1. Field
The present disclosure relates to network management. More specifically, the present disclosure relates to a method and system for efficiently distributing and storing network forwarding information.
2. Related Art
The growth of the Internet has brought with it an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches, each capable of supporting a large number of end devices, to move more traffic efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. One way to meet this challenge is to interconnect a number of switches to support a large number of users. These interconnected switches can distribute forwarding information among them and store the distributed information in local forwarding tables. However, forwarding tables in such switches can grow substantially with an increasing number of forwarding entries for local and remote end devices. Furthermore, distribution of forwarding information across these switches may become complex and can incur high latency. More importantly, an overly large and complex system often does not provide economy of scale, and distributing and updating information in forwarding tables may become unviable due to the increased complexity.
As layer-2 (e.g., Ethernet) switching technologies continue to evolve, more routing-like functionalities, which have traditionally been the characteristics of layer-3 (e.g., Internet Protocol or IP) networks, are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.
While TRILL brings many desirable features to layer-2 networks, some issues remain unsolved when efficient distribution and updating of forwarding information is desired for forwarding tables.
One embodiment of the present invention provides a switch. The switch includes a notification mechanism. The notification mechanism constructs a single message that contains a locally learned media access control (MAC) address associated with a local device, a TRILL RBridge identifier associated with the switch, and an identifier of an interface associated with the MAC address.
In a variation on this embodiment, the message is constructed in a type-length-value (TLV) format.
In a variation on this embodiment, the message also contains an instruction to add, delete, or modify the MAC address.
In a variation on this embodiment, the message also contains a virtual local area network (VLAN) tag and a type indicator associated with the MAC address.
In a variation on this embodiment, the notification mechanism constructs a second message that contains an instruction to remove a MAC address associated with one or more of the following: 1) the interface identifier; 2) a VLAN tag; 3) the RBridge identifier; 4) any entry.
One embodiment of the present invention provides a switch. The switch includes a data structure and an entry management mechanism. The data structure stores device information learned at a remote switch, wherein the device information includes a MAC address of a device, a TRILL RBridge identifier associated with the remote switch, an identifier of an interface coupled to the device, and a type indicator of the MAC address. The entry management mechanism manages an entry in the data structure based on the RBridge identifier and the interface identifier.
In a variation on this embodiment, the data structure also contains a VLAN tag associated with the MAC address.
In a variation on this embodiment, the entry management mechanism constructs a second message that contains an instruction to remove a MAC address associated with one or more of the following: 1) the interface identifier; 2) a VLAN tag; 3) the RBridge identifier; and 4) any entry.
In a variation on this embodiment, the switch also includes a display mechanism that displays the entries in the data structure, wherein the displayed entries are the same in the switch and the remote switch.
In a variation on this embodiment, the switch also includes a logical switch management mechanism that maintains a membership in a logical switch, wherein the logical switch is configured to accommodate a plurality of switches and operates as a single logical switch.
The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.
Overview
In embodiments of the present invention, the problem of distributing forwarding information across a TRILL network is solved by distributing aggregated local forwarding information using type-length-value (TLV) messages that include local interface identifiers. An RBridge can share forwarding information with other RBridges in a TRILL network to maintain consistency across the network. Typically, forwarding information, such as MAC addresses of local end devices, is shared across the TRILL network using “add” or “delete” commands that adds or deletes a corresponding MAC address entry to a forwarding table, respectively. However, when the TRILL network scales to a large number of RBridges, and a respective RBridge learns a large number MAC addresses, using add or delete commands poses scalability issues. Under such a scenario, each of the large number of MAC addresses is distributed to each RBridge, and consequently, a large number of messages are passed across the network. Hence, packing of MAC addresses and other forwarding information in a TLV message reduces the number of update messages.
The TLV message from an RBridge aggregates forwarding information associated with one or more end devices, and includes information such as an RBridge identifier and an interface identifier of a local end device. Other RBridges in the TRILL network update their respective forwarding tables based on the received TLV message and can group forwarding information based on RBridge identifiers and interface identifiers. For a change in forwarding information (e.g., a flush operation) associated with a local interface, the local RBridge can send a single message with an identifier of the interface indicating the change. Upon receiving the message, other RBridges update their local forwarding table entries associated with that interface. This mechanism obviates the need to update each forwarding entry associated individual MAC addresses and can significantly reduce network overhead. In contrast, in a TRILL network without such efficient forwarding and storing mechanism, forwarding information for a respective end device is usually sent in individual messages, leading to a large number of notification messages. Furthermore, if the forwarding information does not include any interface identifier, any change associated with an interface (such as a flush of all MAC addresses on the interface) may lead to a large number of notification messages. If the number of notification messages is large, simply aggregating the messages may still not sufficiently scale. For example, in some networks, each change in a network interface may result in several thousand such messages.
In some embodiments of the present invention, an RBridge may learn about a large number of end devices from a local interface. The RBridge then efficiently aggregates the forwarding information associated with the end devices in a TLV message and sends the information to other RBridges in the TRILL network. The forwarding information for an end device includes the MAC address of the end device, an identifier of the RBridge, and an identifier of the interface to which the end device is coupled. The information may include a VLAN tag and a type indicator flag indicating the type of MAC address. In some embodiments, the type of a MAC address can be dynamic, static, or multicast. In some embodiments, the TRILL network is a fabric switch, such as an Ethernet fabric switch or a virtual cluster switch (VCS). In an Ethernet fabric switch, any number of RBridges coupled in an arbitrary topology may logically operate as a single switch. Any new RBridge may join or leave the fabric switch in “plug-and-play” mode without any manual configuration.
