Scalable MAC address distribution in an Ethernet fabric switch

Information

  • Patent Grant
  • 9401861
  • Patent Number
    9,401,861
  • Date Filed
    Tuesday, March 20, 2012
    12 years ago
  • Date Issued
    Tuesday, July 26, 2016
    8 years ago
Abstract
One embodiment of the present invention provides a switch. The switch includes a notification mechanism. The notification mechanism constructs a single message that contains a locally learned MAC address associated with a local device, a TRILL RBridge identifier associated with the switch, and an identifier of an interface associated with the MAC address. In some embodiments, the switch includes a data structure and an entry management mechanism. The data structure stores device information learned at a remote switch, wherein the device information includes a MAC address of a device, a TRILL RBridge identifier associated with the remote switch, an identifier of an interface coupled to the device, and a type indicator of the MAC address. The entry management mechanism manages an entry in the data structure based on the RBridge identifier and the interface identifier.
Description
BACKGROUND

1. Field


The present disclosure relates to network management. More specifically, the present disclosure relates to a method and system for efficiently distributing and storing network forwarding information.


2. Related Art


The growth of the Internet has brought with it an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches, each capable of supporting a large number of end devices, to move more traffic efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. One way to meet this challenge is to interconnect a number of switches to support a large number of users. These interconnected switches can distribute forwarding information among them and store the distributed information in local forwarding tables. However, forwarding tables in such switches can grow substantially with an increasing number of forwarding entries for local and remote end devices. Furthermore, distribution of forwarding information across these switches may become complex and can incur high latency. More importantly, an overly large and complex system often does not provide economy of scale, and distributing and updating information in forwarding tables may become unviable due to the increased complexity.


As layer-2 (e.g., Ethernet) switching technologies continue to evolve, more routing-like functionalities, which have traditionally been the characteristics of layer-3 (e.g., Internet Protocol or IP) networks, are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


While TRILL brings many desirable features to layer-2 networks, some issues remain unsolved when efficient distribution and updating of forwarding information is desired for forwarding tables.


SUMMARY

One embodiment of the present invention provides a switch. The switch includes a notification mechanism. The notification mechanism constructs a single message that contains a locally learned media access control (MAC) address associated with a local device, a TRILL RBridge identifier associated with the switch, and an identifier of an interface associated with the MAC address.


In a variation on this embodiment, the message is constructed in a type-length-value (TLV) format.


In a variation on this embodiment, the message also contains an instruction to add, delete, or modify the MAC address.


In a variation on this embodiment, the message also contains a virtual local area network (VLAN) tag and a type indicator associated with the MAC address.


In a variation on this embodiment, the notification mechanism constructs a second message that contains an instruction to remove a MAC address associated with one or more of the following: 1) the interface identifier; 2) a VLAN tag; 3) the RBridge identifier; 4) any entry.


One embodiment of the present invention provides a switch. The switch includes a data structure and an entry management mechanism. The data structure stores device information learned at a remote switch, wherein the device information includes a MAC address of a device, a TRILL RBridge identifier associated with the remote switch, an identifier of an interface coupled to the device, and a type indicator of the MAC address. The entry management mechanism manages an entry in the data structure based on the RBridge identifier and the interface identifier.


In a variation on this embodiment, the data structure also contains a VLAN tag associated with the MAC address.


In a variation on this embodiment, the entry management mechanism constructs a second message that contains an instruction to remove a MAC address associated with one or more of the following: 1) the interface identifier; 2) a VLAN tag; 3) the RBridge identifier; and 4) any entry.


In a variation on this embodiment, the switch also includes a display mechanism that displays the entries in the data structure, wherein the displayed entries are the same in the switch and the remote switch.


In a variation on this embodiment, the switch also includes a logical switch management mechanism that maintains a membership in a logical switch, wherein the logical switch is configured to accommodate a plurality of switches and operates as a single logical switch.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary network that includes a large number of end devices coupled to an RBridge, in accordance with an embodiment of the present invention.



FIG. 2A illustrates exemplary TLV format fields, in accordance with an embodiment of the present invention.



FIG. 2B illustrates exemplary forwarding information of an end device in a TLV message, in accordance with an embodiment of the present invention.



FIG. 3 illustrates an exemplary forwarding table entry, in accordance with an embodiment of the present invention.



FIG. 4A presents a flowchart illustrating the process of an RBridge sending forwarding information associated with local end devices, in accordance with an embodiment of the present invention.



FIG. 4B presents a flowchart illustrating the process of an RBridge receiving forwarding information and updating a local forwarding table using the information, in accordance with an embodiment of the present invention.



FIG. 5A illustrates a scenario where an RBridge associated with an end device experiences a failure, in accordance with an embodiment of the present invention.



FIG. 5B illustrates an exemplary flush message, in accordance with an embodiment of the present invention.



FIG. 6 presents a flowchart illustrating the process of an RBridge updating a local forwarding table based on a received flush message, in accordance with an embodiment of the present invention.



