Individual vehicles or sub-fleets in a vehicle fleet may be purposed for different missions with different power requirements. It can be inefficient to equip all vehicles in the fleet with sufficient power to run all types of missions, particularly for vehicles where mass is a limiting factor (i.e., lighter than air or wind-driven vehicles). Further, certifying a different power system for different missions can be time consuming.
Thus, a solution for a scalable power system for vehicles is desired.
The present disclosure provides techniques for a scalable power system for vehicles. A scalable power system may include: two or more battery modules connected in parallel; a network of diodes; two or more battery management systems, each of the two or more battery management systems configured to control a respective battery module of the two or more battery modules; a parallelizing circuit board configured to connect the two or more battery modules to a system bus in parallel; and a system bus configured to charge and discharge the two or more battery modules, wherein the parallelizing circuit board is further configured to combine the power inputs from the two or more battery modules into the system bus. In some examples, the parallelizing circuit board is further configured to combine the power inputs from the two or more battery modules into the system bus. In some examples, the parallelizing circuit board comprises a discrete heater control configured to regulate voltage to a heating element for each of the two or more battery modules. In some examples, the parallelizing circuit board comprises a power and signal connector for each of the two or more battery modules. In some examples, each power and signal connector is configured to couple a heater control to a corresponding one of the two or more battery modules. In some examples, each power and signal connector is configured to couple a master power and signal connector to a corresponding one of the two or more battery modules. In some examples, the system further comprises a power in connection and a power out connection between each of the two or more battery modules and its corresponding power and signal connector. In some examples, a plurality of power and signal connectors are connected to a master power and signal connector in parallel, each of the plurality of power and signal connector corresponding to one of the two or more battery modules. In some examples, the parallelizing circuit board comprises a master power and signal connector coupled to the system bus. In some examples, each of the two or more battery management systems is configured to provide one, or a combination, of the following local control and safety functions: conducting power in and out of a corresponding one of the two or more battery modules, monitor and enforce safety for the corresponding one of the two or more battery modules, reporting telemetry, serving as a pass through for power to a heating element.
An alternative scalable power system may include: two or more battery modules; a network of diodes; a central battery management system configured to control the two or more battery modules and to join the two or more battery modules in parallel; and a system bus configured to charge and discharge the two or more battery modules, wherein the central battery management system is further configured to combine the power inputs from the two or more battery modules into the system bus. In some examples, the central battery management system is configured to provide one, or a combination, of the following control and safety functions across the two or more battery modules: conducting power in and out of the two or more battery modules, monitor and enforce safety for the two or more battery modules, reporting telemetry, serving as a pass through for power to a heating element. In some examples, each of the two or more battery modules comprises a first side connector and a second side connector, the first side connector on one of the two or more battery modules configured to couple with the second side connector on another of the two or more battery modules. In some examples, the first side connector and the second side connector are configured to connect the two or more battery modules physically. In some examples, the first side connector and the second side connector are configured to connect the two or more battery modules electrically.
A method of adding a battery module to a scalable power system may include: discharging, by a system bus, a highest-charged battery module in the scalable power system, the battery system comprising one or more previously added battery modules; determining whether there are any remaining charged battery modules in the scalable power system; based on a determination that there are remaining charged battery modules in the scalable power system, discharging a next highest-charged battery module; based on a determination that there are no remaining charged battery modules, adding an additional battery module to the scalable power system in parallel with the one or more previously added battery modules, the additional battery module and the one or more previously added battery modules forming a scaled up power system; and charging in parallel, by the system bus, a plurality of battery modules in the scaled up power system, the plurality of battery modules comprising the previously added battery modules and the additional battery module. In some examples, the plurality of battery modules are connected in parallel to the system bus using a battery management system. In some examples, the plurality of battery modules are connected in parallel to the system bus using a parallelizing circuit board. In some examples, the parallelizing circuit board comprises a discrete heater control configured to regulate voltage to a heating element for each of the two or more battery modules. In some examples, each of the plurality of battery modules is controlled by a local battery management system.