Whenever an RBridge learns about an end device from a TLV message, the RBridge stores the forwarding information in a local forwarding table. Each entry in the forwarding table corresponds to an end device (either local or remote) and includes a MAC address of the end device, an associated RBridge identifier, and an interface identifier. In some embodiments, the entry also includes a VLAN tag and a flag indicating the type of MAC address. During operation, if an interface on an RBridge becomes unavailable, all MAC addresses associated with the interface should be removed from all forwarding tables in all RBridges in the TRILL network. As all forwarding tables include interface information, the RBridge can simply issue a “flush” message to all other RBridges, indicating that all end devices associated with the unavailable interface should be flushes (i.e., removed) from entries associated with the interface. This flush message facilitates efficient updating of forwarding entries in remote RBridges in a TRILL network. In some embodiments, the forwarding information from a TLV message is stored in hierarchical forwarding tables, wherein each table stores a coherent subset of the forwarding information. Under such a scenario, each flush message may modify one table while leaving others unchanged.
Although the present disclosure is presented using examples based on the TRILL protocol, embodiments of the present invention are not limited to TRILL networks, or networks defined in a particular Open System Interconnection Reference Model (OSI reference model) layer.
The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in IETF Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.
In this disclosure, the terms “interface” and “port” are used interchangeably. The term “edge port” refers to an interface on an RBridge which sends/receives data frames in native Ethernet format. The term “TRILL port” refers to an interface which sends/receives data frames encapsulated with a TRILL header and outer MAC header.
The term “end device” refers to a network device that is typically not TRILL-capable. “End device” is a relative term with respect to the TRILL network. However, “end device” does not necessarily mean that the network device is an end host. An end device can be a host, a conventional layer-2 switch, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from the TRILL network. In other words, an end device can be an aggregation point for a number of network devices to enter the TRILL network.
The term “RBridge identifier” refers to a group of bits that can be used to identify an RBridge. Note that the TRILL standard uses “RBridge ID” to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “RBridge identifier” is used as a generic term and is not limited to any bit format, and can refer to “RBridge ID” or “RBridge nickname” or any other format that can identify an RBridge.
The term “frame” refers to a group of bits that can be transported together across a network. “Frame” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “Frame” can be replaced by other terminologies referring to a group of bits, such as “packet,” “cell,” or “datagram.”
In this disclosure, the term “forwarding information” is used in generic sense, and it can refer to any information that is associated with a forwarding decision in any layer in a network. The term “forwarding table” is used in generic sense, and it can refer to any data structure that contains forwarding information. “Forwarding table” can be replaced by other terminologies referring to a table containing forwarding information, such as “MAC address table” or “switch table.”
In this disclosure, an Ethernet fabric switch or a VCS refers to a fabric switch that runs a control plane with automatic configuration capabilities. The automatic configuration capability allows a number of smaller physical switches to be inter-connected to form a single, scalable logical switch without requiring manual configuration. In a fabric switch, any number of switches can be connected in an arbitrary topology without requiring manual configuration of the ports and links. This feature makes it possible to use many smaller, inexpensive switches to construct a large fabric switch, which can be viewed as a single logical switch externally.
Network Architecture
During operation, RBridge 106 learns the MAC addresses of end devices 121 to 129 from interface 152. Consequently, RBridge 106 constructs a TLV message containing forwarding information of the end devices. TLV is explained later in this disclosure in conjunction with
Upon receiving the TLV message, RBridge 102 checks the type of the message. Based on the type, RBridge 102 determines the type of operation on the received forwarding information from the message. In this example, RBridge 102 detects the type of the message to be “add,” and determines that the forwarding information in the TLV message is for newly learned end devices. In some embodiments, RBridge 102 obtains the length of the message from the length field and determines the number of end devices associated with the message. RBridge 102 then creates an entry with forwarding information for each MAC address in the message. Similarly, all other RBridges in network 100 updates their respective forwarding tables with received forwarding information from the TLV messages. Each entry in a forwarding table is associated with an end device and includes the MAC address of the end device, an associated RBridge identifier, and an interface identifier. The entry can also include a VLAN tag and a MAC address type indicator. Similarly to the add operation, if the type field indicates “modify” or “delete,” the corresponding operation is performed on a respective entry in the forwarding table for a respective MAC address in the message.
Furthermore, if interface 152 becomes unavailable (e.g., due to a failure), RBridge 106 notifies all other RBridges to flush all entries associated with interface 152. Because each forwarding table entry for end devices 121 to 129 is associated with both RBridge 106 and interface 152, a flush message from RBridge 106 with an identifier of interface 152 is sufficient for all other RBridges in network 100 to determine the entries to be flushed from their respective forwarding tables. For example, upon receiving the flush message, RBridge 104 inspects the entries associated with RBridge 106 and identifies the entries that are associated with interface 152. RBridge 104 then removes all identified entries from the local forwarding table. As a result, flush operations become efficient and the number of flush messages decreases.
During operation that does not involve using TLV messages for distributing forwarding information, an RBridge in a TRILL network may send forwarding information of each end device over individual messages. Under such a scenario, in
During operation that does not involve storing interface information in forwarding tables, a flush message is issued for each end device associated with an interface containing the MAC address of the end device. Under such a scenario, the entries in the forwarding table of RBridge 104 do not include interface identifiers. If interface 152 becomes unavailable, RBridge 106 sends individual flush messages to RBridge 104 for end devices 121 to 129. Upon receiving the flush messages, RBridge 104 inspects local forwarding entries for the MAC address in each flush message and removes the corresponding entry. Consequently, the flush operation remains inefficient and the number of flush messages can become large.
