This invention relates to coherent mm-wave systems.
For various applications, it is desirable to be able to emit or receive electromagnetic radiation from widely spaced radiative elements (i.e., element spacing of 30λ or more) such that phase coherence is preserved. Assuming an architecture where radiative elements are connected to a central processor via a distribution network, phase coherence means that the distribution network preserves phase—i.e., for any input and output of the distribution network, there is a substantially fixed relation between the corresponding input and output phases.
Conventional implementations of this concept have been considered for both optical and RF frequencies, with non-trivial differences in the corresponding system architectures being driven by practical considerations relating to the differing frequency ranges.
For RF systems, a common approach is to distribute signals from the central processor at a relatively low frequency (often called ‘baseband’) which is then shifted in frequency to a substantially higher frequency (often called ‘RF’) in frequency-translating front ends disposed at the radiative elements. Frequency translating front ends typically perform an analog multiplication function with two inputs. For transmission, the inputs are the distributed baseband from the central processor and a high intermediate frequency (IF) provided by a local oscillator at the front end, and the output is a RF signal to be radiated. For reception, the inputs are the IF from the local oscillator and a received high frequency RF signal and the output is baseband to be received at the central processor. The same component (analog mixer) can usually provide both of these functions. The main reason for this approach is that direct distribution at RF frequencies on conventional electrical transmission lines or RF metal waveguides etc. would encounter severe problems with attenuation (e.g., as seen on
The situation with optical systems provides an interesting contrast. Here loss and optical interference are negligible over such distances in optical fibers. However, it is impossible for a simple passive network of optical fibers to provide phase coherence as indicated above. The reason is that environmental perturbations to optical fibers (or more generally to any optical waveguide) such as mechanical vibrations, temperature variations, bending or stress applied to the fiber etc. all act to cause small changes to the optical wavelength in the fiber corresponding to the operating frequency. These small changes in wavelength lead to random phase shifts. Although these random phase shifts are very small over a path length on the order of a wavelength, typical optical path lengths in macroscopic systems are millions of optical wavelengths long. As a result the output phase of any typical macroscopic length of optical fiber has no substantially fixed relation to the input phase of that optical fiber because of the accumulation of small phase errors over many wavelengths of optical path. For example, if the input phase of an optical signal to an optical fiber is held fixed at 0 degrees, the output phase will drift randomly within the entire range 0 to 360 degrees. To overcome this problem, coherent optical systems require active control to maintain phase coherence, even in the simple case of a single laser feeding an optical fiber having an optical splitter to provide two outputs.
This is why conventional fiber optic communications systems rely on intensity modulation and direct detection, which would be an unbearably primitive and poorly-performing option at RF frequencies where coherent systems are much easier to provide. Note also that all of the above-identified effects leading to random phase in optical fibers are also applicable in principle to any electromagnetic waveguide structure. However, practical path lengths in RF systems aren't nearly as long (as multiples of the relevant wavelength) so the cumulative phase perturbations end up being effectively negligible at RF frequencies.
We have found, most unexpectedly, that the various known disadvantages of direct distribution in coherent optical and RF systems can be avoided at mm-wave frequencies by using dielectric waveguides (DWGs) for passive coherent distribution. The relevant distribution path lengths at mm-wave frequencies are short enough that accumulated phase error as in optical fibers is not a significant problem. Meanwhile, the dielectric waveguides provide low loss and substantial immunity to electrical interference, thereby avoiding the main disadvantages of direct distribution in RF systems.
This approach provides a method that can substantially increase the capacity in wireless communication links and improve the resolution in imaging/radar systems. DWGs with extremely low loss and large bandwidth at mm-waves allow very efficient signal distribution over relatively large baselines.
Applications include but are not limited to: radar, communication, high speed links and interconnects, data centers, data links, computer systems, mobile platforms, servers, imaging, automotive applications, sensors, drones, fifth-generation systems, metropolitan internet access, last mile telecommunications, backhaul applications, and long range applications.
Significant advantages are provided. There are substantial challenges in implementation of large baseline (in the order of tens or thousands of wavelengths) interconnects in mm-wave arrays with large apertures due to the relatively high transmission loss and limited bandwidth (due to Magnitude roll off) of conventional (TEM waveguides and Non-TEM metal waveguides) feeding/distribution networks. A common system architecture to circumvent the loss issue is realization of the large feed networks/baselines at significantly lower frequencies and up/down convert the signals locally at subarrays. This technique, although it circumvents the loss issue, suffers from limited bandwidth and does not provide highly accurate CLK/LO distributions as needed for high resolution imaging and high capacity communication links. This work provides a method based on mm-wave DWGs with extremely low loss and large bandwidth allowing very efficient signal distribution over relatively large baselines. This can substantially increase the capacity in wireless communication links and improve the resolution in imaging/radar systems.
Here a radiative element is defined as one or more radiative subelements directly coupled to a front end. In transmission, the front end drives the radiative subelements, and in reception the radiative subelements drive the front end. “Directly coupled” means that there is no frequency translation by upmixing or downmixing with an intermediate frequency. However, a directly coupled front end can include frequency multiplication or division—e.g., on transmission multiply frequency by 4 and on reception divide frequency by 4—as can be provided by high frequency multiplier circuits.