FIG. 7 illustrates an exemplary architecture of a switch, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of distributing forwarding information across a TRILL network is solved by distributing aggregated local forwarding information using type-length-value (TLV) messages that include local interface identifiers. An RBridge can share forwarding information with other RBridges in a TRILL network to maintain consistency across the network. Typically, forwarding information, such as MAC addresses of local end devices, is shared across the TRILL network using “add” or “delete” commands that adds or deletes a corresponding MAC address entry to a forwarding table, respectively. However, when the TRILL network scales to a large number of RBridges, and a respective RBridge learns a large number MAC addresses, using add or delete commands poses scalability issues. Under such a scenario, each of the large number of MAC addresses is distributed to each RBridge, and consequently, a large number of messages are passed across the network. Hence, packing of MAC addresses and other forwarding information in a TLV message reduces the number of update messages.


The TLV message from an RBridge aggregates forwarding information associated with one or more end devices, and includes information such as an RBridge identifier and an interface identifier of a local end device. Other RBridges in the TRILL network update their respective forwarding tables based on the received TLV message and can group forwarding information based on RBridge identifiers and interface identifiers. For a change in forwarding information (e.g., a flush operation) associated with a local interface, the local RBridge can send a single message with an identifier of the interface indicating the change. Upon receiving the message, other RBridges update their local forwarding table entries associated with that interface. This mechanism obviates the need to update each forwarding entry associated individual MAC addresses and can significantly reduce network overhead. In contrast, in a TRILL network without such efficient forwarding and storing mechanism, forwarding information for a respective end device is usually sent in individual messages, leading to a large number of notification messages. Furthermore, if the forwarding information does not include any interface identifier, any change associated with an interface (such as a flush of all MAC addresses on the interface) may lead to a large number of notification messages. If the number of notification messages is large, simply aggregating the messages may still not sufficiently scale. For example, in some networks, each change in a network interface may result in several thousand such messages.


In some embodiments of the present invention, an RBridge may learn about a large number of end devices from a local interface. The RBridge then efficiently aggregates the forwarding information associated with the end devices in a TLV message and sends the information to other RBridges in the TRILL network. The forwarding information for an end device includes the MAC address of the end device, an identifier of the RBridge, and an identifier of the interface to which the end device is coupled. The information may include a VLAN tag and a type indicator flag indicating the type of MAC address. In some embodiments, the type of a MAC address can be dynamic, static, or multicast. In some embodiments, the TRILL network is a fabric switch, such as an Ethernet fabric switch or a virtual cluster switch (VCS). In an Ethernet fabric switch, any number of RBridges coupled in an arbitrary topology may logically operate as a single switch. Any new RBridge may join or leave the fabric switch in “plug-and-play” mode without any manual configuration.


Whenever an RBridge learns about an end device from a TLV message, the RBridge stores the forwarding information in a local forwarding table. Each entry in the forwarding table corresponds to an end device (either local or remote) and includes a MAC address of the end device, an associated RBridge identifier, and an interface identifier. In some embodiments, the entry also includes a VLAN tag and a flag indicating the type of MAC address. During operation, if an interface on an RBridge becomes unavailable, all MAC addresses associated with the interface should be removed from all forwarding tables in all RBridges in the TRILL network. As all forwarding tables include interface information, the RBridge can simply issue a “flush” message to all other RBridges, indicating that all end devices associated with the unavailable interface should be flushes (i.e., removed) from entries associated with the interface. This flush message facilitates efficient updating of forwarding entries in remote RBridges in a TRILL network. In some embodiments, the forwarding information from a TLV message is stored in hierarchical forwarding tables, wherein each table stores a coherent subset of the forwarding information. Under such a scenario, each flush message may modify one table while leaving others unchanged.


Although the present disclosure is presented using examples based on the TRILL protocol, embodiments of the present invention are not limited to TRILL networks, or networks defined in a particular Open System Interconnection Reference Model (OSI reference model) layer.


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in IETF Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.


In this disclosure, the terms “interface” and “port” are used interchangeably. The term “edge port” refers to an interface on an RBridge which sends/receives data frames in native Ethernet format. The term “TRILL port” refers to an interface which sends/receives data frames encapsulated with a TRILL header and outer MAC header.


The term “end device” refers to a network device that is typically not TRILL-capable. “End device” is a relative term with respect to the TRILL network. However, “end device” does not necessarily mean that the network device is an end host. An end device can be a host, a conventional layer-2 switch, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from the TRILL network. In other words, an end device can be an aggregation point for a number of network devices to enter the TRILL network.


The term “RBridge identifier” refers to a group of bits that can be used to identify an RBridge. Note that the TRILL standard uses “RBridge ID” to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “RBridge identifier” is used as a generic term and is not limited to any bit format, and can refer to “RBridge ID” or “RBridge nickname” or any other format that can identify an RBridge.


The term “frame” refers to a group of bits that can be transported together across a network. “Frame” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “Frame” can be replaced by other terminologies referring to a group of bits, such as “packet,” “cell,” or “datagram.”