Note that TRILL is only used as a transport between the switches within network 100. This is because TRILL can readily accommodate native Ethernet frames. Also, the TRILL standards provide a ready-to-use forwarding mechanism that can be used in any routed network with arbitrary topology. Embodiments of the present invention should not be limited to using only TRILL as the transport. Other protocols (such as Internet protocol (IP) or multi-protocol label switching (MPLS)), either public or proprietary, can also be used for the transport.
Forwarding Information Distribution
In some embodiments, when an RBridge learns MAC addresses of local end devices, the RBridge packs the forwarding information of the end devices in a TLV message.
Type field 204 indicates the type of operation associated with the message. For example, type field 204 may include values indicating addition, deletion, and modification operations. Length field 206 indicates the length of the message. In conjunction with version field 202, length field 206 can indicate the number of end devices associated with the TLV message (i.e., number of end devices for which the corresponding forwarding information is included in the TLV message). For example, according to version field 202, the forwarding information of an end device may require 16 bytes. If length field 206 indicates 160 bytes of data, then the message contains forwarding information for 10 end devices. In some embodiments, length field 206 may include 4 bytes of TLV format fields as well.
In a TLV message, the version field indicates the forwarding information of an end device included in a TLV message.
Upon receiving a TLV message, an RBridge may add, delete, or modify entries to local forwarding tables with forwarding information received from the message.
Forwarding Table Updates
An RBridge can share forwarding information of local end devices with all other RBridges in a TRILL network, especially if the TRILL network is part of a fabric switch, such as a VCS.
The RBridge sets the version field of the TLV message associated with the included forwarding information in the TLV message (operation 412), as described in conjunction with
If the entry is not “add,” then the RBridge identifies a respective entry corresponding to a respective end device associated with the TLV message (operation 460) and determines the type field (operation 462). Note that the type field is checked for add separately (operation 456), because the addition operation does not require identifying current entries (operation 460). If the type field is “modify,” then the identified entries are updated with forwarding information in the TLV message (operation 464). If the type field is “delete,” then the identified entries are removed from the local forwarding table (operation 466). In some embodiments, the RBridge may remove or modify entries from one or more hierarchical forwarding tables, depending on the information in the TLV message.
Flush Operation
Flushing operations often cause RBridges in a TRILL network, particularly in a fabric switch, to use a large amount of internal processing. Such flushing operations can occur due to aging of entries and a network topology change. For example, assume there are a large number of forwarding entries associated with an interface on an RBridge. If the interface fails or the RBridge leaves the network (e.g., due to a failure), other RBridges should remove all associated entries from their respective forwarding tables. If an individual flush message is sent for each affected end device, the bandwidth on the control plane of the network is likely to be exhausted and may create a bottleneck. If a number of flush messages are bulked into a packet, a large number of such messages still may not scale. Hence, efficient flush operations and messaging are required for a scalable solution.
Suppose that failure 562 occurs that disconnects interface 552 from bridge 530. Failure 562 can occur due to a failure to interface 552 or to the link coupled to interface 552. As a result, interface 552 cannot receive packets for RBridge 506 any longer. However, end device 520 is still coupled to RBridge 506. Under such a scenario, all entries for end devices 521 to 529 in all forwarding tables in network 500 should be flushed. Consequently, RBridge 506 generates a flush message for interface 552 to all other RBridges in network 500 instead of generating an individual message for each end device. Upon receiving the flush message, each RBridge removes all entries associated with interface 552 on RBridge 506. In this way, the flush operation becomes efficient and the number of flush messages is reduced.
Suppose that failure 564 fails RBridge 506. As a result, all forwarding entries associated with RBridge 506 should be flushed. Neighboring RBridges, such as RBridges 501, 502, and 505, detect the failure, generate a flush message for RBridge 506, and send the message to other RBridges. Upon receiving the flush message, each RBridge, such as RBridge 504, removes all entries associated with RBridge 506. Similarly, a single flush message for VLAN 540 can be sent to all RBridges to remove all forwarding entries associated with VLAN 540. As a result, forwarding entries for end devices 521 to 529 and 520 are flushed from all forwarding tables in network 500.
Displaying Forwarding Table
In some embodiments, an RBridge can be coupled to a display device. A user (e.g., a network administrator) may need to view the entries of the forwarding table. The user can issue a command to the RBridge to show the forwarding table. The command can be issued from a command line interface (CLI) of the RBridge or by using a Simple Network Management Protocol (SNMP) query.
In some embodiments, the RBridge can be a member switch of a fabric switch (e.g., an Ethernet fabric switch or a VCS). All member switches of the fabric switch operate in conjunction with each other as a single logical switch. Under such a scenario, the forwarding table in the RBridge contains forwarding information for all end devices coupled to the fabric switch. Because the forwarding table contains interface information associated with a respective end device, upon receiving a command to display the forwarding table, the RBridge can display all entries of the forwarding table as if all end devices were coupled to the logical switch. As a result, any end device coupled to any of the member switches appears as a local end device to the logical (i.e., fabric) switch. In other words, forwarding entries displayed at any member switch of the logical switch are similar, which is a desirable behavior from a fabric switch.
Exemplary Switch System
During operation, RBridge 700 learns about MAC addresses of local end devices from edge ports 702. Notification module 732 obtains the MAC addresses of Ethernet frame processor 710 and creates notification messages with the forwarding information. In some embodiments, the notification message is constructed as a TLV message. TRILL header processing module 722 encapsulates the message in a TRILL header and TRILL management module 720 sends the notification message to other RBridges in the network. Storage 750 contains identifying and routing information of other RBridges.