Various non-limiting and non-exhaustive aspects and features of the present disclosure are described hereinbelow with references to the drawings, wherein:
Like reference numbers and designations in the various drawings indicate like elements. Skilled artisans will appreciate that elements in the Figures are illustrated for simplicity and clarity, and have not necessarily been drawn to scale, for example, with the dimensions of some of the elements in the figures exaggerated relative to other elements to help to improve understanding of various embodiments. Common, well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments.
The Figures and the following description describe certain embodiments by way of illustration only. One of ordinary skill in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein. Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures.
The term “vehicle” is used herein to refer to any type of moveable mode of transporting people, goods, or any other payload, which may use electric power (e.g., derived from solar or other renewable energy source) to run one or more components. The terms “aerial vehicle” and “aircraft” are used interchangeably herein to refer to any type of vehicle capable of aerial movement, including, without limitation, High Altitude Platforms (HAPs), High Altitude Long Endurance (HALE) aircraft, unmanned aerial vehicles (UAVs), passive lighter than air vehicles (e.g., floating stratospheric balloons, other floating or wind-driven vehicles), powered lighter than air vehicles (e.g., balloons and airships with some propulsion capabilities), fixed-wing vehicles (e.g., drones, rigid kites, gliders), various types of satellites, and other high altitude aerial vehicles.
The invention is directed to a scalable power system comprised of modular battery units (i.e., battery modules), particularly for use in vehicles with different power requirements due to differing vehicle characteristics and/or differing missions (e.g., with different duration, weather or other environmental conditions, requisite equipment for service). This allows for ease of scalability (i.e., increase and decrease) of power provisioned for a vehicle, with the addition or removal of modular batteries.
Two or more battery modules may be connected in parallel using a circuit with a network of diodes, designed to safely place the batteries in parallel even if they are at different states of charge when they are connected (the diodes configured to prevent each battery module from charging another battery module to which it is connected). The two or more battery modules each may be comprised of a plurality of battery cells, each battery module configured to provide a given maximum amount of power. The two or more battery modules may each be controlled by one or more battery monitoring units or battery management systems (BMS) (e.g., a PCBA or other circuit board). “BMS” is used herein to refer to either or both of a battery monitoring unit and battery management system. In an example, each battery module may be controlled locally by its own BMS, each BMS electrically coupled to a parallelizing circuit board configured to join the two or more battery modules in parallel and combine the power inputs from the two or more battery modules into as few as one system bus (i.e., a power bus). The two or more battery modules may be charged and discharged by the system bus. The parallelizing circuit board also may be configured to control a heating unit to regulate the temperature of the batteries. In another example, the two or more battery modules may be controlled by a central or master BMS, each of the two or more battery modules configured to be connected to another battery module, the battery modules connected in parallel to the central BMS.
The process for electrically adding (after physically connecting) a battery module to an existing power system (i.e., another battery module or an existing group of two or more already joined battery modules), to increase a system battery capacity, begins with discharging the highest-charged battery module(s) first. To the extent more than one battery module is already joined by the system bus, the system bus discharges one or more battery modules at each successive battery voltage level until all of the already joined batteries have been discharged to a common open circuit voltage, at which point the diode may allow an additional battery module to join the system bus. In some examples, a plurality of additional battery modules may be joined to the system bus. The two or more battery modules that are then joined to the system bus may be charged in parallel. Once charged, the two or more batteries may remain active on the bus for the duration of their lifetime, or of a current mission.
