can be formatted into any one or more storage areas, and which can comprise parameterized storage accessible by a key (e.g., a filename, a table name, a block address, an offset address, etc.). An external data repository 1031, can store any forms of data, and may comprise a storage area dedicated to storage of metadata pertaining to the stored forms of data. In some cases, metadata, can be divided into portions. Such portions and/or cache copies can be stored in the external storage data repository and/or in a local storage area (e.g., in local DRAM areas and/or in local SSD areas). Such local storage can be accessed using functions provided by a local metadata storage access block 1024. The external data repository 1031, can be configured using a CVM virtual disk controller 1026, which can in turn manage any number or any configuration of virtual disks.
Execution of the sequences of instructions to practice certain embodiments of the disclosure are performed by a one or more instances of a processing element such as a data processor, or such as a central processing unit (e.g., CPU1, CPU2). According to certain embodiments of the disclosure, two or more instances of configuration 1001 can be coupled by a communications link 1015 (e.g., backplane, LAN, PTSN, wired or wireless network, etc.) and each instance may perform respective portions of sequences of instructions as may be required to practice embodiments of the disclosure
The shown computing platform 1006 is interconnected to the Internet 1048 through one or more network interface ports (e.g., network interface port 10231 and network interface port 10232). The configuration 1001 can be addressed through one or more network interface ports using an IP address. Any operational element within computing platform 1006 can perform sending and receiving operations using any of a range of network protocols, possibly including network protocols that send and receive packets (e.g., see network protocol packet 10211 and network protocol packet 10212).
The computing platform 1006 may transmit and receive messages that can be composed of configuration data, and/or any other forms of data and/or instructions organized into a data structure (e.g., communications packets). In some cases, the data structure includes program code instructions (e.g., application code), communicated through Internet 1048 and/or through any one or more instances of communications link 1015. Received program code may be processed and/or executed by a CPU as it is received and/or program code may be stored in any volatile or non-volatile storage for later execution. Program code can be transmitted via an upload (e.g., an upload from an access device over the Internet 1048 to computing platform 1006). Further, program code and/or results of executing program code can be delivered to a particular user via a download (e.g., a download from the computing platform 1006 over the Internet 1048 to an access device).
The configuration 1001 is merely one sample configuration. Other configurations or partitions can include further data processors, and/or multiple communications interfaces, and/or multiple storage devices, etc. within a partition. For example, a partition can bound a multi-core processor (e.g., possibly including embedded or co-located memory), or a partition can bound a computing cluster having plurality of computing elements, any of which computing elements are connected directly or indirectly to a communications link. A first partition can be configured to communicate to a second partition. A particular first partition and particular second partition can be congruent (e.g., in a processing element array) or can be different (e.g., comprising disjoint sets of components).
A module as used herein can be implemented using any mix of any portions of the system memory and any extent of hard-wired circuitry including hard-wired circuitry embodied as a data processor. Some embodiments include one or more special-purpose hardware components (e.g., power control, logic, sensors, transducers, etc.). A module may include one or more state machines and/or combinational logic used to implement or facilitate the operational and/or performance characteristics of scalable exclusive resource access using a centralized witness process in a multi-processing computing environment.
Various implementations of the data repository comprise storage media organized to hold a series of records or files such that individual records or files are accessed using a name or key (e.g., a primary key or a combination of keys and/or query clauses). Such files or records can be organized into one or more data structures (e.g., data structures used to implement or facilitate aspects of scalable exclusive resource access using a centralized witness process in a multi-processing computing environment). Such files or records can be brought into and/or stored in volatile or non-volatile memory.
In the foregoing specification, the disclosure has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. For example, the above-described process flows are described with reference to a particular ordering of process actions. However, the ordering of many of the described process actions may be changed without affecting the scope or operation of the disclosure. The specification and drawings to be regarded in an illustrative sense rather than in a restrictive sense.
The present application is a continuation of U.S. patent application Ser. No. 15/160,347 titled “SCALABLE LEADERSHIP ELECTION IN A MULTI-PROCESSING COMPUTING ENVIRONMENT”, filed on May 20, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5253252 | Tobol | Oct 1993 | A |
5276867 | Kenley et al. | Jan 1994 | A |
5664144 | Yanai et al. | Sep 1997 | A |
5870555 | Pruett et al. | Feb 1999 | A |
5873085 | Enoki | Feb 1999 | A |
5884308 | Foulston | Mar 1999 | A |
5924096 | Draper | Jul 1999 | A |
6055543 | Christensen et al. | Apr 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6101508 | Wolff | Aug 2000 | A |
6212531 | Blea et al. | Apr 2001 | B1 |
6289356 | Hitz et al. | Sep 2001 | B1 |
6341340 | Tsukerman et al. | Jan 2002 | B1 |
6363416 | Naeimi et al. | Mar 2002 | B1 |
6442602 | Choudhry | Aug 2002 | B1 |
6539381 | Prasad | Mar 2003 | B1 |
6684397 | Byer et al. | Jan 2004 | B1 |
6738801 | Kawaguchi et al. | May 2004 | B1 |
6928589 | Pomaranski et al. | Aug 2005 | B1 |
6963914 | Breitbart et al. | Nov 2005 | B1 |
6968345 | Muhlestein | Nov 2005 | B1 |
7120631 | Vahalia et al. | Oct 2006 | B1 |
7159056 | Goldick | Jan 2007 | B2 |
7162467 | Eshleman | Jan 2007 | B2 |
7356679 | Le et al. | Apr 2008 | B1 |
7366738 | Yorke | Apr 2008 | B2 |
7379419 | Collins | May 2008 | B2 |
7409511 | Edwards et al. | Aug 2008 | B2 |
7421578 | Huang et al. | Sep 2008 | B1 |
7461374 | Balint et al. | Dec 2008 | B1 |
7606868 | Le et al. | Oct 2009 | B1 |
7647427 | Devarapalli | Jan 2010 | B1 |
7702843 | Chen et al. | Apr 2010 | B1 |
7707618 | Cox | Apr 2010 | B1 |
7720864 | Muth et al. | May 2010 | B1 |
7725671 | Prahlad et al. | May 2010 | B2 |
7752492 | Armangau et al. | Jul 2010 | B1 |