In some embodiments, RBridge 700 also includes an entry management module 734. When RBridge 700 receives notification messages from other RBridges from TRILL ports 704, TRILL header processing module 722 removes the TRILL header from the message and TRILL management module 720 provides entry management module 734 with the message. Entry management module 734 then stores the forwarding information in the message to forwarding table 736 in storage 750.
In some embodiments, RBridge 700 may maintain a membership in a logical switch, wherein RBridge 700 also includes a virtual switch management module 740 and a logical switch 742, as described in conjunction with
Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in RBridge 700. When executed, these instructions cause the processor(s) to perform the aforementioned functions.
In summary, embodiments of the present invention provide a switch, a method and a system for distributing forwarding information, including local interface identifiers, across a TRILL network using TLV messages and accordingly updating local forwarding tables. In one embodiment, the switch includes a notification mechanism. The notification mechanism constructs a single message that contains a locally learned MAC address associated with a local device, a TRILL RBridge identifier associated with the switch, and an identifier of an interface associated with the MAC address. In some embodiments, the switch includes a data structure and an entry management mechanism. The data structure stores device information learned at a remote switch, wherein the device information includes a MAC address of a device, a TRILL RBridge identifier associated with the remote switch, an identifier of an interface coupled to the device, and a type indicator of the MAC address. The entry management mechanism manages an entry in the data structure based on the RBridge identifier and the interface identifier.
The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.
The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.
The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/502,128, titled “Scalable MAC Address Distribution in VCS,” by inventors Mythilikanth Raman and Mary Manohar, filed 28 Jun. 2011, the disclosure of which is incorporated by reference herein. The present disclosure is related to U.S. patent application Ser. No. 13/087,239, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, filed 14 Apr. 2011, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5390173 | Spinney | Feb 1995 | A |
5802278 | Isfeld et al. | Sep 1998 | A |
5878232 | Marimuthu | Mar 1999 | A |
5959968 | Chin | Sep 1999 | A |
5973278 | Wehrill, III | Oct 1999 | A |
5983278 | Chong | Nov 1999 | A |
6041042 | Bussiere | Mar 2000 | A |
6085238 | Yuasa | Jul 2000 | A |
6104696 | Kadambi | Aug 2000 | A |
6185214 | Schwartz | Feb 2001 | B1 |
6185241 | Sun | Feb 2001 | B1 |
6438106 | Pillar | Aug 2002 | B1 |
6542266 | Phillips | Apr 2003 | B1 |
6633761 | Singhal | Oct 2003 | B1 |
6771610 | Seaman | Aug 2004 | B1 |
6873602 | Ambe | Mar 2005 | B1 |
6956824 | Mark | Oct 2005 | B2 |
6957269 | Williams | Oct 2005 | B2 |
6975581 | Medina | Dec 2005 | B1 |
6975864 | Singhal | Dec 2005 | B2 |
7016352 | Chow | Mar 2006 | B1 |
7173934 | Lapuh | Feb 2007 | B2 |
7197308 | Singhal | Mar 2007 | B2 |
7206288 | Cometto | Apr 2007 | B2 |
7310664 | Merchant | Dec 2007 | B1 |
7313637 | Tanaka | Dec 2007 | B2 |
7315545 | Chowdhury et al. | Jan 2008 | B1 |
7316031 | Griffith | Jan 2008 | B2 |
7330897 | Baldwin | Feb 2008 | B2 |
7380025 | Riggins | May 2008 | B1 |
7430164 | Bare | Sep 2008 | B2 |
7453888 | Zabihi | Nov 2008 | B2 |
7477894 | Sinha | Jan 2009 | B1 |
7480258 | Shuen | Jan 2009 | B1 |
7508757 | Ge | Mar 2009 | B2 |
7558195 | Kuo | Jul 2009 | B1 |
7558273 | Grosser, Jr. | Jul 2009 | B1 |
7571447 | Ally | Aug 2009 | B2 |
7599901 | Mital | Oct 2009 | B2 |
7688736 | Walsh | Mar 2010 | B1 |
7688960 | Aubuchon | Mar 2010 | B1 |
7690040 | Frattura | Mar 2010 | B2 |
7706255 | Kondrat et al. | Apr 2010 | B1 |
7716370 | Devarapalli | May 2010 | B1 |
7720076 | Dobbins | May 2010 | B2 |
7729296 | Choudhary | Jun 2010 | B1 |
7787480 | Mehta | Aug 2010 | B1 |
7792920 | Istvan | Sep 2010 | B2 |
7796593 | Ghosh | Sep 2010 | B1 |
7808992 | Homchaudhuri | Oct 2010 | B2 |
7836332 | Hara | Nov 2010 | B2 |
7843906 | Chidambaram et al. | Nov 2010 | B1 |
7843907 | Abou-Emara | Nov 2010 | B1 |
7860097 | Lovett | Dec 2010 | B1 |
7898959 | Arad | Mar 2011 | B1 |
7924837 | Shabtay | Apr 2011 | B1 |
7937756 | Kay | May 2011 | B2 |
7949638 | Goodson | May 2011 | B1 |
7957386 | Aggarwal | Jun 2011 | B1 |
8018938 | Fromm | Sep 2011 | B1 |
8027354 | Portolani | Sep 2011 | B1 |
8054832 | Shukla | Nov 2011 | B1 |
8068442 | Kompella | Nov 2011 | B1 |
8078704 | Lee | Dec 2011 | B2 |
8102781 | Smith | Jan 2012 | B2 |
8102791 | Tang | Jan 2012 | B2 |
8116307 | Thesayi | Feb 2012 | B1 |
8125928 | Mehta | Feb 2012 | B2 |
8134922 | Elangovan | Mar 2012 | B2 |
8155150 | Chung | Apr 2012 | B1 |
8160063 | Maltz | Apr 2012 | B2 |
8160080 | Arad | Apr 2012 | B1 |
8170038 | Belanger | May 2012 | B2 |
8194674 | Pagel | Jun 2012 | B1 |
8195774 | Lambeth | Jun 2012 | B2 |