In this disclosure, the term “forwarding information” is used in generic sense, and it can refer to any information that is associated with a forwarding decision in any layer in a network. The term “forwarding table” is used in generic sense, and it can refer to any data structure that contains forwarding information. “Forwarding table” can be replaced by other terminologies referring to a table containing forwarding information, such as “MAC address table” or “switch table.”


In this disclosure, an Ethernet fabric switch or a VCS refers to a fabric switch that runs a control plane with automatic configuration capabilities. The automatic configuration capability allows a number of smaller physical switches to be inter-connected to form a single, scalable logical switch without requiring manual configuration. In a fabric switch, any number of switches can be connected in an arbitrary topology without requiring manual configuration of the ports and links. This feature makes it possible to use many smaller, inexpensive switches to construct a large fabric switch, which can be viewed as a single logical switch externally.


Network Architecture



FIG. 1 illustrates an exemplary network that includes a large number of end devices coupled to an RBridge, in accordance with an embodiment of the present invention. As illustrated in FIG. 1, a TRILL network 100 includes RBridges 101, 102, 104, 105, and 106. A large number of end devices, from 121 to 129, are coupled to RBridge 106, via an aggregation node, a layer-2 bridge 130. RBridges in network 100 use edge ports to communicate with end devices and TRILL ports to communicate with other RBridges. For example, RBridge 106 is coupled to bridge 130 via an edge port and to RBridges 101, 102, and 105 via TRILL ports. In some embodiments, TRILL network 100 can be a virtual cluster switch (VCS).


During operation, RBridge 106 learns the MAC addresses of end devices 121 to 129 from interface 152. Consequently, RBridge 106 constructs a TLV message containing forwarding information of the end devices. TLV is explained later in this disclosure in conjunction with FIGS. 2A and 2B. For example, for end device 121, the TLV message contains the learned MAC address of end device 121, an identifier of RBridge 106, and an identifier of interface 152. The message may also include a VLAN tag associated with end device 121 and a flag indicating the MAC address type. In some embodiments, the MAC address type can be “static,” “dynamic,” or “multicast.” The length field of the TLV message is the length of the message with all such forwarding information for end devices 121 to 129. The type field of the TLV message indicates the type of operation associated with the message. In some embodiments, the type field of the TLV message can be “add,” “delete,” and “modify.” In this example, after learning the MAC addresses of end devices 121 to 129, RBridge 106 sets the type value as “add,” indicating that other RBridges should add the forwarding information to their forwarding tables.


Upon receiving the TLV message, RBridge 102 checks the type of the message. Based on the type, RBridge 102 determines the type of operation on the received forwarding information from the message. In this example, RBridge 102 detects the type of the message to be “add,” and determines that the forwarding information in the TLV message is for newly learned end devices. In some embodiments, RBridge 102 obtains the length of the message from the length field and determines the number of end devices associated with the message. RBridge 102 then creates an entry with forwarding information for each MAC address in the message. Similarly, all other RBridges in network 100 updates their respective forwarding tables with received forwarding information from the TLV messages. Each entry in a forwarding table is associated with an end device and includes the MAC address of the end device, an associated RBridge identifier, and an interface identifier. The entry can also include a VLAN tag and a MAC address type indicator. Similarly to the add operation, if the type field indicates “modify” or “delete,” the corresponding operation is performed on a respective entry in the forwarding table for a respective MAC address in the message.


Furthermore, if interface 152 becomes unavailable (e.g., due to a failure), RBridge 106 notifies all other RBridges to flush all entries associated with interface 152. Because each forwarding table entry for end devices 121 to 129 is associated with both RBridge 106 and interface 152, a flush message from RBridge 106 with an identifier of interface 152 is sufficient for all other RBridges in network 100 to determine the entries to be flushed from their respective forwarding tables. For example, upon receiving the flush message, RBridge 104 inspects the entries associated with RBridge 106 and identifies the entries that are associated with interface 152. RBridge 104 then removes all identified entries from the local forwarding table. As a result, flush operations become efficient and the number of flush messages decreases.


During operation that does not involve using TLV messages for distributing forwarding information, an RBridge in a TRILL network may send forwarding information of each end device over individual messages. Under such a scenario, in FIG. 1, upon learning the MAC addresses of end devices 121 to 129, RBridge 106 sends individual notification message for each of the N end devices to all other RBridges. Similarly, if there is any change to the forwarding information of the end devices (e.g., a change in the VLAN settings), RBridge 106 sends individual messages for each end device. If the number of RBridges in TRILL network 100 and/or N is large, the number of such individual messages may not scale. As a result, forwarding information dispersion becomes inefficient and each change in the forwarding information may lead to a flood of messages in TRILL network 100.


During operation that does not involve storing interface information in forwarding tables, a flush message is issued for each end device associated with an interface containing the MAC address of the end device. Under such a scenario, the entries in the forwarding table of RBridge 104 do not include interface identifiers. If interface 152 becomes unavailable, RBridge 106 sends individual flush messages to RBridge 104 for end devices 121 to 129. Upon receiving the flush messages, RBridge 104 inspects local forwarding entries for the MAC address in each flush message and removes the corresponding entry. Consequently, the flush operation remains inefficient and the number of flush messages can become large.