Example Systems
System 100 may include parallelizing board (i.e., parallelizing circuit board) 102, battery packs (i.e., battery modules) 104a-c, added battery modules 114a-b, and system bus 108. Battery modules 104a-c and added battery modules 114a-b may comprise any type of battery known in the art (e.g., Lithium ion, lead-acid, lithium polymer). Battery modules 104a-c and added battery modules 114a-b each may be an independent battery unit controlled by an individual BMS 106a-c and 116a-b, respectively. Each of BMS 106a-c and 116a-b may be configured to provide local control and safety functions for each battery, including one, or a combination, of: conducting power in and out of a corresponding battery module, monitoring and enforcing safety for the corresponding battery module, reporting telemetry, serving as a pass through for power to a heating element. In some examples, conduction of power in and out of a battery module may be controlled by a power field-effect transistor (FET). In some examples, an analog front end (AFE) integrated circuit may be used to monitor and enforce safety (e.g., measure battery cell voltage, measure battery and/or BMS temperature, and balance circuitry). Telemetry that may be reported can include open-circuit voltage, other voltage measurements, temperature, and more. In some examples, power to the heating element may be regulated and controlled by parallelizing board 102, as shown in
Each of battery modules 104a-c may be connected in parallel (e.g., to prevent each battery pack from charging another battery pack) using parallelizing board 102. In some examples, one or both of added battery modules 114a-b may be added to battery system 100 by connecting each in parallel to parallelizing board 102. In some examples, a battery module 114a having the same size and capacity as battery modules 104a-c may be added to battery system 100. In other examples, battery module 114b having a different size and capacity than battery modules 104a-c may be added to battery system 100. The broken-line down arrows indicate placement examples of added battery modules 114a-b. Similar to battery modules 104a-c, each of which is controlled by one of BMS 106a-c, respectively, added battery modules 114a-b each is controlled one of BMS 116a-b, respectively. In some examples, as shown, battery modules 104a-c and 114a-b may be connected to parallelizing board 102 through BMS 106a-c and 116a-b, respectively.
In some examples, battery modules 104a-c may be charged by solar panels (not shown) via the system bus. A discharge-charge cycle of battery modules 104a-c and/or adding and charging battery modules 116a-b may be performed according to the method in
Heater control 126 may be separate from system bus 108. In some examples, power for heating battery modules 104a-d may be provided through system bus 108, but may be regulated to a different voltage (e.g., including being turned on or off) by heater control 126, as shown. In some examples, heater control 126 regulates power to a heating element (not shown) by an individual FET. In some examples, power for heating may be provided by one or more of battery modules 104a-d, which may provide power out to system bus 108 (e.g., by one or more of power out connections 124a-d), which may then send power back to one or more of battery modules 104a-d, as needed to power a heating element. In other examples, heater control 126 may control an independent source of power for heating battery modules 104a-d (not shown).
Sensors 325a-b may include Global Positioning System (GPS) sensors, wind speed and direction sensors such as wind vanes and anemometers, temperature sensors (e.g., thermometers, thermistors, thermocouples, and resistance temperature detectors (RTDs)), speed of sound sensors, acoustic sensors, pressure sensors such as barometers and differential pressure sensors, accelerometers, gyroscopes, combination sensor devices such as inertial measurement units (IMUs), light detectors, pyranometers, light detection and ranging (LIDAR) units, radar units, cameras, other image sensors (e.g., a star tracker), and more. These examples of sensors are not intended to be limiting, and those skilled in the art will appreciate that other sensors or combinations of sensors in addition to these described may be included without departing from the scope of the present disclosure.
Payload 320a-b may comprise a controller, or other computing device or logic circuit configured to control components of aerial vehicle systems 300 and 305. In an embodiment, payload 320a-b may be coupled to balloons 310a-b, respectively, using one or more down-connects 315a-b configured to couple payload 320a-b and balloons 310a-b physically, electrically and/or communicatively (i.e., capable of one- and/or two-way power and data transfer). Payload 320a-b may include, or be coupled to, sensors 325a-b, respectively.