8204061 | Sane | Jun 2012 | B1 |
8213313 | Doiron | Jul 2012 | B1 |
8213336 | Smith | Jul 2012 | B2 |
8230069 | Korupolu | Jul 2012 | B2 |
8239960 | Frattura | Aug 2012 | B2 |
8249069 | Raman | Aug 2012 | B2 |
8270401 | Barnes | Sep 2012 | B1 |
8295291 | Ramanathan | Oct 2012 | B1 |
8295921 | Wang | Oct 2012 | B2 |
8301686 | Appajodu | Oct 2012 | B1 |
8339994 | Gnanasekaran | Dec 2012 | B2 |
8351352 | Eastlake, III | Jan 2013 | B1 |
8369335 | Jha | Feb 2013 | B2 |
8369347 | Xiong | Feb 2013 | B2 |
8392496 | Linden | Mar 2013 | B2 |
8462774 | Page | Jun 2013 | B2 |
8467375 | Blair | Jun 2013 | B2 |
8520595 | Yadav | Aug 2013 | B2 |
8599850 | Jha | Dec 2013 | B2 |
8599864 | Chung | Dec 2013 | B2 |
8615008 | Natarajan | Dec 2013 | B2 |
8826385 | Congdon | Sep 2014 | B2 |
20010055274 | Hegge | Dec 2001 | A1 |
20020019904 | Katz | Feb 2002 | A1 |
20020021701 | Lavian | Feb 2002 | A1 |
20020091795 | Yip | Jul 2002 | A1 |
20030041085 | Sato | Feb 2003 | A1 |
20030123393 | Feuerstraeter | Jul 2003 | A1 |
20030174706 | Shankar | Sep 2003 | A1 |
20030189905 | Lee | Oct 2003 | A1 |
20040001433 | Gram | Jan 2004 | A1 |
20040010600 | Baldwin | Jan 2004 | A1 |
20040049699 | Griffith | Mar 2004 | A1 |
20040117508 | Shimizu | Jun 2004 | A1 |
20040120326 | Yoon | Jun 2004 | A1 |
20040156313 | Hofmeister et al. | Aug 2004 | A1 |
20040165595 | Holmgren | Aug 2004 | A1 |
20040165596 | Garcia | Aug 2004 | A1 |
20040213232 | Regan | Oct 2004 | A1 |
20050007951 | Lapuh | Jan 2005 | A1 |
20050044199 | Shiga | Feb 2005 | A1 |
20050074001 | Mattes | Apr 2005 | A1 |
20050094568 | Judd | May 2005 | A1 |
20050094630 | Valdevit | May 2005 | A1 |
20050122979 | Gross | Jun 2005 | A1 |
20050157645 | Rabie et al. | Jul 2005 | A1 |
20050157751 | Rabie | Jul 2005 | A1 |
20050169188 | Cometto | Aug 2005 | A1 |
20050195813 | Ambe | Sep 2005 | A1 |
20050213561 | Yao | Sep 2005 | A1 |
20050220096 | Friskney | Oct 2005 | A1 |
20050265356 | Kawarai | Dec 2005 | A1 |
20050278565 | Frattura | Dec 2005 | A1 |
20060007869 | Hirota | Jan 2006 | A1 |
20060018302 | Ivaldi | Jan 2006 | A1 |
20060023707 | Makishima et al. | Feb 2006 | A1 |
20060034292 | Wakayama | Feb 2006 | A1 |
20060059163 | Frattura | Mar 2006 | A1 |
20060062187 | Rune | Mar 2006 | A1 |
20060072550 | Davis | Apr 2006 | A1 |
20060083254 | Ge | Apr 2006 | A1 |
20060098589 | Kreeger | May 2006 | A1 |
20060168109 | Warmenhoven | Jul 2006 | A1 |
20060184937 | Abels | Aug 2006 | A1 |
20060221960 | Borgione | Oct 2006 | A1 |
20060235995 | Bhatia | Oct 2006 | A1 |
20060242311 | Mai | Oct 2006 | A1 |
20060245439 | Sajassi | Nov 2006 | A1 |
20060251067 | Desanti | Nov 2006 | A1 |
20060256767 | Suzuki | Nov 2006 | A1 |
20060265515 | Shiga | Nov 2006 | A1 |
20060285499 | Tzeng | Dec 2006 | A1 |
20060291388 | Amdahl | Dec 2006 | A1 |
20070036178 | Hares | Feb 2007 | A1 |
20070086362 | Kato | Apr 2007 | A1 |
20070094464 | Sharma | Apr 2007 | A1 |
20070097968 | Du | May 2007 | A1 |
20070116224 | Burke | May 2007 | A1 |
20070156659 | Lim | Jul 2007 | A1 |
20070177525 | Wijnands | Aug 2007 | A1 |
20070177597 | Ju | Aug 2007 | A1 |
20070183313 | Narayanan | Aug 2007 | A1 |
20070211712 | Fitch | Sep 2007 | A1 |
20070274234 | Kubota | Nov 2007 | A1 |
20070289017 | Copeland, III | Dec 2007 | A1 |
20080052487 | Akahane | Feb 2008 | A1 |
20080065760 | Damm | Mar 2008 | A1 |
20080080517 | Roy | Apr 2008 | A1 |
20080101386 | Gray | May 2008 | A1 |
20080112400 | Dunbar et al. | May 2008 | A1 |
20080133760 | Berkvens et al. | Jun 2008 | A1 |
20080159277 | Vobbilisetty | Jul 2008 | A1 |
20080172492 | Raghunath | Jul 2008 | A1 |
20080181196 | Regan | Jul 2008 | A1 |
20080181243 | Vobbilisetty | Jul 2008 | A1 |
20080186981 | Seto | Aug 2008 | A1 |
20080205377 | Chao | Aug 2008 | A1 |
20080219172 | Mohan | Sep 2008 | A1 |
20080225852 | Raszuk | Sep 2008 | A1 |
20080225853 | Melman | Sep 2008 | A1 |
20080228897 | Ko | Sep 2008 | A1 |
20080240129 | Elmeleegy | Oct 2008 | A1 |
20080267179 | Lavigne | Oct 2008 | A1 |
20080285555 | Ogasahara | Nov 2008 | A1 |
20080298248 | Roeck | Dec 2008 | A1 |
20080310342 | Kruys | Dec 2008 | A1 |
20090037607 | Farinacci | Feb 2009 | A1 |
20090042270 | Dolly | Feb 2009 | A1 |
20090044270 | Shelly | Feb 2009 | A1 |
20090067422 | Poppe | Mar 2009 | A1 |
20090067442 | Killian | Mar 2009 | A1 |
20090079560 | Fries | Mar 2009 | A1 |
20090080345 | Gray | Mar 2009 | A1 |
20090083445 | Ganga | Mar 2009 | A1 |
20090092042 | Yuhara | Apr 2009 | A1 |
20090092043 | Lapuh | Apr 2009 | A1 |
20090106405 | Mazarick | Apr 2009 | A1 |
20090116381 | Kanda | May 2009 | A1 |
20090129384 | Regan | May 2009 | A1 |
20090138577 | Casado | May 2009 | A1 |
20090138752 | Graham | May 2009 | A1 |
20090161584 | Guan | Jun 2009 | A1 |
20090161670 | Shepherd | Jun 2009 | A1 |
20090168647 | Holness | Jul 2009 | A1 |
20090199177 | Edwards | Aug 2009 | A1 |
20090204965 | Tanaka | Aug 2009 | A1 |
20090213783 | Moreton | Aug 2009 | A1 |
20090222879 | Kostal | Sep 2009 | A1 |
20090245137 | Hares | Oct 2009 | A1 |
20090245242 | Carlson | Oct 2009 | A1 |
20090246137 | Hadida | Oct 2009 | A1 |
20090252049 | Ludwig | Oct 2009 | A1 |
20090260083 | Szeto | Oct 2009 | A1 |
20090279558 | Davis | Nov 2009 | A1 |