7774391 | Le et al. | Aug 2010 | B1 |
7805469 | Nagaralu et al. | Sep 2010 | B1 |
7805511 | Panicker et al. | Sep 2010 | B1 |
7840533 | Prahlad et al. | Nov 2010 | B2 |
7890529 | Srinivasan et al. | Feb 2011 | B1 |
7934117 | Kakivaya et al. | Apr 2011 | B2 |
7937453 | Hayden et al. | May 2011 | B1 |
7937455 | Saha et al. | May 2011 | B2 |
7941470 | Le et al. | May 2011 | B2 |
7990962 | Chang et al. | Aug 2011 | B2 |
8051252 | Williams | Nov 2011 | B2 |
8051262 | Ichikawa et al. | Nov 2011 | B2 |
8095810 | Matsuzawa et al. | Jan 2012 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8190588 | Gupta et al. | May 2012 | B1 |
8219769 | Wilk | Jul 2012 | B1 |
8352482 | Hansen | Jan 2013 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8359594 | Davidson | Jan 2013 | B1 |
8365167 | Beaty et al. | Jan 2013 | B2 |
8392680 | Natanzon et al. | Mar 2013 | B1 |
8407448 | Hayden et al. | Mar 2013 | B1 |
8424003 | Degenaro et al. | Apr 2013 | B2 |
8447728 | Prahlad et al. | May 2013 | B2 |
8473462 | Banerjee | Jun 2013 | B1 |
8473775 | Helmick | Jun 2013 | B1 |
8484163 | Yucel et al. | Jul 2013 | B1 |
8484356 | Douglis et al. | Jul 2013 | B1 |
8539076 | Nakano et al. | Sep 2013 | B2 |
8543790 | Chen et al. | Sep 2013 | B2 |
8549518 | Aron | Oct 2013 | B1 |
8601471 | Beaty | Dec 2013 | B2 |
8601473 | Aron et al. | Dec 2013 | B1 |
8635351 | Astete et al. | Jan 2014 | B2 |
8646089 | Jayanthi et al. | Feb 2014 | B2 |
8655851 | Patwardhan | Feb 2014 | B2 |
8688660 | Sivasubramanian et al. | Apr 2014 | B1 |
8725679 | Nair | May 2014 | B2 |
8751515 | Xing et al. | Jun 2014 | B1 |
8762335 | Prahlad et al. | Jun 2014 | B2 |
8805951 | Faibish et al. | Aug 2014 | B1 |
8838923 | Prahlad et al. | Sep 2014 | B2 |
8850130 | Aron et al. | Sep 2014 | B1 |
8863124 | Aron | Oct 2014 | B1 |
8898668 | Costea | Nov 2014 | B1 |
8914429 | Pitts | Dec 2014 | B2 |
8935563 | Rajaa et al. | Jan 2015 | B1 |
8949557 | Kamei et al. | Feb 2015 | B2 |
8966188 | Bardale | Feb 2015 | B1 |
8983952 | Zhang et al. | Mar 2015 | B1 |
8996783 | Huang et al. | Mar 2015 | B2 |
9009106 | Aron et al. | Apr 2015 | B1 |
9032248 | Petty | May 2015 | B1 |
9043567 | Modukuri et al. | May 2015 | B1 |
9060014 | Crowley | Jun 2015 | B2 |
9069708 | Gill et al. | Jun 2015 | B2 |
9152628 | Stacey et al. | Oct 2015 | B1 |
9154535 | Harris | Oct 2015 | B1 |
9165003 | Tummala | Oct 2015 | B1 |
9201698 | Ashok et al. | Dec 2015 | B2 |
9201704 | Chang et al. | Dec 2015 | B2 |
9201887 | Earl et al. | Dec 2015 | B1 |
9213513 | Hartz et al. | Dec 2015 | B2 |
9244674 | Waterman et al. | Jan 2016 | B2 |
9244969 | Love et al. | Jan 2016 | B1 |
9256475 | Aron et al. | Feb 2016 | B1 |
9256612 | Bhatt et al. | Feb 2016 | B1 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9274817 | Fan et al. | Mar 2016 | B1 |
9286298 | Gillett, Jr. | Mar 2016 | B1 |
9286344 | Bhardwaj et al. | Mar 2016 | B1 |
9292327 | Von Thenen et al. | Mar 2016 | B1 |
9336132 | Aron et al. | May 2016 | B1 |
9348702 | Hsu et al. | May 2016 | B2 |
9389887 | Aron et al. | Jul 2016 | B1 |
9405566 | Chawla et al. | Aug 2016 | B2 |
9411628 | Bezbaruah et al. | Aug 2016 | B2 |
9448887 | Ben Dayan et al. | Sep 2016 | B1 |
9497257 | Love et al. | Nov 2016 | B1 |
9513946 | Sevigny et al. | Dec 2016 | B2 |
9519596 | Coppola et al. | Dec 2016 | B2 |
9535907 | Stringham | Jan 2017 | B1 |
9563555 | Flynn et al. | Feb 2017 | B2 |
9571561 | Jang | Feb 2017 | B2 |
9590843 | Cui et al. | Mar 2017 | B2 |
9619257 | Aron et al. | Apr 2017 | B1 |
9634990 | Lee | Apr 2017 | B2 |
9639428 | Boda | May 2017 | B1 |
9639588 | Cheng | May 2017 | B2 |
9652265 | Narayanasamy et al. | May 2017 | B1 |
9658899 | Jenkins | May 2017 | B2 |
9690670 | Paulzagade et al. | Jun 2017 | B1 |
9733958 | Cui | Aug 2017 | B2 |
9740436 | Fiebrich-kandler et al. | Aug 2017 | B2 |
9740472 | Sohi | Aug 2017 | B1 |
9740723 | Prahlad et al. | Aug 2017 | B2 |
9747287 | Bhardwaj et al. | Aug 2017 | B1 |
9772284 | Quan et al. | Sep 2017 | B2 |
9772866 | Aron et al. | Sep 2017 | B1 |
9779015 | Oikarinen et al. | Oct 2017 | B1 |
9817703 | Ryland | Nov 2017 | B1 |
9832136 | Gibson | Nov 2017 | B1 |
9846706 | Basov et al. | Dec 2017 | B1 |
9853978 | Tellvik et al. | Dec 2017 | B2 |
9870291 | Bezbaruah et al. | Jan 2018 | B2 |
9893988 | Agarwal et al. | Feb 2018 | B2 |
9898522 | Cole et al. | Feb 2018 | B2 |
9940154 | Ramani et al. | Apr 2018 | B2 |
9946573 | Mcdermott | Apr 2018 | B2 |
10009215 | Shorey | Jun 2018 | B1 |
10050862 | Nambiar et al. | Aug 2018 | B2 |
10083022 | Fukui et al. | Sep 2018 | B2 |
10084873 | Dornemann | Sep 2018 | B2 |
10095506 | Gopalapura Venkatesh et al. | Oct 2018 | B2 |
10101989 | Sinha et al. | Oct 2018 | B2 |
10114706 | Chougala et al. | Oct 2018 | B1 |
10127059 | Astete et al. | Nov 2018 | B2 |
10140115 | Fukui et al. | Nov 2018 | B2 |
10152233 | Xu et al. | Dec 2018 | B2 |
10210048 | Sancheti | Feb 2019 | B2 |
10210172 | Konig et al. | Feb 2019 | B1 |
10248657 | Prahlad et al. | Apr 2019 | B2 |
10311153 | Mason | Jun 2019 | B2 |
10362092 | Parthasarathy | Jul 2019 | B1 |
10367753 | Schultze et al. | Jul 2019 | B2 |
10379759 | Bhardwaj et al. | Aug 2019 | B2 |
10394547 | Fukui et al. | Aug 2019 | B2 |
10419426 | Bakshan et al. | Sep 2019 | B2 |
10523592 | Byers et al. | Dec 2019 | B2 |
10530742 | Shah et al. | Jan 2020 | B2 |
10534634 | Yang et al. | Jan 2020 | B2 |
10540164 | Bafna et al. | Jan 2020 | B2 |
10540165 | Bafna et al. | Jan 2020 | B2 |
10540166 | Arikatla et al. | Jan 2020 | B2 |
10542049 | Cui et al. | Jan 2020 | B2 |
10594730 | Summers | Mar 2020 | B1 |
10599459 | Livshits | Mar 2020 | B2 |
10642507 | Gupta et al. | May 2020 | B2 |
10642518 | Bezbaruah et al. | May 2020 | B1 |
10719305 | Sinha et al. | Jul 2020 | B2 |
10719306 | Deshmukh et al. | Jul 2020 | B2 |
10719307 | Kanada et al. | Jul 2020 | B2 |
10728090 | Deshmukh et al. | Jul 2020 | B2 |
10728255 | Jindal et al. | Jul 2020 | B2 |
10809998 | Gopalapura Venkatesh et al. | Oct 2020 | B2 |
10824455 | Arikatla et al. | Nov 2020 | B2 |
10831465 | Sharpe et al. | Nov 2020 | B2 |
10838708 | Sinha et al. | Nov 2020 | B2 |
10949192 | Gopalapura Venkatesh | Mar 2021 | B2 |
10963182 | Blau et al. | Mar 2021 | B2 |
11025626 | Todd | Jun 2021 | B1 |
11086826 | Thummala | Aug 2021 | B2 |
11106447 | Gupta | Aug 2021 | B2 |
11194680 | Konka et al. | Dec 2021 | B2 |
11218418 | Gupta et al. | Jan 2022 | B2 |
11281484 | Bafna et al. | Mar 2022 | B2 |
11288239 | Bafna et al. | Mar 2022 | B2 |
11294777 | Venkatesh et al. | Apr 2022 | B2 |
11310286 | Cui et al. | Apr 2022 | B2 |
20010047400 | Coates | Nov 2001 | A1 |
20020069196 | Betros | Jun 2002 | A1 |
20020120763 | Miloushev et al. | Aug 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20030014442 | Shiigi | Jan 2003 | A1 |
20030115218 | Bobbitt et al. | Jun 2003 | A1 |
20030163597 | Hellman et al. | Aug 2003 | A1 |
20030195942 | Muhlestein et al. | Oct 2003 | A1 |
20040054777 | Ackaouy et al. | Mar 2004 | A1 |
20040199734 | Rajamani | Oct 2004 | A1 |
20040210591 | Hirschfeld et al. | Oct 2004 | A1 |
20040225742 | Loaiza | Nov 2004 | A1 |
20040267832 | Wong et al. | Dec 2004 | A1 |
