Scanner systems

Information

  • Patent Grant
  • 9688517
  • Patent Number
    9,688,517
  • Date Filed
    Thursday, August 14, 2014
    10 years ago
  • Date Issued
    Tuesday, June 27, 2017
    7 years ago
Abstract
A crane including support means arranged to support a load and to move the load along a path, and a scanner including a radiation source and radiation detection means arranged to scan a scanning volume. The path is arranged to pass through the scanning volume so that the scanner can scan the load as it moves along the path.
Description
FIELD OF THE INVENTION

The present invention relates to scanning systems, and has particular application in cargo scanning systems.


BACKGROUND OF THE INVENTION

There exists a requirement for screening of cargo for detection of illicit materials and devices. Today, the X-ray inspection of containers and other cargo items is becoming more routine. However, the costs of container inspection by this means may be prohibitive in some situations due to the requirement to position the cargo load for inspection separately from its positioning for storage or onwards transport.


As an example, cargo is often taken to a separate scanning area and remains stationary while a moving radiation source and detection system pass along the load. Alternatively, the load is placed onto a moving conveyor and is moved through a stationary imaging system. In either case, the cargo is moved to a separate scanning location to be inspected, resulting in increased cost and time for cargo handling.


SUMMARY OF THE INVENTION

The present invention therefore provides a crane comprising support means arranged to support a load and to move the load along a path, and a scanner comprising a radiation source and radiation detection means arranged to scan a scanning volume, wherein the path is arranged to pass through the scanning volume so that the scanner can scan the load as it moves along the path.


The support means may comprise a carrier and suspension means arranged to suspend the load from the carrier. The carrier may be movable in order to move the load along the path.


The detection means may comprise a plurality of detectors mounted on a support structure. The support structure may extend around the scanning volume and define a gap through which a part of the supporting means can pass as the load is moved through the scanning volume, wherein the gap may be in an upper side of the support structure, and a part of the support structure supporting at least one of the detectors may extend upwards adjacent to the gap so as to detect radiation from the source that passes through the gap. The radiation source may be arranged to direct all radiation horizontally or at least partially upwards. The source may be located below the scanning volume.


The crane may further comprise load monitoring means arranged to determine when a load is in the scanning volume and control means arranged to control the scanner in response to signals from the load monitoring means. Optionally, the control means is arranged to determine the position and speed of the load and to control the scanner in response thereto or is arranged to control a pulse frequency of the radiation source dependent on the speed of the load.


The system may further comprise identification means arranged to identify a load and associate scan data from the scanner with a specific load identity. The system may comprise wireless transmission means arranged to transmit scan data from the scanner to a remote station for analysis or transmit scan data from a plurality of cranes to a remote station for analysis.


The present invention further provides a method of scanning a load, comprising moving the load along a path by means of a crane, whilst the load is supported by the crane and the path passes through a scanning volume defined by a scanning system, and scanning the load using the scanning system as it moves along the path.


A system configuration and mode of utilisation may be provided for high throughput screening at large container based facilities with high load throughput. Container ports rely on the use of large cranes for moving containerised cargo from ship to shore and vice versa. An advantage of the present invention is that the cargo can be scanned while in transit, therefore saving time and costs by avoiding the need to take the cargo to a separate scanning location.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:



FIG. 1 is a schematic diagram of a crane according to an embodiment of the invention;



FIG. 2 is a diagram of an imaging system according to an embodiment of the invention;



FIG. 3 is a schematic diagram of the imaging system of FIG. 2 including a load according to an embodiment of the invention;



FIG. 4 is a schematic diagram showing the movement of a load between modes of transport; and