20090292858 | Lambeth | Nov 2009 | A1 |
20090316721 | Kanda | Dec 2009 | A1 |
20090323708 | Ihle | Dec 2009 | A1 |
20090327392 | Tripathi | Dec 2009 | A1 |
20090327462 | Adams | Dec 2009 | A1 |
20090328392 | Tripathi | Dec 2009 | |
20100027420 | Smith | Feb 2010 | A1 |
20100054260 | Pandey | Mar 2010 | A1 |
20100061269 | Banerjee | Mar 2010 | A1 |
20100074175 | Banks | Mar 2010 | A1 |
20100097941 | Carlson | Apr 2010 | A1 |
20100103813 | Allan | Apr 2010 | A1 |
20100103939 | Carlson | Apr 2010 | A1 |
20100131636 | Suri | May 2010 | A1 |
20100158024 | Sajassi | Jun 2010 | A1 |
20100165877 | Shukla | Jul 2010 | A1 |
20100165995 | Mehta | Jul 2010 | A1 |
20100168467 | Johnston | Jul 2010 | A1 |
20100169467 | Shukla | Jul 2010 | A1 |
20100169948 | Budko | Jul 2010 | A1 |
20100182920 | Matsuoka | Jul 2010 | A1 |
20100215049 | Raza | Aug 2010 | A1 |
20100220724 | Rabie | Sep 2010 | A1 |
20100226368 | Mack-Crane | Sep 2010 | A1 |
20100226381 | Mehta | Sep 2010 | A1 |
20100246388 | Gupta | Sep 2010 | A1 |
20100257263 | Casado | Oct 2010 | A1 |
20100271960 | Krygowski | Oct 2010 | A1 |
20100281106 | Ashwood-Smith | Nov 2010 | A1 |
20100284414 | Agarwal | Nov 2010 | A1 |
20100284418 | Gray | Nov 2010 | A1 |
20100287262 | Elzur | Nov 2010 | A1 |
20100287548 | Zhou | Nov 2010 | A1 |
20100290473 | Enduri | Nov 2010 | A1 |
20100299527 | Arunan | Nov 2010 | A1 |
20100303071 | Kotalwar | Dec 2010 | A1 |
20100303075 | Tripathi | Dec 2010 | A1 |
20100303083 | Belanger | Dec 2010 | A1 |
20100309820 | Rajagopalan | Dec 2010 | A1 |
20100309912 | Mehta | Dec 2010 | A1 |
20100329110 | Rose | Dec 2010 | A1 |
20110019678 | Mehta | Jan 2011 | A1 |
20110032945 | Mullooly | Feb 2011 | A1 |
20110035489 | McDaniel | Feb 2011 | A1 |
20110035498 | Shah | Feb 2011 | A1 |
20110044339 | Kotalwar | Feb 2011 | A1 |
20110044352 | Chaitou | Feb 2011 | A1 |
20110055274 | Scales et al. | Mar 2011 | A1 |
20110064086 | Xiong | Mar 2011 | A1 |
20110064089 | Hidaka | Mar 2011 | A1 |
20110072208 | Gulati | Mar 2011 | A1 |
20110085560 | Chawla | Apr 2011 | A1 |
20110085563 | Kotha | Apr 2011 | A1 |
20110110266 | Li | May 2011 | A1 |
20110134802 | Rajagopalan | Jun 2011 | A1 |
20110134803 | Dalvi | Jun 2011 | A1 |
20110134925 | Safrai | Jun 2011 | A1 |
20110142053 | Van Der Merwe | Jun 2011 | A1 |
20110142062 | Wang | Jun 2011 | A1 |
20110161494 | McDysan | Jun 2011 | A1 |
20110161695 | Okita | Jun 2011 | A1 |
20110188373 | Saito | Aug 2011 | A1 |
20110194403 | Sajassi | Aug 2011 | A1 |
20110194563 | Shen | Aug 2011 | A1 |
20110228780 | Ashwood-Smith | Sep 2011 | A1 |
20110231574 | Saunderson | Sep 2011 | A1 |
20110235523 | Jha | Sep 2011 | A1 |
20110243133 | Villait | Oct 2011 | A9 |
20110243136 | Raman | Oct 2011 | A1 |
20110246669 | Kanada | Oct 2011 | A1 |
20110255538 | Srinivasan | Oct 2011 | A1 |
20110255540 | Mizrahi | Oct 2011 | A1 |
20110261828 | Smith | Oct 2011 | A1 |
20110268120 | Vobbilisetty | Nov 2011 | A1 |
20110273988 | Tourrilhes | Nov 2011 | A1 |
20110274114 | Dhar | Nov 2011 | A1 |
20110280572 | Vobbilisetty | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110296052 | Guo | Dec 2011 | A1 |
20110299391 | Vobbilisetty | Dec 2011 | A1 |
20110299413 | Chatwani | Dec 2011 | A1 |
20110299414 | Yu | Dec 2011 | A1 |
20110299527 | Yu | Dec 2011 | A1 |
20110299528 | Yu | Dec 2011 | A1 |
20110299531 | Yu | Dec 2011 | A1 |
20110299532 | Yu | Dec 2011 | A1 |
20110299533 | Yu | Dec 2011 | A1 |
20110299534 | Koganti | Dec 2011 | A1 |
20110299535 | Vobbilisetty | Dec 2011 | A1 |
20110299536 | Cheng | Dec 2011 | A1 |
20110317559 | Kern | Dec 2011 | A1 |
20110317703 | Dunbar et al. | Dec 2011 | A1 |
20120011240 | Hara | Jan 2012 | A1 |
20120014261 | Salam | Jan 2012 | A1 |
20120014387 | Dunbar | Jan 2012 | A1 |
20120020220 | Sugita | Jan 2012 | A1 |
20120027017 | Rai | Feb 2012 | A1 |
20120033663 | Guichard | Feb 2012 | A1 |
20120033665 | Da Silva | Feb 2012 | A1 |
20120033669 | Mohandas | Feb 2012 | A1 |
20120075991 | Sugita | Mar 2012 | A1 |
20120099602 | Nagapudi | Apr 2012 | A1 |
20120106339 | Mishra | May 2012 | A1 |
20120131097 | Baykal | May 2012 | A1 |
20120131289 | Taguchi | May 2012 | A1 |
20120158997 | Hsu | Jun 2012 | A1 |
20120163164 | Terry | Jun 2012 | A1 |
20120177039 | Berman | Jul 2012 | A1 |
20120243539 | Keesara | Sep 2012 | A1 |
20120275347 | Banerjee | Nov 2012 | A1 |
20120294192 | Masood | Nov 2012 | A1 |
20120294194 | Balasubramanian | Nov 2012 | A1 |
20120320800 | Kamble | Dec 2012 | A1 |
20120320926 | Kamath et al. | Dec 2012 | A1 |
20120327766 | Tsai et al. | Dec 2012 | A1 |
20120327937 | Melman et al. | Dec 2012 | A1 |
20130003737 | Sinicrope | Jan 2013 | A1 |
20130028072 | Addanki | Jan 2013 | A1 |
20130034015 | Jaiswal | Feb 2013 | A1 |
20130067466 | Combs | Mar 2013 | A1 |
20130070762 | Adams | Mar 2013 | A1 |
20130114595 | Mack-Crane et al. | May 2013 | A1 |
20130127848 | Joshi | May 2013 | A1 |
20130194914 | Agarwal | Aug 2013 | A1 |
20130219473 | Schaefer | Aug 2013 | A1 |
20130250951 | Koganti | Sep 2013 | A1 |
20130259037 | Natarajan | Oct 2013 | A1 |
20130272135 | Leong | Oct 2013 | A1 |
20140105034 | Sun | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
102801599 | Nov 2012 | CN |
