The present invention relates to scanning systems, and has particular application in cargo scanning systems.
There exists a requirement for screening of cargo for detection of illicit materials and devices. Today, the X-ray inspection of containers and other cargo items is becoming more routine. However, the costs of container inspection by this means may be prohibitive in some situations due to the requirement to position the cargo load for inspection separately from its positioning for storage or onwards transport.
As an example, cargo is often taken to a separate scanning area and remains stationary while a moving radiation source and detection system pass along the load. Alternatively, the load is placed onto a moving conveyor and is moved through a stationary imaging system. In either case, the cargo is moved to a separate scanning location to be inspected, resulting in increased cost and time for cargo handling.
The present invention therefore provides a crane comprising support means arranged to support a load and to move the load along a path, and a scanner comprising a radiation source and radiation detection means arranged to scan a scanning volume, wherein the path is arranged to pass through the scanning volume so that the scanner can scan the load as it moves along the path.
The support means may comprise a carrier and suspension means arranged to suspend the load from the carrier. The carrier may be movable in order to move the load along the path.
The detection means may comprise a plurality of detectors mounted on a support structure. The support structure may extend around the scanning volume and define a gap through which a part of the supporting means can pass as the load is moved through the scanning volume, wherein the gap may be in an upper side of the support structure, and a part of the support structure supporting at least one of the detectors may extend upwards adjacent to the gap so as to detect radiation from the source that passes through the gap. The radiation source may be arranged to direct all radiation horizontally or at least partially upwards. The source may be located below the scanning volume.
The crane may further comprise load monitoring means arranged to determine when a load is in the scanning volume and control means arranged to control the scanner in response to signals from the load monitoring means. Optionally, the control means is arranged to determine the position and speed of the load and to control the scanner in response thereto or is arranged to control a pulse frequency of the radiation source dependent on the speed of the load.
The system may further comprise identification means arranged to identify a load and associate scan data from the scanner with a specific load identity. The system may comprise wireless transmission means arranged to transmit scan data from the scanner to a remote station for analysis or transmit scan data from a plurality of cranes to a remote station for analysis.
The present invention further provides a method of scanning a load, comprising moving the load along a path by means of a crane, whilst the load is supported by the crane and the path passes through a scanning volume defined by a scanning system, and scanning the load using the scanning system as it moves along the path.
A system configuration and mode of utilisation may be provided for high throughput screening at large container based facilities with high load throughput. Container ports rely on the use of large cranes for moving containerised cargo from ship to shore and vice versa. An advantage of the present invention is that the cargo can be scanned while in transit, therefore saving time and costs by avoiding the need to take the cargo to a separate scanning location.
Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
Referring to
As can be seen from
The scanning system 16 includes an X-ray source in the form of a high energy X-ray linear accelerator 44 (typically 6 MV to 9 MV beam quality) mounted at a lower corner of the support frame 52. The X-ray linear accelerator 44 includes radiation shielding such that a fan-beam of X-radiation is directed upwards towards an array of individual X-ray detection elements 48 mounted on the support frame 52. The shielding is inherent to the X-ray LINAC package and comprises bulk shielding around the X-ray accelerator plus a fan-shaped lead collimator which projects the X-ray beam into the object. The detection elements 48 are grouped into short linear segments 50, each in the range typically 100 mm to 200 mm in length. Each of the segments 50 is positioned in a common scanning plane and so that the normal to the centre of each of the linear segments 50 points towards the X-ray source 44. Sufficient sets of segments 50 are positioned within and mounted to the support frame 52 such that X-ray beams that intersect with all parts of the load 12 under inspection will reach a detecting element 48. Detecting segments 50 positioned in the vertical part 54 of the support frame 52 adjacent the gap 46 are arranged to detect radiation from the source 44 that passes through the gap 46.
Because the scanning system 16 is located above ground level and the X-ray beams are directed horizontally or at least partially upwards, little radiation shielding is required to ensure that safe radiation levels are met at ground level. Typically, the crane operator will be a sufficient distance from the X-ray imaging system such that their operating pod 20 need not be shielded.
Referring to
The movement of the crane 10 on the ground is controlled by an operator. The control system 32 receives inputs from the control panel 11 and outputs signals to a drive system of the crane 10 to move the crane 10 along the ground in response. The movement of the carrier 38 and the suspension system 34 is also controlled by an operator. The control system 32 receives inputs from the control panel 11 and operates the movement of the carrier 38 and suspension system 34 in response. The scanning system 16 is operated automatically by the control system 32, as described below. The load 12 can therefore be scanned while being moved along the length of the main frame 22 and supporting structure 14 of the crane 10 and while being moved between the off-loading site 60 and the loading site 64. Typically, the load 12 will be scanned through the scanning volume 42 at a speed of around 0.25 m/s. For a standard 40 foot load, this means an X-ray imaging system scan time on the order of 5 seconds. Attenuation data for each load is collected and stored by the control system 32.