FIG. 5 is a schematic diagram of a data acquisition system according to an embodiment of the invention.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1, a crane 10 comprises a main frame 22 supported on wheels 36. A supporting structure 14 projects horizontally from the top of the main frame 22. An operator pod 20 is attached to, or is integral with, the main frame 22 of the crane and includes a control panel 11. A rail 18 extends horizontally along the length of the supporting structure 14 and the frame 22. A carrier 38 is attached to, and moveable along the rail 18. A suspension system 34 is attached to the carrier 38 and may comprise a pulley or winch system. A load 12 can be attached to and suspended by the suspension system 34 by any suitable means as known to a skilled person, such that the load 12 can be moved both vertically and horizontally, along a path which extends along the length of the crane on the rail 18. A scanning system 16 is securely attached to the main frame 22 of the crane 10 and is positioned on the same side of the crane 10 as the supporting structure 14 and below the supporting structure 14. A control system 32, communication system 26 and identification system 30 are mounted on or within the crane 10.


As can be seen from FIGS. 2 and 3, the scanning system 16 comprises a rectangular support frame 52 which extends around an imaging volume 42, defining an aperture through which the load 12 can pass. A gap 46 is defined in the upper side of the support frame 52 through which the suspension system 34 can pass as the load 12 is moved through the scanning volume 42. A part 54 of the support frame 52 extends vertically upwards from the upper side of the support frame adjacent to the gap 46, on the opposite side of the gap 46 to the X-ray source 44, such that the vertical part 54 is positioned approximately diagonally opposite to the X-ray source in the scanning plane of the scanning system 16.


The scanning system 16 includes an X-ray source in the form of a high energy X-ray linear accelerator 44 (typically 6 MV to 9 MV beam quality) mounted at a lower corner of the support frame 52. The X-ray linear accelerator 44 includes radiation shielding such that a fan-beam of X-radiation is directed upwards towards an array of individual X-ray detection elements 48 mounted on the support frame 52. The shielding is inherent to the X-ray LINAC package and comprises bulk shielding around the X-ray accelerator plus a fan-shaped lead collimator which projects the X-ray beam into the object. The detection elements 48 are grouped into short linear segments 50, each in the range typically 100 mm to 200 mm in length. Each of the segments 50 is positioned in a common scanning plane and so that the normal to the centre of each of the linear segments 50 points towards the X-ray source 44. Sufficient sets of segments 50 are positioned within and mounted to the support frame 52 such that X-ray beams that intersect with all parts of the load 12 under inspection will reach a detecting element 48. Detecting segments 50 positioned in the vertical part 54 of the support frame 52 adjacent the gap 46 are arranged to detect radiation from the source 44 that passes through the gap 46.


Because the scanning system 16 is located above ground level and the X-ray beams are directed horizontally or at least partially upwards, little radiation shielding is required to ensure that safe radiation levels are met at ground level. Typically, the crane operator will be a sufficient distance from the X-ray imaging system such that their operating pod 20 need not be shielded.


Referring to FIG. 4, the load 12 will be able to move in three dimensions as it migrates from off-loading site 60 to loading site 64 (or vice versa). The crane 10 can move in two dimensions on the ground. When suspended by the crane 10, the load 12 can be moved vertically by operation of the suspension system 34, and horizontally by movement of the carrier 38 along the rail 18, with respect to the crane 10.


The movement of the crane 10 on the ground is controlled by an operator. The control system 32 receives inputs from the control panel 11 and outputs signals to a drive system of the crane 10 to move the crane 10 along the ground in response. The movement of the carrier 38 and the suspension system 34 is also controlled by an operator. The control system 32 receives inputs from the control panel 11 and operates the movement of the carrier 38 and suspension system 34 in response. The scanning system 16 is operated automatically by the control system 32, as described below. The load 12 can therefore be scanned while being moved along the length of the main frame 22 and supporting structure 14 of the crane 10 and while being moved between the off-loading site 60 and the loading site 64. Typically, the load 12 will be scanned through the scanning volume 42 at a speed of around 0.25 m/s. For a standard 40 foot load, this means an X-ray imaging system scan time on the order of 5 seconds. Attenuation data for each load is collected and stored by the control system 32.