0579567 | May 1993 | EP |
1398920 | Mar 2004 | EP |
2001167 | Aug 2007 | EP |
1916807 | Oct 2007 | EP |
1916807 | Apr 2008 | EP |
2001167 | Dec 2008 | EP |
2009042919 | Apr 2009 | WO |
2010111142 | Sep 2010 | WO |
2014031781 | Feb 2014 | WO |
Entry |
---|
“Switched Virtual Internetworking moves beyond bridges and routers”, Sep. 23, 1994, No. 12, New York, US. |
Knight, S. et al. “Virtual Router Redundancy Protocol”, Apr. 1998, XP-002135272. |
Eastlake, Donald et al., “RBridges: TRILL Header Options”, Dec. 2009. |
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009. |
Perlman, Radia et al., “RBridge VLAN Mapping”, Dec. 2009. |
“Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions”. |
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, XP-002649647, 2009. |
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, Mar. 2010. |
Perlman, Radia et al., “RBridges: Base Protocol Specification”, Mar. 2010. |
Christensen, M. et al., “Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches”, May 2006. |
“Switched Virtual Internetworking moved beyond bridges and routers”, 8178 Data Communications Sep. 23, 1994, No. 12, New York. |
S. Night et al., “Virtual Router Redundancy Protocol”, Network Working Group, XP-002135272, Apr. 1998. |
Eastlake 3rd., Donald et al., “RBridges: TRILL Header Options”, Draft-ietf-trill-rbridge-options-00.txt, Dec. 24, 2009. |
J. Touch, et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009. |
Perlman, Radia et al., “RBridge VLAN Mapping”, Draft-ietf-trill-rbridge-vlan-mapping-01.txt, Dec. 4, 2009. |
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions. |
Perlman, Radia et al., “RBridges: Base Protocol Specification”, draft-ietf-trill-rbridge-protocol-16.txt, Mar. 3, 2010. |
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, Oct. 2002. |
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT) draft-lapuh-network-smIt-08”, 2008. |
Huang, Nen-Fu et al. “An Effective Spanning Tree Algorithm for a Bridged LAN”, Mar. 16, 1992. |
Zhai, H. et al., “RBridge: Pseudo-Nickname draft-hu-trill-pseudonode-nickname-02.”, May 15, 2012. |
Narten, T. et al. “Problem Statement: Overlays for Network Virtualization draft-narten-nvo3-overlay-problem-statement-01”, Oct. 31, 2011. |
Knight, Paul et al. “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts”, 2004. |
An Introduction to Brocade VCS Fabric Technology, Dec. 3, 2012. |
Kreeger, L. et al. “Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00”, Aug. 2, 2012. |
Knight, Paul et al., “Network based IP VPN Architecture using Virtual Routers”, May 2003. |
Louati, Wajdi et al., “Network-Based Virtual Personal Overlay Networks Using Programmable Virtual Routers”, 2005. |
Brocade Unveils “The Effortless Network”, 2009. |
The Effortless Network: HyperEdge Technology for the Campus LAN, 2012. |
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, 2008. |
FastIron and Turbulron 24x Configuration Guide, 2010. |
FastIron Configuration Guide, Supporting IronWare Software Release 07.0.00, 2009. |
Christensen, M. et al., Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches, 2006. |
Perlman, Radia et al. “RBridges: Base Protocol Specification”, <draft-ietf-trill-rbridge-protocol-16.txt>, 2010. |
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions, 2009. |
Eastlake III, Donald et al., “RBridges: TRILL Header Options”, 2009. |
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, 2009. |
Perlman, Radia et al., “RBridge VLAN Mapping”, <draft-ietf-trill-rbridge-vlan-mapping-01.txt>, 2009. |
Knight, S. et al., “Virtual Router Redundancy Protocol”, 1998. |
“Switched Virtual Internetworking moves beyond bridges and routers”, 8178 Data Communications Sep. 23, 1994, No. 12. |
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, 2009. |
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, 2002. |
Lapuh, Roger et al., “Split Multi-Link Trunking (SMLT) draft-Lapuh-network-smlt-08”, 2009. |
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, 2010. |
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010. |
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010. |
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011. |
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011. |
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011. |
Office action dated Jul. 16, 2013, U.S. Appl. No. 13/092,724, filed Jul. 16, 2013. |
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011. |
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011. |
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010. |
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010. |
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Jun. 20, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010. |
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010. |
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011. |
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011. |
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011. |
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011. |
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011. |
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011. |