Note that TRILL is only used as a transport between the switches within network 100. This is because TRILL can readily accommodate native Ethernet frames. Also, the TRILL standards provide a ready-to-use forwarding mechanism that can be used in any routed network with arbitrary topology. Embodiments of the present invention should not be limited to using only TRILL as the transport. Other protocols (such as Internet protocol (IP) or multi-protocol label switching (MPLS)), either public or proprietary, can also be used for the transport.


Forwarding Information Distribution


In some embodiments, when an RBridge learns MAC addresses of local end devices, the RBridge packs the forwarding information of the end devices in a TLV message. FIG. 2A illustrates exemplary TLV format fields, in accordance with an embodiment of the present invention. TLV format 200 includes a version field 202, a type field 204, and a length field 206. In some embodiments, the length of version field 202 is 16 bits, type field 204 is 8 bits, and length field 204 is 8 bits, totaling 32 bits (4 bytes). Version field 202 indicates the version of the TLV message. For example, in one version, forwarding information of each end device in a TLV message does not include an interface identifier. Consequently, an RBridge packs and interprets forwarding information from the message accordingly. On the other hand, another version of the TLV message may include interface identifiers, and the RBridge packs and interprets forwarding information accordingly based on the version number.


Type field 204 indicates the type of operation associated with the message. For example, type field 204 may include values indicating addition, deletion, and modification operations. Length field 206 indicates the length of the message. In conjunction with version field 202, length field 206 can indicate the number of end devices associated with the TLV message (i.e., number of end devices for which the corresponding forwarding information is included in the TLV message). For example, according to version field 202, the forwarding information of an end device may require 16 bytes. If length field 206 indicates 160 bytes of data, then the message contains forwarding information for 10 end devices. In some embodiments, length field 206 may include 4 bytes of TLV format fields as well.


In a TLV message, the version field indicates the forwarding information of an end device included in a TLV message. FIG. 2B illustrates exemplary forwarding information of an end device in a TLV message, in accordance with an embodiment of the present invention. Forwarding information 250 of an end device includes MAC address 252 of the end device, a VLAN tag 254, an RBridge identifier 258, flags 260, and an interface identifier 262. VLAN tag 254 indicates the VLAN membership of the end device. Forwarding information 250 may also include padding 256 for alignment purposes. For example, if the length of VLAN tag 254 is 12 bits, then forwarding information 250 can include a padding 256 of 4 bits to ensure alignment with other fields. RBridge identifier 258 identifies the RBridge to which the end device is coupled. In some embodiments, RBridge identifier 258 is an RBridge nickname. Flags 260 indicate the MAC address type. The values for flags 260 can indicate whether the MAC address is a static, dynamic (e.g., dynamically learned from a port), or multicast address. Interface identifier 262 identifies an interface through which the end device couples to the RBridge.


Upon receiving a TLV message, an RBridge may add, delete, or modify entries to local forwarding tables with forwarding information received from the message. FIG. 3 illustrates an exemplary forwarding table entry, in accordance with an embodiment of the present invention. Forwarding table entry 300 stores forwarding information 250 of an end device, as described in conjunction with FIG. 2B. Entry 300 includes the MAC address 302 of the end device, a VLAN tag 304, flags 306, an RBridge identifier 308, and an interface identifier 310. Inclusion of interface identifier 310 allows all end devices coupled to the interface to be identified together. For example, in FIG. 1, end devices 121 to 129 are coupled to RBridge 106 though interface 152. In entry 300, identifiers to RBridge 106 and interface 152 together can correspond to end devices 121 to 129. If interface 152 becomes unavailable, RBridge 106 can notify other RBridges using identifiers to RBridge 106 and interface 152 without having to specify the MAC addresses of end devices 121 to 129. Upon receiving the notification, an RBridge removes each entry 300 that has an identifier of RBridge 106 and an identifier of interface 152. Hence, a change to an interface can be efficiently notified using identifiers to the corresponding RBridge and interface without having to specify the MAC addresses of the end devices coupled to the interface.


Forwarding Table Updates


An RBridge can share forwarding information of local end devices with all other RBridges in a TRILL network, especially if the TRILL network is part of a fabric switch, such as a VCS. FIG. 4A presents a flowchart illustrating the process of an RBridge sending forwarding information associated with local end devices, in accordance with an embodiment of the present invention. Upon detecting a change in an edge port (operation 402), the RBridge first identifies the type of change (operation 404). In some embodiments, the change type can be “add”, “delete”, or “modify”. The RBridge then identifies the end devices affected by the change (operation 406). For example, in FIG. 1, end devices 121 to 129 are affected by a change (addition) when RBridge 106 learns their MAC addresses. The RBridge then creates a TLV message with forwarding information of the identified devices (operation 408), as described in conjunction with FIG. 2B.