The scanning system 16 further comprises a load monitoring system 28, located within the scanning system 16, which detects the presence of a load 12 entering the scanning volume 42. When a load 12 is detected, a signal is output to the control system 32. The control system 32 processes the signal and automatically activates the X-ray source 44 in response. Similarly, the load monitoring system 28 can detect the absence of the load 12 within the scanning volume 42 (i.e. after a scan of the load 12 is complete) and output a signal to the control system 32 to switch off the X-ray source 44 accordingly. The load monitoring system 28 may include an infrared sensor, a video camera, or any other suitable means known to a person skilled in the art. In an alternative embodiment, the scanning system 16 is manually operated and the control system 32 operates the X-ray source 44 in response to user inputs to the control panel 11.
The load monitoring system 28 monitors the position and speed of the load 12 as it passes through, and just before it passes through, the scanning volume 42. This information is output to the control system 32. The control system 32 controls the pulse repetition frequency of the X-ray linear accelerator 44 in response to the information in order to ensure equal distance between samples in the direction the load 12 is moved along the length of the crane 10. In another embodiment, the control system 32 itself directly monitors the position and speed of the load 12 as it controls its movement along the rail 18 and controls the pulse repetition frequency of the X-ray source 44 in response.
Prior to image interpretation, it is necessary to calibrate the X-ray image data. In this particular imaging system, the distance between each detector segment 50 and the X-ray source 44 varies considerably. This is particularly true for segments 50 located in the vertical part 54 of the support frame 52 adjacent to the gap 46. To achieve a satisfactory calibration, it is necessary to collect some X-ray data prior to the start of imaging and further X-ray data immediately after imaging in order that suitable correction factors can be calculated for image calibration.
In a further aspect of this invention, an identification system 30 identifies each load 12 as it moves through the scanning system 16. The identification system 30 may comprise a camera, video camera, infrared barcode scanner or any other suitable means as known to a person skilled in the art. The load number, barcode or other identity information marked on the load 12 is captured by the identification system 30 as the load 12 passes through the scanning system 16. The identification system 30 outputs the identity information for each load 12 to the control system 32 which labels the X-ray attenuation data with the corresponding identity information for each load 12.
Corresponding image and identification data for each load 12 is collected and stored by the control system 32 in a combined data set for each load 12. Referring to
Number | Date | Country | Kind |
---|---|---|---|
0809109.2 | May 2008 | GB | national |
The present application is a continuation of U.S. patent application Ser. No. 12/993,834, filed on Feb. 22, 2011, which, in turn, is a national stage application of PCT/GB2009/001250, filed on May 20, 2009, which, in turn, relies on Great Britain Patent Application Number 0809109.2, filed on May 20, 2008, for priority. All priority applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2831123 | Daly | Apr 1958 | A |
3766387 | Heffan | Oct 1973 | A |
3770955 | Tomita | Nov 1973 | A |
3784837 | Holmstrom | Jan 1974 | A |
3904923 | Schwartz | Sep 1975 | A |
4047035 | Dennhoven | Sep 1977 | A |
4139771 | Dennhoven | Feb 1979 | A |
4210811 | Dennhoven | Jul 1980 | A |
4216499 | Dennhoven | Aug 1980 | A |
4366382 | Kotowski | Dec 1982 | A |
4430568 | Yoshida | Feb 1984 | A |
4566113 | Doenges | Jan 1986 | A |
4599740 | Cable | Jul 1986 | A |
4626688 | Barnes | Dec 1986 | A |
4641330 | Herwig | Feb 1987 | A |
4709382 | Sones | Nov 1987 | A |
4736401 | Donges | Apr 1988 | A |
4788704 | Donges | Nov 1988 | A |