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011. |
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011. |
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011. |
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011. |
Office action dated Jul. 23, 2013, U.S. Appl. No. 13/365,993, filed Feb. 3, 2012. |
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012. |
Office action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012. |
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011. |
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011. |
Office action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012. |
Office action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012. |
Office action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012. |
Office action dated Oct. 21, 2013, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012. |
Office action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012. |
Office action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012. |
Office action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012. |
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011. |
Office Action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013. |
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013. |
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013. |
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012. |
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013. |
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012. |
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012. |
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012. |
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013. |
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012. |
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013. |
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013. |
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013. |
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013. |
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013. |
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013. |
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013. |
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013. |
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013. |
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013. |
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014. |
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011. |
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014. |
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012. |
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012. |
Brocade ‘Brocade Unveils’ The Effortless Network, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012. |
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012. |
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013. |
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014. |
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014. |
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014. |
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014. |
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014. |
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014. |
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014. |
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013. |
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012. |
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012. |
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE Globecom Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009, pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011]. |
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010. |
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014. |
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011. |
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf. |
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015. |
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015. |
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015. |
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015. |
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015. |
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015. |
Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015. |
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007. |
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999. |
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada. |
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015. |
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015. |
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1. |
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012. |
Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012. |
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011. |
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013. |
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012. |
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014. |
Number | Date | Country | |
---|---|---|---|
20130003739 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61502128 | Jun 2011 | US |