The RBridge sets the version field of the TLV message associated with the included forwarding information in the TLV message (operation 412), as described in conjunction with FIG. 2A. The RBridge then sets the type field of the TLV message based on the type of the detected change (operation 414) and sets the length field based on the number of affected devices and the value of the version field (operation 416), as described in conjunction with FIG. 2A. Then the RBridge encapsulates the TLV message in a TRILL header (operation 422) and forwards the message to other RBridges (operation 424). In some embodiments, the TLV message can be sent over multiple TRILL packets. In some embodiments, the message is sent in an internal message format of a fabric switch.



FIG. 4B presents a flowchart illustrating the process of an RBridge receiving forwarding information and updating a local forwarding table using the information, in accordance with an embodiment of the present invention. Upon receiving a TLV message (operation 452), the RBridge determines the number of end devices (i.e., MAC addresses) associated with the message from the version and length fields (operation 454). The RBridge then checks the type field and determines whether the field is “add” (operation 456). If so, the RBridge adds an entry to a local forwarding table for each end device associated with the message (operation 458). In some embodiments, the RBridge adds entries to multiple hierarchical forwarding tables, wherein a respective entry contains coherent forwarding information.


If the entry is not “add,” then the RBridge identifies a respective entry corresponding to a respective end device associated with the TLV message (operation 460) and determines the type field (operation 462). Note that the type field is checked for add separately (operation 456), because the addition operation does not require identifying current entries (operation 460). If the type field is “modify,” then the identified entries are updated with forwarding information in the TLV message (operation 464). If the type field is “delete,” then the identified entries are removed from the local forwarding table (operation 466). In some embodiments, the RBridge may remove or modify entries from one or more hierarchical forwarding tables, depending on the information in the TLV message.


Flush Operation


Flushing operations often cause RBridges in a TRILL network, particularly in a fabric switch, to use a large amount of internal processing. Such flushing operations can occur due to aging of entries and a network topology change. For example, assume there are a large number of forwarding entries associated with an interface on an RBridge. If the interface fails or the RBridge leaves the network (e.g., due to a failure), other RBridges should remove all associated entries from their respective forwarding tables. If an individual flush message is sent for each affected end device, the bandwidth on the control plane of the network is likely to be exhausted and may create a bottleneck. If a number of flush messages are bulked into a packet, a large number of such messages still may not scale. Hence, efficient flush operations and messaging are required for a scalable solution.



FIG. 5A illustrates a scenario where an RBridge associated with an end device experiences a failure, in accordance with an embodiment of the present invention. In this example, a TRILL network 500 includes RBridges 501, 502, 504, 505, and 506. A layer-2 bridge 530 couples a large number of end devices from 521 to 529 to RBridge 506 via interface 552. End device 520 is coupled to RBridge 506 as well. End devices 521 to 529 and 520 are members of VLAN 540. During operation, RBridge 506 learns the MAC addresses of the end devices and sends the associated forwarding information to all other RBridges in network 500 in a TLV message, as described in conjunction with FIG. 4A. Other RBridges update their local forwarding tables based on the received forwarding information, as described in conjunction with FIG. 4B.


Suppose that failure 562 occurs that disconnects interface 552 from bridge 530. Failure 562 can occur due to a failure to interface 552 or to the link coupled to interface 552. As a result, interface 552 cannot receive packets for RBridge 506 any longer. However, end device 520 is still coupled to RBridge 506. Under such a scenario, all entries for end devices 521 to 529 in all forwarding tables in network 500 should be flushed. Consequently, RBridge 506 generates a flush message for interface 552 to all other RBridges in network 500 instead of generating an individual message for each end device. Upon receiving the flush message, each RBridge removes all entries associated with interface 552 on RBridge 506. In this way, the flush operation becomes efficient and the number of flush messages is reduced.


Suppose that failure 564 fails RBridge 506. As a result, all forwarding entries associated with RBridge 506 should be flushed. Neighboring RBridges, such as RBridges 501, 502, and 505, detect the failure, generate a flush message for RBridge 506, and send the message to other RBridges. Upon receiving the flush message, each RBridge, such as RBridge 504, removes all entries associated with RBridge 506. Similarly, a single flush message for VLAN 540 can be sent to all RBridges to remove all forwarding entries associated with VLAN 540. As a result, forwarding entries for end devices 521 to 529 and 520 are flushed from all forwarding tables in network 500.



FIG. 5B illustrates an exemplary flush message, in accordance with an embodiment of the present invention. In this example, flush message 580 includes flush type 582, an RBridge identifier 584, a VLAN tag 586, and interface identifier 590. Flush message 580 may also include padding 588 for alignment purposes. For example, if the length of VLAN tag 586 is 12 bits, message 580 can include a padding 588 of 20 bits to ensure alignment with other fields. Flush type 582 identifies the parameters on which the flush operation is executed. In some embodiments, the flush operation can be based on an interface, a VLAN, or an RBridge. Flush type 582 can also be based on a combination of interface and VLAN, or for all forwarding entries. RBridge identifier 584, VLAN tag 586, and interface identifier 590 provide identifying information for the flush operation. For example, if the flush type is based on an interface, then RBridge identifier 584 and interface identifier 590 are used to identify the corresponding forwarding entries. In some embodiments, the flush message is constructed using a TLV format.



