This application is a National Phase of PCT Patent Application No. PCT/KR2020/016210 having International filing date of Nov. 18, 2020, which claims the benefit of priority of Korean Patent Application No. 2020-0151836 filed on Nov. 13, 2020. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
The present invention relates to a scanner having a flexible probe, and more specifically, to a scanner having a flexible probe which is an apparatus capable of being utilized for an inspection on a weld zone of a general ferrite material and a stainless material and allowing an inspection to be performed on a fitting weld zone where it is difficult for a general phased array ultrasonic testing (PAUT) probe to approach.
Shapes of tubes and pipes installed in power plants are formed to have various structures due to nearby apparatuses and usage environments. Nondestructive inspections cannot be applied to branch pipes among various shapes of weld zones formed on the tubes and pipes due to spatial and environmental causes allowed in the nondestructive inspections. Accordingly, there is a limit on inspection from a viewpoint of checking material integrity.
In addition, objective and reliable data can be obtained only when inspection data is obtained through an automatic or semi-automated scanning method, not through a manual manner. In the case of fitting pipes (for example, elbows, T-pipes, and reducers), since it is difficult for probes to come into contact with the fitting pipes due to structural shapes of inner and outer surfaces as illustrated in
Accordingly, development of a scanner suitable for the fitting pipes is acutely required so that the nondestructive inspections are performed on the weld zones formed on the fitting pipes so as to ideally obtain phased array ultrasonic testing (PAUT) signals.
The present invention is directed to providing a scanner having a flexible probe which is installed on an inner or outer surface of a fitting pipe where it is difficult for a phased array ultrasonic testing (PAUT) to approach and allows an entire weld zone to be volume-inspected in a thickness direction.
According to an aspect of the present invention, there is provided a scanner having a flexible probe, including a probe fixing body (110) which moves while coming into contact with a surface of a bent fitting pipe and to which a probe body (101) is fixed, a flexible connecting chain part (120) installed to be connected to one end of the probe fixing body (110) and having a freely bendable structure, a sensor installation part (130) installed on an end of the flexible connecting chain part (120) and configured to move while pressed against the surface of the fitting pipe, a sensor (140) which is connected to the probe body (101) in a flexible state and of which an end is installed on the sensor installation part (130) and scans a weld zone of the fitting pipe, and an encoder part (150) installed to be connected at one side of the probe fixing body (110) and configured to move while pressed against the fitting pipe and detect a moving distance and a position.
The probe fixing body may include ball plungers provided at four positions of a lower surface of the probe fixing body and configured to slidably move the probe fixing body along the surface of the fitting pipe.
The flexible connecting chain part (120) may include a chain (122), which is adjustable in length due to having a structure formed with a plurality of joints, and a sensor seating plate (124) which is installed to be connected to an end of the chain and on which the end of the sensor is seated.
The sensor installation part (130) may include a press-applying part coupled to the sensor seating plate and configured to apply a uniform pressure to the end of the sensor, an elastic coupling part that elastically couples the press-applying part to the sensor seating plate, and a wheel installed to be coupled to a side portion of the press-applying part and configured to move the press-applying part by rotating in a state in which the wheel is pressed against the surface of the fitting pipe by a magnetic force.
The encoder part may include an encoder coupled to the probe fixing body and configured to detect the moving distance and the position while moving along the surface of the fitting pipe, and an encoder coupling part that couples the encoder to the probe fixing body so that an angle between the encoder and the probe fixing body is adjustable.
The above and other objects, features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing exemplary embodiments thereof in detail with reference to the accompanying drawings, in which:
Hereinafter a specific embodiment of the present invention will be described in detail with reference the accompanying drawings.
As illustrated in
First, as illustrated in
In addition, as illustrated in
Next, as illustrated in
To this end, in the present embodiment, the flexible connecting chain part 120 may include a chain 122 and a sensor seating plate 124 as specifically illustrated in
Next, as illustrated in
Next, as illustrated in
To this end, in the present embodiment, the sensor installation part 130 may include a press-applying part 132, elastic coupling parts 134, and wheels 136 as specifically illustrated in
In addition, the wheel 136 is a component installed to be coupled to a side portion of the press-applying part 132 and configured to move the press-applying part 132 by rotating in a state in which the wheel 136 is pressed against the surface of the fitting pipe 2 by a magnetic force.
Next, as illustrated in
Next, as illustrated in
Accordingly, in the present embodiment, the encoder part 150 includes an encoder 152 and an encoder coupling part 154 as specifically illustrated in
According to a scanner having a flexible probe, there is an advantage that an apparatus can be utilized for an inspection on a weld zone of a general ferrite material and a stainless material and can perform an inspection on a fitting weld zone where it is difficult for a general phased array ultrasonic testing (PAUT) probe to approach.
That is, there is an advantage in that data can be obtained in real time and analyzed at a weld zone formed on fitting pipes having a curvature through a flexible probe, to which a phased array ultrasonic testing (PAUT) method is applied, without using a wedge necessarily used for a conventional inspection.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0151836 | Nov 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2020/016210 | 11/18/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/102831 | 5/19/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1863053 | Hunter | Jun 1932 | A |
5969531 | Murakami et al. | Oct 1999 | A |
8590383 | Brignac | Nov 2013 | B2 |
8646347 | Dubbeldam | Feb 2014 | B2 |
20090145249 | Dubbeldam | Jun 2009 | A1 |
20140277741 | Kwon et al. | Sep 2014 | A1 |
20210364475 | Lim et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
10-0266349 | Sep 2000 | KR |
10-2014-0113209 | Sep 2014 | KR |
10-2016-0135613 | Nov 2016 | KR |
10-2019-0081974 | Jul 2019 | KR |
10-2088704 | Mar 2020 | KR |
Entry |
---|
International Search Report dated Dec. 1, 2021 From the International Searching Authority Re. Application No. PCT/KR2020/016210. (3 Pages). |
Number | Date | Country | |
---|---|---|---|
20220317093 A1 | Oct 2022 | US |