The scanning system 16 further comprises a load monitoring system 28, located within the scanning system 16, which detects the presence of a load 12 entering the scanning volume 42. When a load 12 is detected, a signal is output to the control system 32. The control system 32 processes the signal and automatically activates the X-ray source 44 in response. Similarly, the load monitoring system 28 can detect the absence of the load 12 within the scanning volume 42 (i.e. after a scan of the load 12 is complete) and output a signal to the control system 32 to switch off the X-ray source 44 accordingly. The load monitoring system 28 may include an infrared sensor, a video camera, or any other suitable means known to a person skilled in the art. In an alternative embodiment, the scanning system 16 is manually operated and the control system 32 operates the X-ray source 44 in response to user inputs to the control panel 11.


The load monitoring system 28 monitors the position and speed of the load 12 as it passes through, and just before it passes through, the scanning volume 42. This information is output to the control system 32. The control system 32 controls the pulse repetition frequency of the X-ray linear accelerator 44 in response to the information in order to ensure equal distance between samples in the direction the load 12 is moved along the length of the crane 10. In another embodiment, the control system 32 itself directly monitors the position and speed of the load 12 as it controls its movement along the rail 18 and controls the pulse repetition frequency of the X-ray source 44 in response.


Prior to image interpretation, it is necessary to calibrate the X-ray image data. In this particular imaging system, the distance between each detector segment 50 and the X-ray source 44 varies considerably. This is particularly true for segments 50 located in the vertical part 54 of the support frame 52 adjacent to the gap 46. To achieve a satisfactory calibration, it is necessary to collect some X-ray data prior to the start of imaging and further X-ray data immediately after imaging in order that suitable correction factors can be calculated for image calibration.


In a further aspect of this invention, an identification system 30 identifies each load 12 as it moves through the scanning system 16. The identification system 30 may comprise a camera, video camera, infrared barcode scanner or any other suitable means as known to a person skilled in the art. The load number, barcode or other identity information marked on the load 12 is captured by the identification system 30 as the load 12 passes through the scanning system 16. The identification system 30 outputs the identity information for each load 12 to the control system 32 which labels the X-ray attenuation data with the corresponding identity information for each load 12.


Corresponding image and identification data for each load 12 is collected and stored by the control system 32 in a combined data set for each load 12. Referring to FIG. 5, the control system 32 feeds the combined data set for each load 12 to a wireless communication system 26 which transmits the combined data set for each load 12, for example by using a wireless Ethernet protocol, to a remote inspection station 68 for analysis. This allows data from a multiple crane imaging systems to be interpreted analysed centrally and remotely. An image generated from scan data associated with a particular load is displayed on a monitor for inspection.