20050094574 | Han et al. | May 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050120180 | Schornbach et al. | Jun 2005 | A1 |
20050125503 | Iyengar et al. | Jun 2005 | A1 |
20050193221 | Yoneyama | Sep 2005 | A1 |
20050193245 | Hayden et al. | Sep 2005 | A1 |
20050201272 | Wang et al. | Sep 2005 | A1 |
20050210461 | Srivastava et al. | Sep 2005 | A1 |
20050226059 | Kavuri et al. | Oct 2005 | A1 |
20050228798 | Shepard et al. | Oct 2005 | A1 |
20050268298 | Hunt et al. | Dec 2005 | A1 |
20060010227 | Atluri | Jan 2006 | A1 |
20060047685 | Dearing et al. | Mar 2006 | A1 |
20060069912 | Zheng et al. | Mar 2006 | A1 |
20060080445 | Chang | Apr 2006 | A1 |
20060080657 | Goodman | Apr 2006 | A1 |
20060136781 | Lamport | Jun 2006 | A1 |
20060167921 | Grebus | Jul 2006 | A1 |
20060206901 | Chan | Sep 2006 | A1 |
20060224918 | Koike | Oct 2006 | A1 |
20060225065 | Chandhok et al. | Oct 2006 | A1 |
20060271510 | Harward | Nov 2006 | A1 |
20060271931 | Harris | Nov 2006 | A1 |
20070022129 | Bahar et al. | Jan 2007 | A1 |
20070038913 | Allen et al. | Feb 2007 | A1 |
20070100905 | Masters et al. | May 2007 | A1 |
20070171921 | Wookey et al. | Jul 2007 | A1 |
20070179995 | Prahlad | Aug 2007 | A1 |
20070271561 | Winner et al. | Nov 2007 | A1 |
20070300220 | Seliger et al. | Dec 2007 | A1 |
20080040483 | Nakatani | Feb 2008 | A1 |
20080071997 | Loaiza | Mar 2008 | A1 |
20080098194 | Hashimoto et al. | Apr 2008 | A1 |
20080104349 | Maruyama | May 2008 | A1 |
20080104589 | Mccrory et al. | May 2008 | A1 |
20080133486 | Fitzgerald et al. | Jun 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080201414 | Amir et al. | Aug 2008 | A1 |
20080201457 | London | Aug 2008 | A1 |
20080208938 | Lin et al. | Aug 2008 | A1 |
20080263113 | Krishnaiyer | Oct 2008 | A1 |
20080270677 | Kolakowski | Oct 2008 | A1 |
20080320499 | Suit | Dec 2008 | A1 |
20080320583 | Sharma et al. | Dec 2008 | A1 |
20090006801 | Shultz et al. | Jan 2009 | A1 |
20090100248 | Kami | Apr 2009 | A1 |
20090113034 | Krishnappa et al. | Apr 2009 | A1 |
20090144720 | Roush et al. | Jun 2009 | A1 |
20090150885 | Safari | Jun 2009 | A1 |
20090158082 | Jain et al. | Jun 2009 | A1 |
20090171971 | Goddard et al. | Jul 2009 | A1 |
20090193272 | Matsuzawa et al. | Jul 2009 | A1 |
20090216975 | Halperin et al. | Aug 2009 | A1 |
20090248870 | Kamei et al. | Oct 2009 | A1 |
20090249470 | Litvin et al. | Oct 2009 | A1 |
20090254572 | Redlich | Oct 2009 | A1 |
20090271412 | Lacapra et al. | Oct 2009 | A1 |
20090287887 | Matsuki et al. | Nov 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090290572 | Gonia et al. | Nov 2009 | A1 |
20100023521 | Arcese | Jan 2010 | A1 |
20100042869 | Szabo et al. | Feb 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100082716 | Agetsuma et al. | Apr 2010 | A1 |
20100082774 | Pitts | Apr 2010 | A1 |
20100095289 | Nguyen et al. | Apr 2010 | A1 |
20100050944 | Callahan | May 2010 | A1 |
20100110150 | Xu et al. | May 2010 | A1 |
20100138921 | Na et al. | Jun 2010 | A1 |
20100162226 | Borissov et al. | Jun 2010 | A1 |
20100174745 | Ryan et al. | Jul 2010 | A1 |
20100214908 | Ralev | Aug 2010 | A1 |
20100241785 | Chen et al. | Sep 2010 | A1 |
20100250824 | Belay | Sep 2010 | A1 |
20100262717 | Critchley | Oct 2010 | A1 |
20100275205 | Nakajima | Oct 2010 | A1 |
20100306256 | Blackman | Dec 2010 | A1 |
20110022694 | Dalal et al. | Jan 2011 | A1 |
20110022695 | Dalal et al. | Jan 2011 | A1 |
20110022812 | van der Linden et al. | Jan 2011 | A1 |
20110022883 | Hansen | Jan 2011 | A1 |
20110047340 | Olson et al. | Feb 2011 | A1 |
20110078318 | Desai et al. | Mar 2011 | A1 |
20110107135 | Andrews et al. | May 2011 | A1 |
20110119668 | Calder | May 2011 | A1 |
20110119763 | Wade et al. | May 2011 | A1 |
20110125835 | Soltis | May 2011 | A1 |
20110137879 | Dubey | Jun 2011 | A1 |
20110145627 | Huras | Jun 2011 | A1 |
20110161299 | Prahlad et al. | Jun 2011 | A1 |
20110173493 | Armstrong et al. | Jul 2011 | A1 |
20110179414 | Goggin et al. | Jul 2011 | A1 |
20110184993 | Chawla | Jul 2011 | A1 |
20110185292 | Chawla et al. | Jul 2011 | A1 |
20110225574 | Khalidi et al. | Sep 2011 | A1 |
20110239213 | Aswani et al. | Sep 2011 | A1 |
20110251992 | Bethlehem | Oct 2011 | A1 |
20110252208 | Ali et al. | Oct 2011 | A1 |
20110255538 | Srinivasan et al. | Oct 2011 | A1 |
20110265076 | Thorat et al. | Oct 2011 | A1 |
20110271279 | Pate | Nov 2011 | A1 |
20110276578 | Allalouf et al. | Nov 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110283277 | Castillo et al. | Nov 2011 | A1 |
20110289561 | Ivanov et al. | Nov 2011 | A1 |
20110307729 | Matsuzawa et al. | Dec 2011 | A1 |
20110320690 | Petersen et al. | Dec 2011 | A1 |
20120017114 | Timashev et al. | Jan 2012 | A1 |
20120023495 | Machida | Jan 2012 | A1 |
20120030456 | Wu et al. | Feb 2012 | A1 |
20120054736 | Arcese et al. | Mar 2012 | A1 |
20120078948 | Darcy | Mar 2012 | A1 |
20120081395 | Adi et al. | Apr 2012 | A1 |
20120084381 | Alladi et al. | Apr 2012 | A1 |
20120117555 | Banerjee et al. | May 2012 | A1 |
20120166866 | Rao et al. | Jun 2012 | A1 |
20120209983 | Bronner | Aug 2012 | A1 |
20120222089 | Whelan et al. | Aug 2012 | A1 |
20120126177 | Wang | Sep 2012 | A1 |
20120233463 | Holt et al. | Sep 2012 | A1 |
20120233608 | Toeroe | Sep 2012 | A1 |
20120243795 | Head et al. | Sep 2012 | A1 |
20120254342 | Evans | Oct 2012 | A1 |
20120254445 | Kawamoto et al. | Oct 2012 | A1 |
20120254567 | Umbehocker | Oct 2012 | A1 |
20120266162 | Baron | Oct 2012 | A1 |
20120266231 | Spiers et al. | Oct 2012 | A1 |
20120272237 | Baron | Oct 2012 | A1 |
20120290630 | Aizman et al. | Nov 2012 | A1 |
20120304247 | Badger | Nov 2012 | A1 |
20120310881 | Shadmon | Dec 2012 | A1 |
20120310892 | Dam et al. | Dec 2012 | A1 |
20120317142 | Broecheler et al. | Dec 2012 | A1 |
20120324183 | Chiruvolu et al. | Dec 2012 | A1 |
20130007741 | Britsch et al. | Jan 2013 | A1 |
20130036323 | Goose et al. | Feb 2013 | A1 |
20130046740 | Li et al. | Feb 2013 | A1 |
20130047160 | Conover | Feb 2013 | A1 |
20130054973 | Fok et al. | Feb 2013 | A1 |
20130055018 | Joshi et al. | Feb 2013 | A1 |
20130061110 | Zvibel | Mar 2013 | A1 |
20130061167 | Rhodes et al. | Mar 2013 | A1 |
20130066930 | Kamei et al. | Mar 2013 | A1 |
20130117744 | Klein et al. | May 2013 | A1 |
20130132674 | Sundrani | May 2013 | A1 |
20130138995 | Sivaramakrishnan et al. | May 2013 | A1 |
20130151888 | Bhattiprolu et al. | Jun 2013 | A1 |
20130152077 | Leitman et al. | Jun 2013 | A1 |
20130152085 | D'Amore et al. | Jun 2013 | A1 |
20130174246 | Schrecker et al. | Jul 2013 | A1 |
20130185716 | Yin et al. | Jul 2013 | A1 |
20130198738 | Reddin et al. | Aug 2013 | A1 |
20130212345 | Nakajima | Aug 2013 | A1 |
20130219030 | Szabo | Aug 2013 | A1 |
20130227379 | Gupta et al. | Aug 2013 | A1 |
20130227550 | Weinstein et al. | Aug 2013 | A1 |
20130227552 | Reddin et al. | Aug 2013 | A1 |
20130227566 | Higuchi et al. | Aug 2013 | A1 |
20130232491 | Radhakrishnan et al. | Sep 2013 | A1 |
20130235774 | Jo et al. | Sep 2013 | A1 |
20130246705 | Diare | Sep 2013 | A1 |
20130247036 | Fujiwara | Sep 2013 | A1 |
20130262396 | Kripalani et al. | Oct 2013 | A1 |
20130283267 | Cooper et al. | Oct 2013 | A1 |