FIG. 6 presents a flowchart illustrating the process of an RBridge updating a local forwarding table based on a received flush message, in accordance with an embodiment of the present invention. Upon receiving a flush message (operation 602), the RBridge determines the type of flush message (operation 604). In some embodiments, the flush operation can be based on an interface, a VLAN, an RBridge, a combination of interface and VLAN, or for all forwarding entries. The RBridge then extracts information from the message based on the flush type (operation 606). The RBridge identifies the entries corresponding to extracted information in a local forwarding table (operation 608) and removes the identified entries from the forwarding table (operation 610). For example, in FIGS. 3 and 5B, if the flush operation is based on a VLAN tag, then the RBridge extracts VLAN tag 586 from flush message 580, identifies each forwarding entry 300 that has VLAN tag 304 equal to VLAN tag 586, and removes the entry from the forwarding table.


Displaying Forwarding Table


In some embodiments, an RBridge can be coupled to a display device. A user (e.g., a network administrator) may need to view the entries of the forwarding table. The user can issue a command to the RBridge to show the forwarding table. The command can be issued from a command line interface (CLI) of the RBridge or by using a Simple Network Management Protocol (SNMP) query.


In some embodiments, the RBridge can be a member switch of a fabric switch (e.g., an Ethernet fabric switch or a VCS). All member switches of the fabric switch operate in conjunction with each other as a single logical switch. Under such a scenario, the forwarding table in the RBridge contains forwarding information for all end devices coupled to the fabric switch. Because the forwarding table contains interface information associated with a respective end device, upon receiving a command to display the forwarding table, the RBridge can display all entries of the forwarding table as if all end devices were coupled to the logical switch. As a result, any end device coupled to any of the member switches appears as a local end device to the logical (i.e., fabric) switch. In other words, forwarding entries displayed at any member switch of the logical switch are similar, which is a desirable behavior from a fabric switch.


Exemplary Switch System



FIG. 7 illustrates an exemplary architecture of a switch, in accordance with an embodiment of the present invention. In this example, an RBridge 700 includes a number of edge ports 702 and TRILL ports 704, a TRILL management module 720, an Ethernet frame processor 710, a notification module 732, and a storage 750. TRILL management module 720 further includes a TRILL header processing module 722. Edge ports 702 receive frames from (and transmit frames to) end devices. Ethernet frame processor 710 extracts and processes header information from the received frames. TRILL ports 704 include inter-switch communication channels for communication with one or more RBridges. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format. Furthermore, the inter-switch communication between RBridges is not required to be direct port-to-port communication.


During operation, RBridge 700 learns about MAC addresses of local end devices from edge ports 702. Notification module 732 obtains the MAC addresses of Ethernet frame processor 710 and creates notification messages with the forwarding information. In some embodiments, the notification message is constructed as a TLV message. TRILL header processing module 722 encapsulates the message in a TRILL header and TRILL management module 720 sends the notification message to other RBridges in the network. Storage 750 contains identifying and routing information of other RBridges.


In some embodiments, RBridge 700 also includes an entry management module 734. When RBridge 700 receives notification messages from other RBridges from TRILL ports 704, TRILL header processing module 722 removes the TRILL header from the message and TRILL management module 720 provides entry management module 734 with the message. Entry management module 734 then stores the forwarding information in the message to forwarding table 736 in storage 750.