Claims
  • 1. A scanning system for scanning a load suspended from a crane by a suspension system comprising: a scanning system support frame defining a partially enclosed scanning volume, wherein the scanning system support frame is attached to a portion of said crane;a gap at a top of said scanning system support frame;an X-ray source angularly positioned at a base of said scanning system support frame; anddetectors positioned diagonally opposite said X-ray source, wherein the X-ray source and detectors are adapted to scan the load and generate scan data as the suspension system moves the load through said gap and into said scanning volume.
  • 2. The scanning system of claim 1 wherein said scanning system support frame is attached to a frame of said crane.
  • 3. The scanning system of claim 1 further comprising wheels, wherein the frame of said crane is positioned atop, and supported by, the wheels.
  • 4. The scanning system of claim 1 further comprising at least one radiation detector positioned outside the scanning volume for detecting radiation escaping from the scanning volume.
  • 5. The scanning system of claim 1 wherein the scanning system support frame is rectangular.
  • 6. The scanning system of claim 1 wherein the detectors are positioned within a top portion and a side portion of the scanning system support frame.
  • 7. The scanning system of claim 1 further comprising a support structure projecting horizontally from a top end of a portion of the crane and a rail extending horizontally along a length of the support structure, wherein a portion of the crane is adapted to be movable along said rail.
  • 8. The scanning system of claim 1 further comprising a communication system for wirelessly transmitting the scan data corresponding to each scanned load to a remote station.
  • 9. The scanning system of claim 1 further comprising a load monitoring system for detecting the load entering the scanning volume and transmitting an activation signal.
  • 10. The scanning system of claim 9 further comprising a control system for receiving said activation signal and activating the X-ray source based upon said activation signal.
  • 11. The scanning system of claim 10 wherein the load monitoring system comprises at least one of an infrared sensor and a video camera.
  • 12. The scanning system of claim 1 further comprising a load monitoring system for detecting the load leaving the scanning volume and transmitting a de-activation signal.
  • 13. The scanning system of claim 12 further comprising a control system for receiving said de-activation signal and de-activating the X-ray source based upon said de-activation signal.
  • 14. The scanning system of claim 1 further comprising an identification system, wherein the identification system comprises at least one of a camera, a video camera and a bar code scanner and wherein the identification system is adapted to identify the load by determining one or more of an identification number and a barcode.
  • 15. The scanning system of claim 1 further comprising an identification system adapted to generate identity information, wherein the identification system comprises at least one of a camera, a video camera and a bar code scanner and wherein the identification system is adapted to associate the identity information with the scan data.
  • 16. A method for scanning a load comprising: vertically suspending the load from a suspension system, wherein the suspension system is attached to a crane;using the crane and suspension system, horizontally moving the vertically suspended load through a gap positioned at a top of a scanning system support frame, wherein the scanning system support frame defines a partially enclosed scanning volume, wherein an X-ray source is angularly positioned at a base of said scanning system support frame, and wherein detectors are positioned diagonally opposite said X-ray source; andusing the X-ray source and detectors, scanning the load and generating scan data as the suspension system moves the load through said gap.
  • 17. The method of claim 16 further comprising detecting radiation escaping from the scanning volume using at least one radiation detector positioned outside the scanning volume.
  • 18. The method of claim 16 further comprising monitoring whether the load is entering or leaving the scanning volume using a load monitoring system.
  • 19. The method of claim 18 further comprising activating the X-ray source when the load is detected as entering the scanning volume.
  • 20. The method of claim 16 further comprising generating identity information and associating identity information with the scan data using an identification system, wherein the identification system comprises at least one of a camera, a video camera and a bar code scanner.
Priority Claims (1)
Number Date Country Kind
0809109.2 May 2008 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 12/993,834, filed on Feb. 22, 2011, which, in turn, is a national stage application of PCT/GB2009/001250, filed on May 20, 2009, which, in turn, relies on Great Britain Patent Application Number 0809109.2, filed on May 20, 2008, for priority. All priority applications are herein incorporated by reference in their entirety.