20130297869 | Mills et al. | Nov 2013 | A1 |
20130304694 | Barreto et al. | Nov 2013 | A1 |
20130332771 | Salapura et al. | Dec 2013 | A1 |
20140006708 | Huynh et al. | Jan 2014 | A1 |
20140025796 | Vibhor et al. | Jan 2014 | A1 |
20140052877 | Mao | Feb 2014 | A1 |
20140059392 | Ren et al. | Feb 2014 | A1 |
20140068612 | Torrey | Mar 2014 | A1 |
20140068711 | Schweitzer, III et al. | Mar 2014 | A1 |
20140075029 | Lipchuk et al. | Mar 2014 | A1 |
20140089259 | Cheng | Mar 2014 | A1 |
20140095544 | Eshel et al. | Apr 2014 | A1 |
20140095555 | Kim et al. | Apr 2014 | A1 |
20140095816 | Hsu et al. | Apr 2014 | A1 |
20140101649 | Kamble | Apr 2014 | A1 |
20140108587 | Goldberg | Apr 2014 | A1 |
20140109172 | Barton et al. | Apr 2014 | A1 |
20140115182 | Sabaa et al. | Apr 2014 | A1 |
20140123138 | Lee et al. | May 2014 | A1 |
20140143831 | Fieweger | May 2014 | A1 |
20140146055 | Bala et al. | May 2014 | A1 |
20140149794 | Shetty et al. | May 2014 | A1 |
20140149983 | Bonilla et al. | May 2014 | A1 |
20140164831 | Merriman et al. | Jun 2014 | A1 |
20140173199 | Gupta et al. | Jun 2014 | A1 |
20140181116 | Wang | Jun 2014 | A1 |
20140188808 | Wolf et al. | Jul 2014 | A1 |
20140189429 | Gill | Jul 2014 | A1 |
20140189677 | Curzi | Jul 2014 | A1 |
20140189685 | Kripalani | Jul 2014 | A1 |
20140189686 | Masters et al. | Jul 2014 | A1 |
20140196038 | Kottomtharayil et al. | Jul 2014 | A1 |
20140201725 | Tian et al. | Jul 2014 | A1 |
20140207824 | Brandwine et al. | Jul 2014 | A1 |
20140222953 | Karve et al. | Aug 2014 | A1 |
20140230024 | Uehara et al. | Aug 2014 | A1 |
20140237464 | Waterman et al. | Aug 2014 | A1 |
20140245387 | Colpo | Aug 2014 | A1 |
20140250300 | Runkis et al. | Sep 2014 | A1 |
20140279909 | Sudarsanam et al. | Sep 2014 | A1 |
20140298185 | Chen | Oct 2014 | A1 |
20140310710 | Lubsey et al. | Oct 2014 | A1 |
20140359612 | D'Amato et al. | Dec 2014 | A1 |
20150006788 | Liu et al. | Jan 2015 | A1 |
20150007180 | Sharp et al. | Jan 2015 | A1 |
20150026682 | Singh et al. | Jan 2015 | A1 |
20150032653 | Iyer et al. | Jan 2015 | A1 |
20150032690 | Hoque et al. | Jan 2015 | A1 |
20150039735 | Zeyliger | Feb 2015 | A1 |
20150039763 | Chaudhary et al. | Feb 2015 | A1 |
20150039837 | Quan et al. | Feb 2015 | A1 |
20150058298 | Earl et al. | Feb 2015 | A1 |
20150081644 | Pitts | Mar 2015 | A1 |
20150095788 | Thiele et al. | Apr 2015 | A1 |
20150106325 | Cole et al. | Apr 2015 | A1 |
20150106802 | Ivanov et al. | Apr 2015 | A1 |
20150142745 | Tekade et al. | May 2015 | A1 |
20150142747 | Zou | May 2015 | A1 |
20150143164 | Veerla | May 2015 | A1 |
20150172412 | Escriva | Jun 2015 | A1 |
20150178019 | Hegdal et al. | Jun 2015 | A1 |
20150205618 | Bailey et al. | Jul 2015 | A1 |
20150205639 | Matsumoto et al. | Jul 2015 | A1 |
20150213032 | Powell et al. | Jul 2015 | A1 |
20150220324 | Arcese et al. | Aug 2015 | A1 |
20150242291 | Chang et al. | Aug 2015 | A1 |
20150244802 | Simoncelli | Aug 2015 | A1 |
20150278046 | Zellermayer et al. | Oct 2015 | A1 |
20150293830 | Bhide et al. | Oct 2015 | A1 |
20150293896 | Runkis et al. | Oct 2015 | A1 |
20150301903 | Mutha et al. | Oct 2015 | A1 |
20150324217 | Shilmover et al. | Nov 2015 | A1 |
20150326531 | Cui et al. | Nov 2015 | A1 |
20150331757 | Durge et al. | Nov 2015 | A1 |
20150347775 | Bie et al. | Dec 2015 | A1 |
20150355862 | Hayes | Dec 2015 | A1 |
20150378761 | Sevigny | Dec 2015 | A1 |
20150378853 | Sevigny | Dec 2015 | A1 |
20160011898 | Lee | Jan 2016 | A1 |
20160018446 | Bondurant | Feb 2016 | A1 |
20160034555 | Rahut et al. | Feb 2016 | A1 |
20160050118 | Blanco et al. | Feb 2016 | A1 |
20160057009 | Kadayam et al. | Feb 2016 | A1 |
20160070492 | Cherubini et al. | Mar 2016 | A1 |
20160077936 | Tang et al. | Mar 2016 | A1 |
20160077988 | Tipton | Mar 2016 | A1 |
20160078068 | Agrawal et al. | Mar 2016 | A1 |
20160085480 | Chiu et al. | Mar 2016 | A1 |
20160085574 | Dornemann et al. | Mar 2016 | A1 |
20160087861 | Kuan et al. | Mar 2016 | A1 |
20160110214 | Vincent et al. | Apr 2016 | A1 |
20160110267 | Earl et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160162371 | Prabhu et al. | Jun 2016 | A1 |
20160171241 | Yun | Jun 2016 | A1 |
20160179416 | Mutha | Jun 2016 | A1 |
20160179419 | Yamaguchi et al. | Jun 2016 | A1 |
20160188232 | Ramachandran et al. | Jun 2016 | A1 |
20160188407 | Bronnikov et al. | Jun 2016 | A1 |
20160202916 | Cui et al. | Jul 2016 | A1 |
20160203008 | Cui et al. | Jul 2016 | A1 |
20160204977 | Cui et al. | Jul 2016 | A1 |
20160216993 | Beckwith et al. | Jul 2016 | A1 |
20160224363 | Joy | Aug 2016 | A1 |
20160274926 | Narasimhamurthy | Sep 2016 | A1 |
20160301766 | Ionescu et al. | Oct 2016 | A1 |
20160316003 | Snider | Oct 2016 | A1 |
20160328226 | Arya et al. | Nov 2016 | A1 |
20160335134 | Gupta et al. | Nov 2016 | A1 |
20160359697 | Scheib et al. | Dec 2016 | A1 |
20160359955 | Gill et al. | Dec 2016 | A1 |
20160378528 | Zamir | Dec 2016 | A1 |
20160378616 | Wigmore et al. | Dec 2016 | A1 |
20170004131 | Ben Dayan et al. | Jan 2017 | A1 |
20170005990 | Birger et al. | Jan 2017 | A1 |
20170012904 | Matzek et al. | Jan 2017 | A1 |
20170024152 | Bhagi et al. | Jan 2017 | A1 |
20170024224 | Bakke et al. | Jan 2017 | A1 |
20170039078 | Chen et al. | Feb 2017 | A1 |
20170039218 | Prahlad et al. | Feb 2017 | A1 |
20170048223 | Anantha Padmanaban et al. | Feb 2017 | A1 |
20170068469 | Shankar et al. | Mar 2017 | A1 |
20170075921 | Benton et al. | Mar 2017 | A1 |
20170090776 | Kowles | Mar 2017 | A1 |
20170091047 | Bangalore et al. | Mar 2017 | A1 |
20170094002 | Kumar et al. | Mar 2017 | A1 |
20170109184 | Ramani et al. | Apr 2017 | A1 |
20170160983 | Fiske et al. | Jun 2017 | A1 |
20170177638 | Bhosale et al. | Jun 2017 | A1 |
20170193021 | Deng | Jul 2017 | A1 |
20170206074 | Arcese et al. | Jul 2017 | A1 |
20170206207 | Bondurant et al. | Jul 2017 | A1 |
20170214738 | Agarwal et al. | Jul 2017 | A1 |
20170220661 | Cao et al. | Aug 2017 | A1 |
20170228300 | Thomas | Aug 2017 | A1 |
20170235507 | Sinha et al. | Aug 2017 | A1 |
20170235562 | Bafna et al. | Aug 2017 | A1 |
20170235563 | Bafna et al. | Aug 2017 | A1 |
20170235589 | Gopalapura Venkatesh et al. | Aug 2017 | A1 |
20170235590 | Sinha et al. | Aug 2017 | A1 |
20170235591 | Kanada et al. | Aug 2017 | A1 |
20170235653 | Arikatla et al. | Aug 2017 | A1 |
20170235654 | Deshmukh et al. | Aug 2017 | A1 |
20170235751 | Gupta et al. | Aug 2017 | A1 |
20170235758 | Gopalapura Venkatesh et al. | Aug 2017 | A1 |
20170235760 | Sharpe et al. | Aug 2017 | A1 |
20170235761 | Bafna et al. | Aug 2017 | A1 |
20170235762 | Sharpe et al. | Aug 2017 | A1 |
20170235763 | Gopalapura Venkatesh et al. | Aug 2017 | A1 |
20170235764 | Sharpe et al. | Aug 2017 | A1 |
20170235950 | Gopalapura Venkatesh et al. | Aug 2017 | A1 |
20170242599 | Patnaik et al. | Aug 2017 | A1 |
20170262346 | Pradhan et al. | Sep 2017 | A1 |
20170264684 | Spillane | Sep 2017 | A1 |
20170277556 | Ishii et al. | Sep 2017 | A1 |
20170277903 | Christodorescu et al. | Sep 2017 | A1 |
20170279674 | Zhu | Sep 2017 | A1 |
20170286228 | Redko et al. | Oct 2017 | A1 |
20170302589 | Leafe et al. | Oct 2017 | A1 |
20170302731 | Cui | Oct 2017 | A1 |