In some embodiments, RBridge 700 may maintain a membership in a logical switch, wherein RBridge 700 also includes a virtual switch management module 740 and a logical switch 742, as described in conjunction with FIG. 1. Virtual switch management module 740 maintains a configuration database in storage 750 that maintains the configuration state of every switch within the logical switch. Virtual switch management module 740 maintains the state of logical switch 742, which is used to join other switches. In some embodiments, logical switch 742 can be configured to operate in conjunction with Ethernet frame processor 710 as a logical Ethernet switch. In some embodiments, RBridge 700 can be coupled to a display device 770. Upon receiving a command to show the forwarding entries for logical switch 742, RBridge 700 displays all entries in forwarding table 736 via display device 770.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in RBridge 700. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch, a method and a system for distributing forwarding information, including local interface identifiers, across a TRILL network using TLV messages and accordingly updating local forwarding tables. In one embodiment, the switch includes a notification mechanism. The notification mechanism constructs a single message that contains a locally learned MAC address associated with a local device, a TRILL RBridge identifier associated with the switch, and an identifier of an interface associated with the MAC address. In some embodiments, the switch includes a data structure and an entry management mechanism. The data structure stores device information learned at a remote switch, wherein the device information includes a MAC address of a device, a TRILL RBridge identifier associated with the remote switch, an identifier of an interface coupled to the device, and a type indicator of the MAC address. The entry management mechanism manages an entry in the data structure based on the RBridge identifier and the interface identifier.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: a notification module configured to construct a single message comprising forwarding information of a plurality of end devices learned from one or more local ports of the switch;wherein the forwarding information of a respective end device of the plurality of end devices includes a media access control (MAC) address learned from a port of the one or more local ports, a switch identifier of the switch, which is distinct from the MAC address, and an identifier of the port from which the MAC address has been learned.
  • 2. The switch of claim 1, wherein the message is constructed in a type-length-value (TLV) format.
  • 3. The switch of claim 1, wherein the message further includes an instruction to add, delete, or modify the forwarding information.
  • 4. The switch of claim 1, wherein the forwarding information of a respective end device of the plurality of end devices further includes a virtual local area network (VLAN) tag and a type indicator associated with the MAC address, wherein the type indicator indicates a type of the MAC address.
  • 5. The switch of claim 1, wherein the notification module is further adapted to construct a second message that includes an instruction to remove one or more entries from the data structure based on one or more of: the identifier of the port;a VLAN tag;the switch identifier; andany entry.
  • 6. A switch, comprising: a storage device storing a data structure comprising an entry including a media access control (MAC) address of a remote end device, wherein the MAC address is learned at a port of a remote switch, and wherein the remote end device is distinct from the remote switch; andwherein the entry further includes a switch identifier of the remote switch, an identifier of the port from which the remote switch has learned the MAC address, and a type indicator of the MAC address, wherein the type indicator indicates a type of the MAC address; andan entry management module configured to manage the entry in the data structure -based on the switch identifier and the identifier of the port.
  • 7. The switch of claim 6, wherein the entry further includes a virtual local area network (VLAN) tag associated with the MAC address.
  • 8. The switch of claim 6, wherein the entry management module is further configured to remove one or more entries from the data structure based on one or more of: the identifier of the port;a VLAN tag;the switch identifier; andany entry.
  • 9. The switch of claim 6, further comprising a display module adapted to display contents of a respective entry in the data structure via a display device.
  • 10. The switch of claim 6, further comprising a logical switch management module adapted to maintain a membership in a network of interconnected switches, wherein a respective switch of the network is configured to store a copy of the data structure.
  • 11. A computer-executable method, comprising: constructing a single message comprising forwarding information of a plurality of end devices learned from one or more local ports of a switch;wherein the forwarding information of a respective end device of the plurality of end devices includes a media access control (MAC) address learned from a port of the one or more local ports, a switch identifier of the switch, which is distinct from the MAC address, and an identifier of the port from which the MAC address has been learned.
  • 12. The method of claim 11, wherein the message is constructed in a type-length-value (TLV) format.
  • 13. The method of claim 11, wherein the message further includes an instruction to add, delete, or modify the forwarding information.
  • 14. The method of claim 11, wherein the forwarding information of a respective end device of the plurality of end devices further includes a virtual local area network (VLAN) tag and a type indicator associated with the MAC address, wherein the type indicator indicates a type of the MAC address.
  • 15. The method of claim 11, further comprising constructing a second message that includes an instruction to remove a-one or more entries from the data structure based on one or more of: the identifier of the port;a VLAN tag;the switch identifier; andany entry.
  • 16. A computer-executable method, comprising: storing in a storage device a data structure comprising an entry including a media access control (MAC) address of a remote end device, wherein the MAC address is learned at a port of a remote switch, and wherein the remote end device is distinct from the remote switch; andwherein the entry further includes a switch identifier of the remote switch, an identifier of the port from which the remote switch has learned the MAC address, and a type indicator of the MAC address, wherein the type indicator indicates a type of the MAC address; andmanaging the entry in the data structure based on the switch identifier and the interface identifier.
  • 17. The method of claim 16, further comprising storing a virtual local area network (VLAN) tag associated with the MAC address in the entry.
  • 18. The method of claim 16, further comprising removing one or more entries from the data structure based on one or more of: the identifier of the port;a VLAN tag;the switch identifier; andany entry.
  • 19. The method of claim 16, further comprising displaying contents of a respective entry in the data structure via a display device.
  • 20. The method of claim 16, further comprising maintaining a membership in a network of interconnected switches, wherein a respective switch of the network is configured to store a copy of the data structure.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/502,128, titled “Scalable MAC Address Distribution in VCS,” by inventors Mythilikanth Raman and Mary Manohar, filed 28 Jun. 2011, the disclosure of which is incorporated by reference herein. The present disclosure is related to U.S. patent application Ser. No. 13/087,239, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, filed 14 Apr. 2011, the disclosure of which is incorporated by reference herein.