In some examples, balloons 310a-b may carry and/or include other components that are not shown (e.g., altitude control system, propeller, fin, electrical and other wired connections, avionics chassis, onboard flight computer, ballonet, communications systems including transceivers, gimbals, and parabolic terminals). Those skilled in the art will recognize that the systems and methods disclosed herein may similarly apply and be usable by various other types of aerial vehicles.
Ground vehicle systems 350 and 355 in
In one embodiment, computing system 500 may include computing device 501 and storage system 520. Storage system 520 may comprise a plurality of repositories and/or other forms of data storage, and it also may be in communication with computing device 501. In another embodiment, storage system 520, which may comprise a plurality of repositories and may be housed in one or more of computing device 501 (not shown). In some examples, storage system 520 may store state data, other telemetry, commands (e.g., flight, navigation, communications, mission, fallback), flight policies, and other various types of information as described herein. Such information may be retrieved or otherwise accessed by one or more computing devices, such as computing device 501, in order to perform some or all of the features described herein. Storage system 520 may comprise any type of computer storage, such as a hard-drive, memory card, ROM, RAM, DVD, CD-ROM, write-capable, and read-only memories. In addition, storage system 520 may include a distributed storage system where data is stored on a plurality of different storage devices, which may be physically located at the same or different geographic locations (e.g., in a distributed computing system). Storage system 520 may be networked to computing device 501 directly using wired connections and/or wireless connections. Such network may include various configurations and protocols, including short range communication protocols such as Bluetooth™, Bluetooth™ LE, the Internet, World Wide Web, intranets, virtual private networks, wide area networks, local networks, private networks using communication protocols proprietary to one or more companies, Ethernet, WiFi and HTTP, and various combinations of the foregoing. Such communication may be facilitated by any device capable of transmitting data to and from other computing devices, such as modems and wireless interfaces.
Computing device 501 also may include a memory 502. Memory 502 may comprise a storage system configured to store a database 514 and an application 516. Application 516 may include instructions which, when executed by a processor 504, cause computing device 501 to perform various steps and/or functions, as described herein. Application 516 further includes instructions for generating a user interface 518 (e.g., graphical user interface (GUI)). Database 514 may store various algorithms and/or data, including neural networks (e.g., encoding flight policies, navigation policies, power simulators) and data regarding power usage, power telemetry, power requirements, battery characteristics, weather forecasts, past and present locations of vehicles (e.g., aerial vehicle systems 300 and 305 in
Computing device 501 may further include a display 506, a network interface 508, an input device 510, and/or an output module 512. Display 506 may be any display device by means of which computing device 501 may output and/or display data. Network interface 508 may be configured to connect to a network using any of the wired and wireless short range communication protocols described above, as well as a cellular data network, a satellite network (e.g., Iridium, Inmarsat), free space optical network and/or the Internet. Input device 510 may be a mouse, keyboard, touch screen, voice interface, and/or any or other hand-held controller or device or interface by means of which a user may interact with computing device 501. Output module 512 may be a bus, port, and/or other interface by means of which computing device 501 may connect to and/or output data to other devices and/or peripherals.
In some examples computing device 501 may be located remote from a vehicle (e.g., aerial vehicle systems 300 and 305 in
While specific examples have been provided above, it is understood that the present invention can be applied with a wide variety of inputs, thresholds, ranges, and other factors, depending on the application. For example, the time frames and ranges provided above are illustrative, but one of ordinary skill in the art would understand that these time frames and ranges may be varied or even be dynamic and variable, depending on the implementation.
As those skilled in the art will understand, a number of variations may be made in the disclosed embodiments, all without departing from the scope of the invention, which is defined solely by the appended claims. It should be noted that although the features and elements are described in particular combinations, each feature or element can be used alone without other features and elements or in various combinations with or without other features and elements. The methods or flow charts provided may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general-purpose computer or processor.
Examples of computer-readable storage mediums include a read only memory (ROM), random-access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks.
Suitable processors include, by way of example, a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), a state machine, or any combination of thereof.