20180004766 | Darling | Jan 2018 | A1 |
20180014650 | Tao | Jan 2018 | A1 |
20180062993 | Wu et al. | Mar 2018 | A1 |
20180129426 | Aron et al. | May 2018 | A1 |
20180143845 | Chawla et al. | May 2018 | A1 |
20180145960 | Bakshan | May 2018 | A1 |
20180157521 | Arikatla et al. | Jun 2018 | A1 |
20180157522 | Bafna et al. | Jun 2018 | A1 |
20180157561 | Venkatesh et al. | Jun 2018 | A1 |
20180157677 | Bafna et al. | Jun 2018 | A1 |
20180157752 | Arikatla et al. | Jun 2018 | A1 |
20180157860 | Nair et al. | Jun 2018 | A1 |
20180159729 | Deshmukh et al. | Jun 2018 | A1 |
20180159826 | Yisan et al. | Jun 2018 | A1 |
20180173731 | Nazari et al. | Jun 2018 | A1 |
20180196719 | Glass | Jul 2018 | A1 |
20180205787 | Ben Dayan et al. | Jul 2018 | A1 |
20180278602 | Koushik et al. | Sep 2018 | A1 |
20180332105 | Huang et al. | Nov 2018 | A1 |
20180357251 | Kumarasamy et al. | Dec 2018 | A1 |
20190026101 | Gopalapura Venkatesh et al. | Jan 2019 | A1 |
20190034240 | Nabi | Jan 2019 | A1 |
20190079747 | Sinha et al. | Mar 2019 | A1 |
20190129808 | Acharya et al. | May 2019 | A1 |
20190196718 | Pai et al. | Jun 2019 | A1 |
20190207925 | Anantha Padmanaban et al. | Jul 2019 | A1 |
20190286832 | Szeto et al. | Sep 2019 | A1 |
20190332683 | Thummala et al. | Oct 2019 | A1 |
20190339883 | Aron | Nov 2019 | A1 |
20200007530 | Mohamad Abdul et al. | Jan 2020 | A1 |
20200012637 | Strauss | Jan 2020 | A1 |
20200034069 | Batra | Jan 2020 | A1 |
20200036647 | Gupta et al. | Jan 2020 | A1 |
20200081704 | Bafna et al. | Mar 2020 | A1 |
20200081733 | Buck | Mar 2020 | A1 |
20200106669 | Dhillon et al. | Apr 2020 | A1 |
20200125580 | Shao | Apr 2020 | A1 |
20200137157 | Joseph | Apr 2020 | A1 |
20200274869 | Tahenakos et al. | Aug 2020 | A1 |
20210081432 | Grunwald et al. | Mar 2021 | A1 |
20210141630 | Sharpe | May 2021 | A1 |
20210165759 | Bar-Nissan et al. | Jun 2021 | A1 |
20210200641 | Bafna | Jul 2021 | A1 |
20210224233 | Bafna | Jul 2021 | A1 |
20210247973 | Gupta | Aug 2021 | A1 |
20210334178 | Yang | Oct 2021 | A1 |
20210344772 | Arikatla | Nov 2021 | A1 |
20210349859 | Bafna | Nov 2021 | A1 |
20210365257 | Gopalapura Venkatesh | Nov 2021 | A1 |
20210390080 | Tripathi | Dec 2021 | A1 |
20210397587 | Thummala | Dec 2021 | A1 |
20210406136 | Venkatesh | Dec 2021 | A1 |
20220004377 | Sharpe | Jan 2022 | A1 |
20220147342 | Sharpe et al. | May 2022 | A1 |
20220147495 | Sharpe et al. | May 2022 | A1 |
20220156107 | Bafna et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
103746997 | Apr 2014 | CN |
105100210 | Nov 2015 | CN |
110516005 | Nov 2019 | CN |
110519112 | Nov 2019 | CN |
110569269 | Dec 2019 | CN |
1 229 443 | Aug 2002 | EP |
1062581 | Oct 2003 | EP |
1214663 | Jun 2006 | EP |
1979814 | Oct 2008 | EP |
WO 2010050944 | May 2010 | WO |
WO 2011078646 | Jun 2011 | WO |
WO 2012126177 | Sep 2012 | WO |
WO 2014200564 | Dec 2014 | WO |
WO 2016018446 | Feb 2016 | WO |
WO 2018014650 | Jan 2018 | WO |
WO 2020180291 | Sep 2020 | WO |
Entry |
---|
US 11,048,595 B2, 06/2021, Venkatesh et al. (withdrawn) |
Final Office Action for U.S. Appl. No. 15/160,347 dated Mar. 16, 2020. |
Final Office Action for U.S. Appl. No. 15/160,347 dated Jan. 28, 2019. |
Non-Final Office Action for U.S. Appl. No. 15/160,347 dated Sep. 6, 2019. |
Non-Final Office Action for U.S. Appl. No. 15/160,347 dated Jun. 29, 2018. |
Notice of Allowance for U.S. Appl. No. 15/160,347 dated Aug. 4, 2021. |
Notice of Allowance for U.S. Appl. No. 15/160,347 dated Mar. 10, 2021. |
Notice of Allowance for U.S. Appl. No. 15/160,347 dated Nov. 4, 2020. |
Wikipedia, “Compare-and-swap”, Nov. 9, 2015, 6 pages. |
Leslie Lamport, “Paxos Made Simple”, Nov. 1, 2001, 14 pages. |
Non-final Office Action dated Jul. 7, 2015 for related U.S. Appl. No. 14/278,363. |
Non-final Office Action dated Jul. 16, 2015 for related U.S. Appl. No. 14/584,466. |
International Search Report and Written Opinion dated Aug. 20, 2015, for related PCT Patent Application No. PCT/US15/31096, 8 pages. |
International Search Report and Written Opinion dated Aug. 26, 2015, for related PCT Patent Application No. PCT/US15/31096, 8 pages. |
Final Office Action dated Feb. 25, 2016 for related U.S. Appl. No. 14/584,466. |
Final Office Action dated Mar. 23, 2016 for related U.S. Appl. No. 14/278,363. |
Notice of Allowance and Fee(s) due dated Jul. 19, 2016 for related U.S. Appl. No. 14/206,869. |
Alexander Shraer, et al., “Dynamic Reconfiguration of Primary/Backup Clusters,” dated 2011, 13 pages. |
Notice of Allowance and Fee(s) due dated Oct. 30, 2015 for related U.S. Appl. No. 14/144,520. |
International Search Report and Written Opinion dated Aug. 7, 2015, for corresponding PCT Patent Application No. PCT/US2015/030026, 10 pages. |
Non-final Office Action dated Jul. 17, 2015 for related U.S. Appl. No. 14/206,869. |
PCT International Search Report and Written Opinion dated Jun. 15, 2015 for related PCT Patent Application No. PCT/US2015/020139. |
Final Office Action dated Jan. 25, 2016 for related U.S. Appl. No. 14/206,869. |
Non-final Office Action dated Sep. 22, 2016 for related U.S. Appl. No. 14/584,466. |
Citrix, “Citrix XenServer 6.0 Administrator's Guide”, Copyright 2012 Citrix Systems, Inc., 207 pages. |
John L Hufferd, Hufferd Enterprises, SNIA, “IP Storage Protocols: iSCSI”, Copyright 2011 Storage Networking Industry Association, 46 pages. |
VMware, Technical White Paper, “Multipathing Configuration for Software iSCSI Using Port Binding”, Copyright 2012 Vmware, Inc., 15 pages. |
Non-final Office Action dated Oct. 7, 2016 for related U.S. Appl. No. 14/278,363. |
Notice of Allowance and Fee(s) due dated Oct. 24, 2016 for related U.S. Appl. No. 14/206,869. |
Non-final Office Action dated Nov. 1, 2016 for related U.S. Appl. No. 14/708,091. |
Notice of Allowance and Fee(s) due dated Apr. 5, 2017 for related U.S. Appl. No. 14/584,466. |
Ajmani et al., “Scheduling and Simulation: How to Upgrade Distributed Systems,” HotOS IX: The 9th Workshop on Hot Topics in Operating Systems, USENIX, 2003, pp. 43-48. |
Kochut, Andrzej and Alexei Karve, “Leveraging Local Image Redundancy for Efficient Virtual Machine Provisioning,” 2012 IEEE Network Operations and Management Symposium, Jun. 8, 2012, pp. 179-187. |
Soules et al.; “Metadata Efficiency in a Comprehensive Versioning File System”, May 2002, CMU-CS-02-145, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, 33 pages. |
Notice of Allowance and Fee(s) due dated Apr. 10, 2017 for related U.S. Appl. No. 14/278,363. |
Final Office Action dated Apr. 20, 2017 for related U.S. Appl. No. 14/708,091. |
Notice of Allowance and Fee(s) due dated May 15, 2017 for related U.S. Appl. No. 15/069,961. |
Non-Final Office Action dated Jan. 26, 2017 for related U.S. Appl. No. 15/069,961. |
Non-Final Office Action dated Jul. 12, 2017 for related U.S. Appl. No. 14/610,285. |
European Search Report dated May 5, 2017 for related EP Application No. 15792334.3, 13 pages. |
European Search Report dated May 19, 2017 for related EP Application No. 15788922.1, 11 pages. |
Non-Final Office Action dated Aug. 24, 2017 for related U.S. Appl. No. 14/708,091. |
Final Office Action dated Jan. 9, 2018 for related U.S. Appl. No. 14/610,285. |