US Referenced Citations (338)
Number Name Date Kind
5390173 Spinney Feb 1995 A
5802278 Isfeld et al. Sep 1998 A
5878232 Marimuthu Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6438106 Pillar Aug 2002 B1
6542266 Phillips Apr 2003 B1
6633761 Singhal Oct 2003 B1
6771610 Seaman Aug 2004 B1
6873602 Ambe Mar 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser, Jr. Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937756 Kay May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake, III Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8462774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8599850 Jha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8826385 Congdon Sep 2014 B2
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020091795 Yip Jul 2002 A1
20030041085 Sato Feb 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20040001433 Gram Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040049699 Griffith Mar 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040213232 Regan Oct 2004 A1
20050007951 Lapuh Jan 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050122979 Gross Jun 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima et al. Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060098589 Kreeger May 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060221960 Borgione Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 Desanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070116224 Burke May 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070211712 Fitch Sep 2007 A1
20070274234 Kubota Nov 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080065760 Damm Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080101386 Gray May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens et al. Jun 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 Lavigne Oct 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090037607 Farinacci Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090116381 Kanda May 2009 A1
20090129384 Regan May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20090328392 Tripathi Dec 2009
20100027420 Smith Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100131636 Suri May 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100257263 Casado Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100329110 Rose Dec 2010 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110055274 Scales et al. Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 Van Der Merwe Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Da Silva Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120075991 Sugita Mar 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120106339 Mishra May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120177039 Berman Jul 2012 A1
20120243539 Keesara Sep 2012 A1
20120275347 Banerjee Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003737 Sinicrope Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130127848 Joshi May 2013 A1
20130194914 Agarwal Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20140105034 Sun Apr 2014 A1
Foreign Referenced Citations (10)
Number Date Country
102801599 Nov 2012 CN
0579567 May 1993 EP
1398920 Mar 2004 EP
2001167 Aug 2007 EP
1916807 Oct 2007 EP
1916807 Apr 2008 EP
2001167 Dec 2008 EP
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (196)
Entry
“Switched Virtual Internetworking moves beyond bridges and routers”, Sep. 23, 1994, No. 12, New York, US.
Knight, S. et al. “Virtual Router Redundancy Protocol”, Apr. 1998, XP-002135272.
Eastlake, Donald et al., “RBridges: TRILL Header Options”, Dec. 2009.
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Dec. 2009.
“Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions”.
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, XP-002649647, 2009.
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, Mar. 2010.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, Mar. 2010.
Christensen, M. et al., “Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches”, May 2006.
“Switched Virtual Internetworking moved beyond bridges and routers”, 8178 Data Communications Sep. 23, 1994, No. 12, New York.
S. Night et al., “Virtual Router Redundancy Protocol”, Network Working Group, XP-002135272, Apr. 1998.
Eastlake 3rd., Donald et al., “RBridges: TRILL Header Options”, Draft-ietf-trill-rbridge-options-00.txt, Dec. 24, 2009.
J. Touch, et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Draft-ietf-trill-rbridge-vlan-mapping-01.txt, Dec. 4, 2009.
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, draft-ietf-trill-rbridge-protocol-16.txt, Mar. 3, 2010.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, Oct. 2002.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT) draft-lapuh-network-smIt-08”, 2008.
Huang, Nen-Fu et al. “An Effective Spanning Tree Algorithm for a Bridged LAN”, Mar. 16, 1992.
Zhai, H. et al., “RBridge: Pseudo-Nickname draft-hu-trill-pseudonode-nickname-02.”, May 15, 2012.
Narten, T. et al. “Problem Statement: Overlays for Network Virtualization draft-narten-nvo3-overlay-problem-statement-01”, Oct. 31, 2011.
Knight, Paul et al. “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts”, 2004.
An Introduction to Brocade VCS Fabric Technology, Dec. 3, 2012.
Kreeger, L. et al. “Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00”, Aug. 2, 2012.
Knight, Paul et al., “Network based IP VPN Architecture using Virtual Routers”, May 2003.
Louati, Wajdi et al., “Network-Based Virtual Personal Overlay Networks Using Programmable Virtual Routers”, 2005.
Brocade Unveils “The Effortless Network”, 2009.
The Effortless Network: HyperEdge Technology for the Campus LAN, 2012.
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, 2008.
FastIron and Turbulron 24x Configuration Guide, 2010.
FastIron Configuration Guide, Supporting IronWare Software Release 07.0.00, 2009.
Christensen, M. et al., Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches, 2006.
Perlman, Radia et al. “RBridges: Base Protocol Specification”, <draft-ietf-trill-rbridge-protocol-16.txt>, 2010.
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions, 2009.
Eastlake III, Donald et al., “RBridges: TRILL Header Options”, 2009.
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, <draft-ietf-trill-rbridge-vlan-mapping-01.txt>, 2009.
Knight, S. et al., “Virtual Router Redundancy Protocol”, 1998.
“Switched Virtual Internetworking moves beyond bridges and routers”, 8178 Data Communications Sep. 23, 1994, No. 12.
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, 2009.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, 2002.
Lapuh, Roger et al., “Split Multi-Link Trunking (SMLT) draft-Lapuh-network-smlt-08”, 2009.
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jul. 16, 2013, U.S. Appl. No. 13/092,724, filed Jul. 16, 2013.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jun. 20, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jul. 23, 2013, U.S. Appl. No. 13/365,993, filed Feb. 3, 2012.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office action dated Oct. 21, 2013, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Office Action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Brocade ‘Brocade Unveils’ The Effortless Network, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012.
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE Globecom Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009, pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Related Publications (1)
Number Date Country
20130003739 A1 Jan 2013 US
Provisional Applications (1)
Number Date Country
61502128 Jun 2011 US