The passive distribution network 104 connects the central processor to the radiative elements with dielectric waveguides. Signal distribution between the central processor 102 and the radiative elements (110, 120 etc.) using the passive distribution network is direct distribution at the operating frequency. A passive distribution network is defined as an arrangement of waveguides that provides phase coherence between its inputs and output passively (i.e., without active control loops being used to provide phase coherence). As indicated above, this is not possible in some frequency ranges (e.g., in optics).
Here phase coherence is defined as root-mean square (RMS) phase error of 20 degrees or less, more preferably 5 degrees or less, and still more preferably 1 degree or less, all averages being time averages defined over a one minute averaging time. A dielectric waveguide is any electromagnetic waveguide structure that includes only dielectric materials (i.e., no electrical conductors are included). This advantageously ensures that the main distribution connections have no DC electrical path, which helps reduce possible issues from ground loops, electrical interference etc.
In preferred embodiments, the apparatus has beamforming capability by phase shifting the radiative elements with respect to each other with the central processor. Coherent distributions of the signals via passive distribution network 104 is what enables this capability.
As indicated above, direct distribution of mm-wave signals is a key aspect of this work. One example of direct distribution is where a radiated frequency frad of the radiative elements is substantially the same as a distribution frequency fdist of the passive distribution network. Another example of direct distribution is where the front end includes a frequency multiplier circuit such that a radiated frequency frad of the radiative elements is related to a distribution frequency fdist of the passive distribution network by frad=m*fdist, where m is an integer greater than one. These two examples of direct signal distribution are in marked contrast to the conventional system architecture where a relatively low frequency baseband signal is frequency translated to a higher RF frequency by mixing with an intermediate frequency signal (IF) in a mixer in a frequency-translating front end.
Practice of the invention does not depend critically on details of the central processing unit. It is preferably a multi-input, multi-output system configured as needed for the intended application. It can include components such as gain stages, mixers to convert to baseband, analog to digital converters, channel separation networks, delay lines, variable gain stages, and complex summing circuits. Note that mixing to convert to baseband in the central processing unit is very different than mixing to baseband in a front end, because in the first case the signal distribution in network 104 is at baseband, and in the second case the signal distribution in network 104 is not at baseband. The central processing unit can be implemented in any combination of analog circuitry, digital circuitry or mixed-mode analog and digital circuitry.
Practice of the invention does not depend critically on the architecture of the passive distribution network. In the examples of
Practice of the invention also does not depend critically on the details of the dielectric waveguides.
The dielectric waveguides of the passive distribution network can be configured to provide single-mode transmission or multi-mode transmission.
The example of
The example of
This application is a national phase entry of Patent Cooperation Treaty Application PCT/US2018/028612 filed Apr. 20, 2018, entitled “SCALABLE MM-WAVE ARRAYS WITH LARGE APERTURE REALIZED BY MM-WAVE DIELECTRIC WAVEGUIDES,” which claims priority to U.S. Provisional Application No. 62/487,842 filed on Apr. 20, 2017, entitled “SCALABLE MM-WAVE ARRAYS WITH LARGE APERTURE REALIZED BY MM-WAVE DIELECTRIC WAVEGUIDES,” the disclosure of these are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/028612 | 4/20/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/195453 | 10/25/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4768852 | Ih | Sep 1988 | A |
6208313 | Frank et al. | Mar 2001 | B1 |
6777684 | Volkov et al. | Aug 2004 | B1 |
7202824 | Sanelli | Apr 2007 | B1 |
8515493 | Jensen | Aug 2013 | B1 |
9190723 | Hong | Nov 2015 | B1 |
20030072131 | Hood | Apr 2003 | A1 |
20090022138 | Gilchrist | Jan 2009 | A1 |
20090040114 | Okamura | Feb 2009 | A1 |
20090251380 | Kuramoto | Oct 2009 | A1 |
20100054227 | Hettstedt et al. | Mar 2010 | A1 |
20100081400 | Takahara | Apr 2010 | A1 |
20100111537 | Cheng et al. | May 2010 | A1 |
20140092759 | Pisharody | Apr 2014 | A1 |
20140132450 | Chen et al. | May 2014 | A1 |
20150195001 | Barker | Jul 2015 | A1 |
20150295307 | Cook et al. | Oct 2015 | A1 |
20160240907 | Haroun | Aug 2016 | A1 |
20160248515 | Zheng | Aug 2016 | A1 |
20170018852 | Adriazola et al. | Jan 2017 | A1 |
20170069958 | Ko | Mar 2017 | A1 |
20170085293 | Marrow | Mar 2017 | A1 |
20170264012 | Clark | Sep 2017 | A1 |
20180026379 | Barker | Jan 2018 | A1 |
20180084386 | Shpak | Mar 2018 | A1 |
20180151939 | Hashimoto | May 2018 | A1 |
20200350698 | Rofougaran | Nov 2020 | A1 |
Entry |
---|
Milligan. “Modern Antenna Design,” ISBN-13 978-0-471-45776-3, 2005, pp. 1-99, [retrieved on Jun. 15, 2018]. Retrieved from the Internet: <URL: http://www.radio-astronomy.org/library/Antenna-design.pdf> entire document. |
Number | Date | Country | |
---|---|---|---|
20210135691 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62487842 | Apr 2017 | US |