European Extended Search Report dated Jan. 15, 2018 for related EP Application No. 15762234.1, 19 pages. |
Final Office Action dated Feb. 27, 2018 for related U.S. Appl. No. 14/708,091. |
Advisory Action dated May 18, 2018 for related U.S. Appl. No. 14/708,091. |
Non-Final Office Action dated Jun. 7, 2018 for related U.S. Appl. No. 15/294,422. |
First Office Action dated Jul. 30, 2018 for related European Application No. 15762234.1, 6 pages. |
Notice of Allowance dated Sep. 6, 2018 for related U.S. Appl. No. 14/708,091, 8 pages. |
Intention to Grant dated Jan. 3, 2019 for related EP Application No. 15792334.3, 7 pages. |
Non-Final Office Action dated Nov. 14, 2018 for related U.S. Appl. No. 15/678,893, 7 pages. |
Notice of Allowance dated Nov. 20, 2018 for related U.S. Appl. No. 15/294,422, 7 pages. |
Poitras, Steven. “The Nutanix Bible” (Oct. 15, 2013), from http://stevenpoitras.com/the-nutanix-bible/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Jan. 11, 2014), from http://stevenpoitras.com/the-nutanix-bible/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Jun. 20, 2014), from http://stevenpoitras.com/the-nutanix-bible/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Jan. 7, 2015), from http://stevenpoitras.com/the-nutanix-bible/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Jun. 9, 2015), from http://stevenpoitras.com/the-nutanix-bible/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Sep. 4, 2015), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jan. 12, 2016), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jun. 9, 2016), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jan. 3, 2017), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jun. 8, 2017), from https://nutanixbible.com/. |
Alibaba Cloud, “AliSQL X-Cluster: An MySQL Database with Superior Performance and Strong Consistency”, (Dec. 8, 2019). |
Cano, I. et al., “Curator: Self-Managing Storage for Enterprise Clusters”, 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI '17, (Mar. 27, 2017). |
Poitras, Steven. “The Nutanix Bible” (Jul. 9, 2019), from https://nutanixbible.com/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Feb. 3, 2020), from https://nutanixbible.com/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Final Office Action dated Aug. 5, 2020 for U.S. Appl. No. 16/041,348. |
Mizrak, A. T. et al., “VMware vCenter Server High Availability Performance and Best Practices”, VMware vCenter Server 6.5, Performance Study, VMware, (Nov. 2016). |
VMware, “vSAN Planning and Deployment”, VMware vSphere 7.0, VMware vSAN 7.0, VMware, Inc., (Apr. 2, 2020). |
VMware, “VMware Infrastructure, Automating High Availability (HA) Services with VMware HA”, VMware Technical Note, (Revised on Jun. 5, 2006). |
VMware, “VMware® High Availability (VMware HA): Deployment Best Practices”, VMware® vSphere™ 4.1, Technical White Paper, (Dec. 10, 2010), date retrieved from google. |
Potheri, M. et al., “VMware vCenter Server™ 6.0, Availability Guide”, Technical Marketing Documentation, Version 1.0, (May 2015). |
McCarty, J., “VMware® Virtual SAN™ Stretched Cluster: Bandwidth Sizing Guidance”, Technical White Paper, VMware, (Jan. 26, 2016), date retrieved from google. |
McCarty, J., “VMware® Virtual SAN™ 6.1 Stretched Cluster & 2 Node Guide”, Storage and Availability Business Unit, VMware, v 6.1.0c, version 0.20, (Jan. 2016). |
Hogan, C., “VMware Virtual SAN Health Check Guide”, Storage and Availability Business Unit, VMware, v 6.1.0, (Sep. 2015). |
Dell: “High Availability and Data Protection With Dell EMC Isilon Scale-Out NAS”, (Jul. 2018), Dell Inc. |
Jcosta et al., “High Availability Setup Using Veritas Cluster Server and NetApp Synchronous SnapMirror—One button Failover-Failback with SnapMirror Sync and Veritas Cluster Server”, (Nov. 18, 2010), NetApp Community. |
NetApp: “Preparing storage systems for SnapMirror replication”, (Jul. 2015), NetApp, Inc. |
Bounds, J., “High-Availability (HA) Pair Controller Configuration Overview and Best Practices”, (Feb. 2016), NetApp, Inc. |
NetApp, “Clustered Data ONTAP 8.2 File Access Management Guide for CIFS”, NetApp, Inc., (Feb. 2014). |
Jung, Y. et al. “Standard-based Virtual Infrastructure Resource Management for Distributed and Heterogeneous Servers”, ICACT, (Feb. 15, 2009). |
Dell EMC, “Dell EMC Isilon OneFS Operating System, Scale-out NAS to maximize the data capital and business value of your unstructured data”, Data Sheet, (Jan. 31, 2019), date retrieved from google. |
Dell EMC, “Dell EMC Isilon OneFS Operating System, Powering the Isilon Scale-Out Storage Platform”, White Paper, (Dec. 2019). |
EMC, “EMC Isilon OneFS Operating System, Powering scale-out storage for the new world of Big Data in the enterprise”, Data Sheet, (Apr. 2013). |
EMC, Isilon OneFS, Version 8.0.1, Web Administration Guide, EMC Corporation, (Oct. 2016). |
NetApp, “Enabling or disabling SMB automatic node referrals”, ONTAP 9 Documentation Center, NetApp, Inc., (Updated Dec. 2020), from https://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.cdot-famg-cifs%2FGUID-AC7E8515-3A4C-4BB5-A8C8-38B565C952E0.html. |
NetApp, “Guaranteeing throughput with QoS”, ONTAP 9 Documentation Center, NetApp, Inc., (Updated Dec. 2020), from https://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.pow-perf-mon%2FGUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html. |
NetApp. “How to troubleshoot the ‘Autolocation’ feature in Clustered Data ONTAP”, Knowledgebase, NetApp, (Jun. 4, 2019). |
NetApp. “How to troubleshoot the ‘Autolocation’ feature in Clustered Data ONTAP—Results”, Knowledgebase, NetApp, (Captured on Sep. 19, 2019). |
Cloudian, “Hybrid Cloud Storage with Cloudian HyperStore and Amazon S3”, Solution Brief, Cloudian Inc., (Aug. 2015). |
NetApp, “Improving client response time by providing SMB automatic node referrals with Auto Location”, NetApp, Inc., (May 2013), from https://library.netapp.com/ecmdocs/ECMP1196891/html/GUID-0A5772A4-A6D7-4A00-AC2A-92B868C5B3B5.html. |
NetApp, “Managing Workloads”, ONTAP 9 Documentation Center, NetApp, Inc., (Updated Dec. 2020), from https://docs.netapp.com/ontap9/index.jsp?topic=%2Fcom.netapp.doc.pow-perf-mon%2FGUID-13D35FC5-AF37-4BBD-8A8E-B10B41451A16.html. |
Nutanix, “Nutanix AFS—Introduction & Steps for Setting Up”, (Jan. 3, 2018), from https://virtual building blocks. com/2018/01/03/nutanix-afs-introduction-steps-for-setting-up/. |
NetApp, “Protect Your Data with NetApp Element Software”, Solution Brief, NetApp, (Oct. 11, 2020), date retrieved from google. |
Kemp, E., “NetApp SolidFire SnapMirror Architecture and Configuration”, Technical Report, NetApp, (Dec. 2017). |
Kleyman, B., “How Cloud Computing Changes Storage Tiering”, DataCenter Knowledge, (Nov. 12, 2015). |
Poitras, Steven. “The Nutanix Bible” (Aug. 1, 2020), from https://nutanixbible.com/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Virtuadmin, “Configure Vcenter High Availability”, Virtubytes, (Sep. 14, 2017). |
Non-Final Office Action dated Sep. 30, 2020 for related U.S. Appl. No. 16/177,126. |
U.S. Appl. No. 17/129,425 titled “Parallel Change File Tracking in a Distributed File Server Virtual Machine (FSVM) Architecture” filed Dec. 21, 2020. |