US Referenced Citations (149)
Number Name Date Kind
2831123 Daly Apr 1958 A
3766387 Heffan Oct 1973 A
3770955 Tomita Nov 1973 A
3784837 Holmstrom Jan 1974 A
3904923 Schwartz Sep 1975 A
4047035 Dennhoven Sep 1977 A
4139771 Dennhoven Feb 1979 A
4210811 Dennhoven Jul 1980 A
4216499 Dennhoven Aug 1980 A
4366382 Kotowski Dec 1982 A
4430568 Yoshida Feb 1984 A
4566113 Doenges Jan 1986 A
4599740 Cable Jul 1986 A
4626688 Barnes Dec 1986 A
4641330 Herwig Feb 1987 A
4709382 Sones Nov 1987 A
4736401 Donges Apr 1988 A
4788704 Donges Nov 1988 A
4809857 Steuck Mar 1989 A
4817123 Sones Mar 1989 A
4825454 Annis Apr 1989 A
4872188 Lauro Oct 1989 A
4884289 Glockmann Nov 1989 A
4979202 Siczek Dec 1990 A
4991189 Boomgaarden Feb 1991 A
5022062 Annis Jun 1991 A
5065418 Bermbach Nov 1991 A
5091924 Bermbach Feb 1992 A
5098640 Gozani Mar 1992 A
5179581 Annis Jan 1993 A
5181234 Smith Jan 1993 A
5182764 Peschmann Jan 1993 A
5221843 Alvarez Jun 1993 A
5224144 Annis Jun 1993 A
5237598 Albert Aug 1993 A
5247561 Kotowski Sep 1993 A
5253283 Annis Oct 1993 A
5313511 Annis May 1994 A
5367552 Peschmann Nov 1994 A
5379334 Zimmer Jan 1995 A
5493596 Annis Feb 1996 A
5548123 Perez-Mendez Aug 1996 A
5638420 Armistead Jun 1997 A
5642393 Krug Jun 1997 A
5642394 Rothschild Jun 1997 A
5666393 Annis Sep 1997 A
5687210 Maitrejean Nov 1997 A
5692028 Geus Nov 1997 A
5751837 Watanabe May 1998 A
5764683 Swift Jun 1998 A
5768334 Maitrejean Jun 1998 A
5787145 Geus Jul 1998 A
5805660 Perion Sep 1998 A
5838759 Armistead Nov 1998 A
5903623 Swift May 1999 A
5910973 Grodzins Jun 1999 A
5930326 Rothschild Jul 1999 A
5940468 Huang Aug 1999 A
5974111 Krug Oct 1999 A
6031890 Bermbach Feb 2000 A
6058158 Eiler May 2000 A
6067344 Grodzins May 2000 A
6081580 Grodzins Jun 2000 A
6094472 Smith Jul 2000 A
6151381 Grodzins Nov 2000 A
6188747 Geus Feb 2001 B1
6192101 Grodzins Feb 2001 B1
6192104 Adams Feb 2001 B1
6195413 Geus Feb 2001 B1
6198795 Naumann Mar 2001 B1
6218943 Ellenbogen Apr 2001 B1
6249567 Rothschild Jun 2001 B1
6252929 Swift Jun 2001 B1
6256369 Lai Jul 2001 B1
6278115 Annis Aug 2001 B1
6282260 Grodzins Aug 2001 B1
6292533 Swift Sep 2001 B1
6301326 Bjorkholm Oct 2001 B2
6320933 Grodzins Nov 2001 B1
6347132 Annis Feb 2002 B1
6356620 Rothschild Mar 2002 B1
6424695 Grodzins Jul 2002 B1
6434219 Rothschild Aug 2002 B1
6435715 Betz Aug 2002 B1
6442233 Grodzins Aug 2002 B1
6445765 Frank Sep 2002 B1
6453003 Springer Sep 2002 B1
6453007 Adams Sep 2002 B2
6456684 Mun Sep 2002 B1
6459761 Grodzins Oct 2002 B1
6459764 Chalmers Oct 2002 B1
6473487 Le Oct 2002 B1
RE37899 Grodzins Nov 2002 E
6483894 Hartick Nov 2002 B2
6507025 Verbinski Jan 2003 B1
6532276 Hartick Mar 2003 B1
6542574 Grodzins Apr 2003 B2
6542578 Ries Apr 2003 B2
6542580 Carver Apr 2003 B1
6546072 Chalmers Apr 2003 B1
6552346 Verbinski Apr 2003 B2
6563903 Kang May 2003 B2
6580778 Meder Jun 2003 B2
6584170 Aust Jun 2003 B2
6597760 Beneke Jul 2003 B2
6606516 Levine Aug 2003 B2
6636581 Sorenson Oct 2003 B2
6653588 Gillard-Hickman Nov 2003 B1
6658087 Chalmers Dec 2003 B2