U.S. Appl. No. 16/942,929 titled “Method Using Access Information in a Distributed File Server Virtual Machine (FSVM) Architecture, Including Web Access”; filed Jul. 30, 2020. |
U.S. Appl. No. 16/944,323 titled “Actions Based on File Tagging in a Distributed File Server Virtual Machine (FSVM) Environment”, filed Jul. 31, 2020. |
U.S. Appl. No. 17/091,758 titled “Virtualized File Server Distribution Across Clusters”, filed Nov. 6, 2020. |
Notice of Allowance dated Mar. 3, 2021 for U.S. Appl. No. 16/041,348. |
Rivera, R., “VMware Virtual SAN: Witness Component Deployment Logic”, VMware vSphere Bloi, (Apr. 1, 2014). |
Page, M. “EMC VPLEX Witness Deployment Within VMware Vcloud Air”, White Paper, EMC, (Oct. 7, 2016). |
EMC, “EMC VPLEX Witness Deployment Within VMware Vcloud Air”, White Paper, EMC, (Jul. 2013). |
“New VMware HCL category: vSphere Metro Stretched Cluster”, Virtual Geek, (Oct. 5, 2011). |
Lakkapragada, S. et al., “Site Recovery Manager and Stretched Storage: Tech Preview of a New Approach to Active-Active Data Centers”, VMware, (Nov. 2014). |
Epping, D., “Stretched vCloud Director Infrastructure”, VMware, (Jan. 23, 2013). |
Bernasconi, A. et al., “IBM SAN and SVC Stretched Cluster and VMware Solution Implementation”, IBM Redbooks, (Apr. 2013). |
Ashish, S. et al., “IBM SAN Volume Controller Stretched Cluster with PowerVM and PowerHA”, IBM Redbooks, (Jul. 2013). |
Dell, “Multi-AZ (stretched cluster)”, Architecture Guide—VMware Cloud Foundation 3.10.01 on VxRail, Dell Technologies, (Oct. 2001). |
Daveberm, “Step-by-Step: Configuring a 2-Node Multi-Site Cluster on Windows Server 2008 R2—Part 1”, Clustering for Mere Mortals, (Sep. 15, 2009). |
“Failover Clustering (III)”, Networks & Servers Blog, (Sep. 2011). |
Sarmiento, E., “Force Start a Windows Server Failover Cluster without a Quorum to bring a SQL Server Failover Clustered Instance Online”, (Aug. 22, 2014). |
Horenbeeck, M. V., “Spooky! The Curious Case of the ‘Ghost’ File Share Witness . . . ”, (Jul. 15, 2014). |
VMware, “Administering VMware Virtual SAN: VMware vSphere 6.5, vSAN 6.6”, VMware, (Jun. 26, 2017). |
Littman, M. L., “The Witness Algorithm: Solving Partially Observable Markov Decision Process”, Brown University, (Dec. 1994). |
Oracle, “Deploying Microsoft SQL Server Always on Availability Groups”, Oracle White Paper, (Sep. 2018). |
Enterprisedb, “EDB Failover Manager Guide: Failover Manager Version 2.0.3”, EnterpriseDB Corporation, (Dec. 18, 2015). |
“Explaining the Stormagic SvSAN Witness”, White Paper, (Aug. 29, 2018). |
“2016 Failover cluster using Azure blob as a cluster quorum”, Teckadmin, (Mar. 31, 2019). |
Deschner, G. et al., “Calling the Witness: SMB3 Failover with Samba/CTDB”, Redhat, (Oct. 2, 2015). |
Microsoft, “High Availability Solutions: SQL Server 2012 Books Online”, Microsoft (Jun. 2012). |
Mitchell, D., “Introduction to VMware vSAN™ for VMware Cloud Providers™,” Version 2.9, VMware, (Jan. 2018). |
Mitchell, D., “Introduction to VMware vSAN™ for VMware vCloud Air™ Network”, Version 2.7, VMware, (Feb. 2017). |
Paderin, M. “Analysis of Server Clustering Its Uses and Implementation”, Bachelor's thesis Information Technology, (Dec. 2017). |
VMware, “Virtualizing Microsoft Applications on VMware Virtual SAN”, Reference Architecture, VMware, (Apr. 2, 2015). |
Deschner, G., “Implementing the Witness protocol in Samba”, Redhat, (Jun. 22, 2015). |
Deschner, G., “Cluster improvements in Samba4”, Redhat, (May 30, 2016). |
Ngyuen, L., “SMB 3 Transparent Failover for Hitachi NAS Platform 4000 Series”, Tech Note, Hitachi Data Systems, (Nov. 2016). |
Mizrak, A. T. et al., “VMware vCenter Server High Availability Performance and Best Practices, VMware vCenter Server 6.5”, VMware, (Nov. 2016). |
McCarty, J. “VMware Horizon 6 with App Volumes and Virtual SAN Reference Architecture”, Storage and Availability Business Unit, VMware (Jan. 2016). |
VMware, “VMware Horizon 6 with App Volumes and Virtual SAN Reference Architecture”, Technical White Paper, VMware, (Apr. 9, 2011), date retrieved from google. |
Feroce, D., “Leveraging VMware vSAN™ for Highly Available Management Clusters”, Version 2.9, VMware, (Jan. 2018). |
VMware, “Deployment for Multiple Availability Zones”, VMware Validated Design for Software-Defined Data Center 4.3, VMware, (Jul. 17, 2018). |
McCarty, J., “VMware® Virtual SAN™ 6.1 Stretched Cluster & 2 Node Guide”, v 6.1.0c, version 0.20, VMware, (Jan. 2016). |
Hogan, C., “VMware Virtual SAN Health Check Guide”, Storage and Availability Business Unit, v 6.1.0, VMware, (Sep. 2015). |
Banerjee, A. et al., “VMware Virtual SAN™ Stretched Cluster: Performance and Best Practices”, Technical White Paper, VMware, (Oct. 22, 2015). |
Hosken, M., “VMware vSAN™ Two-Node Architecture VMware Cloud Provider™ Use Cases”, Version 2.9, VMware, (Jan. 2018). |
“VMware Virtual SAN 6.2”, Licensing Guide, VMware, (Revised Jun. 2016). |
Hunter, J., “VMware Virtual SAN 6.2”, PCI DSS Compliance Guide, (Revised Feb. 2016). |
“VMware Virtual SAN: SAP Applications”, Solution Overview, VMware, (May 6, 2016). |
Eckerle, A. et al., “What's New in VMware vSphere® 6.5”, Technical White Paper, (Nov. 15, 2016). |
Notice of Allowance dated Jun. 24, 2021 for U.S. Appl. No. 16/041,348. |
Non-Final Office Action dated Aug. 5, 2021 for related U.S. Appl. No. 16/747,272. |
Non-Final Office Action dated Sep. 7, 2021 for U.S. Appl. No. 16/947,444. |
Poitras, Steven. “The Nutanix Bible” (Jan. 30, 2021), from https://nutanixbible.com/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
Poitras, Steven. “The Nutanix Bible” (Sep. 9, 2022), from https://nutanixbible.com/ (Publication date based on indicated capture date by Archive.org; first publication date unknown). |
“Citrix XenDesktop 7.1 on Microsoft Hyper-V Server 2012 R2 on Nutanix Virtual Computing Platform—Solution Design,” Citrix Validated Solutions, Prepared by: Citrix APAC Solutions, dated Jun. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 16/947,444 dated Apr. 27, 2023. |
Non-Final Office Action dated Feb. 4, 2020 for U.S. Appl. No. 16/041,348. |
Final Office Action dated Apr. 26, 2021 for related U.S. Appl. No. 16/177,126. |
Notice of Allowance dated Dec. 8, 2021 for related U.S. Appl. No. 16/747,272. |
Final Office Action dated Dec. 27, 2021 for U.S. Appl. No. 16/947,444. |
“Setting up and Using Acropolis File Services (AFS) on Nutanix AOS 5.0”; Virtual Dennis—Sharing Technical Tips Learned the Hard Way; Posted Dec. 30, 2016; pp. all. |
Bas van Kaam “New in AOS 5.0: Nutanix Acropolis File Services”; basvankaam.com; Jan. 5, 2017; pp. all. |
Ruth, Paul “Autonomic Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure”; 2006 IEEE International Conference on Autonomic Computing, 2006, pp. 5-14. |
Illingworth, T., “Enable or disable SMB automatic node referrals,” dated Dec. 9, 2021, URL: https://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.cdot-famg-cifs%2FGUID-AC7E8515-3A4C-4BB5-A8C8-38B565C952E0.html. |
Administering VMware Virtual SAN; VMware vSphere 6.5; vSAN 6.6; https://docs.vmware.com/en/VMware-vSphere/6.5/virtual-san-66-administration-guide.pdf, captured Aug. 20, 2021. |
Illingworth, T, “Guarantee throughput with QoS overview,” dated Dec. 9, 2021, NetApp, URL: https://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.pow-perf-mon%2FGUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html. |
“Manage workloads,” NetApp, dated Oct. 14, 2021, URL: https://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.pow-perf-mon%2FGUID-13D35FC5-AF37-4BBD-8A8E-B10B41451A16.html. |
“Backup vSAN 7 File Share with Veeam Backup & Replication 10,” Sysadmin Stories, dated Jun. 2, 2020, URL: https://www.sysadminstories.com/2020/06/backup-vsan-7-file-share-with-veeam.html. |
VSphere Storage; Update 2; VMware vSphere 7.0; VMware ESXi 7.0; vCenter Server 7.0; dated Jun. 25, 2021 https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-702-storage-guide.pdf. |
VMWare Datasheet; https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vCenter/vmware-vcenter-server-datasheet.pdf, captured Aug. 20, 2021. |
“VSAN 7.0 U2 Proof of Concept Guide,” dated Apr. 2021 https://images.core.vmware.com/sites/default/files/resource/vsan_70_u2_proof_of_concept_guide_noindex.pdf. |
“VSAN Health Service—File Service—File Server Health (77165),” VMware, Knowledge Base, dated Oct. 4, 2021, URL: https://kb.vmware.com/s/article/77165. |
Update 3, VMWare vSphere 6.7; VMware vSAN 6.7; dated Aug. 20, 2019, https://docs.vmware.com/en/VMware-vSphere/6.7/vsan-673-planning-deployment-guide.pdf. |
“VSAN Stretched Cluster Guide,” VMwareStorage, dated Jun. 2020, https://images.core.vmware.com/sites/default/files/resource/vsan_stretched_cluster_guide_noindex.pdf. |
“The Wonderful World of Distributed Systems and the Art of Metadata Management,” Nutanix, Inc., dated Sep. 24, 2015, URL: https://www.nutanix.com/blog/the-wonderful-world-of-distributed-systems-and-metadata-management. |
Fojta, T. “Quotas and Quota Policies in VMware Cloud Director,” Tom Fojta's Blog, dated Nov. 6, 2020. |
Fojta, T., “vSAN File Services with vCloud Director,” Tom Fojta's Blog, dated Apr. 6, 2020. |
Hogan, C., New updates from Nutanix—NOS 3.0 and NX-3000, dated Dec. 20, 2012, URL: https://cormachogan.com/2012/12/20/new-from-nutanix-nos-3-0-nx-3000/. |
Leibovici, A., “Nutanix One-Click Upgrade now takes care of Firmware and Hypervisor too! ,” myvirtualcloud.net, dated Jul. 31, 2014, URL: https://myvirtualcloud.net/nutanix-one-click-upgrade-now-takes-care-of-firmware-and-hypervisor-too/. |
Rajendran, C, “Working with vSAN Health Checks,” VMware vSan Virtual Blocks Blog, dated Jul. 18, 2019, URL: https://blogs.vmware.com/virtualblocks/2019/07/18/working-with-vsan-health-checks/. |
Sturniolo, A., “VMware vSAN File Services and Veeam,” Veeam Blog, dated Jul. 22, 2020, URL: https://www.veeam.com/blog/veeam-backup-vsan-file-services.html. |
“Administering VMware vSAN, Update 1,” VMWare, copyright 2020. |
“Characteristics of a vSAN Cluster,” VMWare, dated May 31, 2019. |
“Native File Services for vSAN 7,” cormachogan.com, dated Mar. 11, 2020. |
“Nutanix Files Guide,” Nutanix, dated Sep. 14, 2018. |
Birk, R., “Understanding vSAN Architecture Components ,” VMWare, dated Feb. 28, 2018. |
Seget, V., “VMWare vSAN 7 now with native file services and quotas,” VMWare, dated May 1, 2020. |
“VMWare vSAN 7.0 Release Notes,” VMWare, dated Jun. 23, 2020. |
Seget, V., “VMWare vSphere 7.0 and vSAN storage improvements,” 4sysops, dated Apr. 1, 2020. |
“VMWare vSphere VMFS Technical Overview and Best Practices,” VMWare Technical White Paper, copyright 2012. |
“Additional Use Cases and Support Using vSAN File Services,” VMWare, copyright 2021. |
VSphere Storage; Update 2; VMware vSphere 6.7; VMware ESXi 6.7; vCenter Server 6.7; dated Jan. 4, 2021. |
VSphere Availibility, Update 1, VMWare, dated Jan. 11, 2019. |
Screen captures from YouTube video clip entitled “Tech TopX: AHV One Click Upgrade,” 13 pages, uploaded on Dec. 8, 2015 by user “Nutanix University”. Retrieved from Internet: https://www.youtube.com/watch?v=3dALdzw6qZM. |
“VSAN Performance Graphs in the vSphere Web Client,” VMWare Knowledge Base, dated Nov. 9, 2020. |
VSAN Monitoring and Troubleshooting, Update 1, VMWare vSphere 7.0, copyright 2020. |
Non-Final Office Action for U.S. Appl. No. 16/947,444 dated May 17, 2022. |
Notice of Allowance for U.S. Appl. No. 16/177,126 dated May 26, 2022. |
Citrix XenDesktop 7.1 on Microsoft Hyper-V Server 2012 R2 on Nutanix Virtual Computing Platform, dated Jun. 25, 2014. |
U.S. Appl. No. 17/866,225 titled Virtualized File Server Disaster Recovery filed Jul. 15, 2022. |
U.S. Appl. No. 17/865,907 titled “Virtualized File Server Deployment” filed Jul. 15, 2022. |
Hemmes, J., et al., “Cacheable Decentralized Groups for Grid Resource Access Control,” Technical Report Jun. 2006, Department of Computer Science and Engineering, University of Notre Dame, dated 2006. |
Lye, B., “Implementing Windows Server 2008 File System Quotas,” Redgate, dated Nov. 19, 2009. |
“VSAN File Services,” VMwareStorage, VMWare, dated May 2020. |
“Virtual Disk Manager User's Guide,” Virtual Disk Development Kit, VMWare, copyright 2008. |
Non-Final Office Action for U.S. Appl. No. 16/177,126 dated Sep. 16, 2022. |
Final Office Action for U.S. Appl. No. 16/947,444 dated Nov. 30, 2022. |
Notice of Allowance dated Jan. 24, 2023 for U.S. Appl. No. 16/177,126. |
Notice of Allowance for U.S. Appl. No. 16/947,444 dated Mar. 1, 2023. |
Notice of Allowance for U.S. Appl. No. 16/177,126 dated Apr. 12, 2023. |
Poitras, Steven. “The Nutanix Bible” (Jan. 3, 2018), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jun. 25, 2018), from https://nutanixbible.com/. |
Poitras, Steven. “The Nutanix Bible” (Jan. 8, 2019), from https://nutanixbible.com/. |
Notice of Allowance dated Mar. 20, 2019 for related U.S. Appl. No. 15/678,893, 5 pages. |
Notice of Allowance dated Mar. 26, 2019 for related U.S. Appl. No. 15/294,422, 7 pages. |
Notice of Allowance dated Nov. 19, 2019 for related U.S. Appl. No. 14/708,091. |
Notice of Allowance dated Dec. 27, 2019 for related U.S. Appl. No. 14/610,285. |
E.S., “Nutanix Two-Node Clusters”, (Jun. 18, 2018), from http://vpash.com/nutanix/nutanix-two-node-clusters/, pp. all. |
Configuring a Witness (two-node cluster) (Jul. 16, 2018), 3 pages. |
Gupta, Upasna. “Unlocking the ROBO/Edge IT Landscape with the Launch of Nutanix 1-node Cluster” (Jan. 19, 2018), 7 pages. |
Liu, M. “Fine-Grained Replicated State Machines for a Cluster Storage System”, in the Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI '20), (Feb. 25-27, 2020). |
Junqueira, F. P., “Zab: High-performance broadcast for primary-backup systems”, 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN), (Jun. 27-30, 2011). |
Redis, “Redis Sentinel Documentation”, (Jul. 23, 2012), date retrieved from google. |
RabbitMQ, “Quorum Queues”, (Nov. 14, 2019), date retrieved from google. |
Cao, W.,“PolarFS: An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database”, Proceedings of the VLDB Endowment, vol. 11, No. 12, (Aug. 2018). |
Number | Date | Country | |
---|---|---|---|
20220239602 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15160347 | May 2016 | US |
Child | 17646480 | US |