6663280 Doenges Dec 2003 B2
6665373 Kotowski Dec 2003 B1
6665433 Roder Dec 2003 B2
6763635 Lowman Jul 2004 B1
6785357 Bernardi Aug 2004 B2
6812426 Kotowski Nov 2004 B1
6816571 Bijjani Nov 2004 B2
6837422 Meder Jan 2005 B1
6839403 Kotowski Jan 2005 B1
6843599 Le Jan 2005 B2
6920197 Kang Jul 2005 B2
7039159 Muenchau May 2006 B2
7166844 Gormley Jan 2007 B1
7207713 Lowman Apr 2007 B2
7762760 Takehara Jul 2010 B2
7783003 Clayton Aug 2010 B2
20040017888 Seppi Jan 2004 A1
20040086078 Adams May 2004 A1
20040125914 Kang Jul 2004 A1
20040141584 Bernardi Jul 2004 A1
20040258198 Carver Dec 2004 A1
20050117700 Peschmann Jun 2005 A1
20050135668 Polichar Jun 2005 A1
20050156734 Zerwekh Jul 2005 A1
20050157842 Agrawal Jul 2005 A1
20050169421 Muenchau Aug 2005 A1
20060027751 Kurita Feb 2006 A1
20060284094 Inbar Dec 2006 A1
20070110215 Hu May 2007 A1
20070140423 Foland Jun 2007 A1
20070172129 Tortora Jul 2007 A1
20070189454 Georgeson Aug 2007 A1
20070210255 Bjorkholm Sep 2007 A1
20070269005 Chalmers Nov 2007 A1
20070280416 Bendahan Dec 2007 A1
20070280502 Paresi Dec 2007 A1
20070286337 Wang Dec 2007 A1
20080044801 Modica Feb 2008 A1
20080084963 Clayton Apr 2008 A1
20080304622 Morton Dec 2008 A1
Foreign Referenced Citations (18)
Number Date Country
0077018 Apr 1983 EP
0176314 Apr 1986 EP
0287707 Oct 1988 EP
0919186 Jun 1999 EP
1413898 Apr 2004 EP
2255634 Nov 1992 GB
2424065 Sep 2006 GB
2438317 Nov 2007 GB
9855851 Dec 1998 WO
2004010127 Jan 2004 WO
2005098400 Oct 2005 WO
2006036076 Apr 2006 WO
2006045019 Apr 2006 WO
2006078691 Jul 2006 WO
2006095188 Sep 2006 WO
2007035359 Mar 2007 WO
2007051092 May 2007 WO
2008017983 Feb 2008 WO
Non-Patent Literature Citations (10)
Entry
International Search Report for PCT/GB2009/000497, Jan. 22, 2010.
International Search Report for PCT/GB2009/000556, Feb. 19, 2010, Rapiscan Security Products, Inc.
International Search Report for PCT/GB2009/001250, Mar. 2, 2010, Rapiscan Security Products Inc.
International Search Report for PCT/GB2009/001275, Jul. 24, 2009, Rapiscan Security Products Inc.
International Search Report PCT/GB2009/000515, Feb. 23, 2010, Rapiscan Security Products, Inc.
International Search Report PCT/GB2009/001277, Jul. 20, 2010, Rapiscan Systems, Inc.
International Search Report PCT/GB2009/001444, Apr. 6, 2010, Rapiscan Security Products.
Mobile X-Ray Inspection Systems, Internet Citation, Feb. 12, 2007, pp. 1-2, URL:http://web.archive.org/web/20070212000928/http://www.bombdetecti- on.com/cat--details.php?catid=20.
Molchanov P A et al: ‘Nanosecond gated optical sensors for ocean optic applications’ Sensors Applications Symposium, 2006. Proceedings of the 2006 IEEE Houston, Texas,USA Feb. 7-9, 2006, Piscataway, NJ, USA,IEEE, Feb. 7, 2006 (Feb. 7, 2006) , pp. 147-150, XP010917671 ISBN: 978-0-7803-9580-0.
Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/993,834.
Related Publications (1)
Number Date Country
20150036798 A1 Feb 2015 US
Continuations (1)
Number Date Country
Parent 12993834 US
Child 14460130 US