4809857 | Steuck | Mar 1989 | A |
4817123 | Sones | Mar 1989 | A |
4825454 | Annis | Apr 1989 | A |
4872188 | Lauro | Oct 1989 | A |
4884289 | Glockmann | Nov 1989 | A |
4979202 | Siczek | Dec 1990 | A |
4991189 | Boomgaarden | Feb 1991 | A |
5022062 | Annis | Jun 1991 | A |
5065418 | Bermbach | Nov 1991 | A |
5091924 | Bermbach | Feb 1992 | A |
5098640 | Gozani | Mar 1992 | A |
5179581 | Annis | Jan 1993 | A |
5181234 | Smith | Jan 1993 | A |
5182764 | Peschmann | Jan 1993 | A |
5221843 | Alvarez | Jun 1993 | A |
5224144 | Annis | Jun 1993 | A |
5237598 | Albert | Aug 1993 | A |
5247561 | Kotowski | Sep 1993 | A |
5253283 | Annis | Oct 1993 | A |
5313511 | Annis | May 1994 | A |
5367552 | Peschmann | Nov 1994 | A |
5379334 | Zimmer | Jan 1995 | A |
5493596 | Annis | Feb 1996 | A |
5548123 | Perez-Mendez | Aug 1996 | A |
5638420 | Armistead | Jun 1997 | A |
5642393 | Krug | Jun 1997 | A |
5642394 | Rothschild | Jun 1997 | A |
5666393 | Annis | Sep 1997 | A |
5687210 | Maitrejean | Nov 1997 | A |
5692028 | Geus | Nov 1997 | A |
5751837 | Watanabe | May 1998 | A |
5764683 | Swift | Jun 1998 | A |
5768334 | Maitrejean | Jun 1998 | A |
5787145 | Geus | Jul 1998 | A |
5805660 | Perion | Sep 1998 | A |
5838759 | Armistead | Nov 1998 | A |
5903623 | Swift | May 1999 | A |
5910973 | Grodzins | Jun 1999 | A |
5930326 | Rothschild | Jul 1999 | A |
5940468 | Huang | Aug 1999 | A |
5974111 | Krug | Oct 1999 | A |
6031890 | Bermbach | Feb 2000 | A |
6058158 | Eiler | May 2000 | A |
6067344 | Grodzins | May 2000 | A |
6081580 | Grodzins | Jun 2000 | A |
6094472 | Smith | Jul 2000 | A |
6151381 | Grodzins | Nov 2000 | A |
6188747 | Geus | Feb 2001 | B1 |
6192101 | Grodzins | Feb 2001 | B1 |
6192104 | Adams | Feb 2001 | B1 |
6195413 | Geus | Feb 2001 | B1 |
6198795 | Naumann | Mar 2001 | B1 |
6218943 | Ellenbogen | Apr 2001 | B1 |
6249567 | Rothschild | Jun 2001 | B1 |
6252929 | Swift | Jun 2001 | B1 |
6256369 | Lai | Jul 2001 | B1 |
6278115 | Annis | Aug 2001 | B1 |
6282260 | Grodzins | Aug 2001 | B1 |
6292533 | Swift | Sep 2001 | B1 |
6301326 | Bjorkholm | Oct 2001 | B2 |
6320933 | Grodzins | Nov 2001 | B1 |
6347132 | Annis | Feb 2002 | B1 |
6356620 | Rothschild | Mar 2002 | B1 |
6424695 | Grodzins | Jul 2002 | B1 |
6434219 | Rothschild | Aug 2002 | B1 |
6435715 | Betz | Aug 2002 | B1 |
6442233 | Grodzins | Aug 2002 | B1 |
6445765 | Frank | Sep 2002 | B1 |
6453003 | Springer | Sep 2002 | B1 |
6453007 | Adams | Sep 2002 | B2 |
6456684 | Mun | Sep 2002 | B1 |
6459761 | Grodzins | Oct 2002 | B1 |
6459764 | Chalmers | Oct 2002 | B1 |
6473487 | Le | Oct 2002 | B1 |
RE37899 | Grodzins | Nov 2002 | E |
6483894 | Hartick | Nov 2002 | B2 |
6507025 | Verbinski | Jan 2003 | B1 |
6532276 | Hartick | Mar 2003 | B1 |
6542574 | Grodzins | Apr 2003 | B2 |
6542578 | Ries | Apr 2003 | B2 |
6542580 | Carver | Apr 2003 | B1 |
6546072 | Chalmers | Apr 2003 | B1 |
6552346 | Verbinski | Apr 2003 | B2 |
6563903 | Kang | May 2003 | B2 |
6580778 | Meder | Jun 2003 | B2 |
6584170 | Aust | Jun 2003 | B2 |
6597760 | Beneke | Jul 2003 | B2 |
6606516 | Levine | Aug 2003 | B2 |
6636581 | Sorenson | Oct 2003 | B2 |
6653588 | Gillard-Hickman | Nov 2003 | B1 |
6658087 | Chalmers | Dec 2003 | B2 |
6663280 | Doenges | Dec 2003 | B2 |
6665373 | Kotowski | Dec 2003 | B1 |
6665433 | Roder | Dec 2003 | B2 |
6763635 | Lowman | Jul 2004 | B1 |
6785357 | Bernardi | Aug 2004 | B2 |
6812426 | Kotowski | Nov 2004 | B1 |
6816571 | Bijjani | Nov 2004 | B2 |
6837422 | Meder | Jan 2005 | B1 |
6839403 | Kotowski | Jan 2005 | B1 |
6843599 | Le | Jan 2005 | B2 |
6920197 | Kang | Jul 2005 | B2 |
7039159 | Muenchau | May 2006 | B2 |
7166844 | Gormley | Jan 2007 | B1 |
7207713 | Lowman | Apr 2007 | B2 |
7762760 | Takehara | Jul 2010 | B2 |
7783003 | Clayton | Aug 2010 | B2 |
20040017888 | Seppi | Jan 2004 | A1 |
20040086078 | Adams | May 2004 | A1 |
20040125914 | Kang | Jul 2004 | A1 |
20040141584 | Bernardi | Jul 2004 | A1 |
20040258198 | Carver | Dec 2004 | A1 |
20050117700 | Peschmann | Jun 2005 | A1 |
20050135668 | Polichar | Jun 2005 | A1 |
20050156734 | Zerwekh | Jul 2005 | A1 |
20050157842 | Agrawal | Jul 2005 | A1 |
20050169421 | Muenchau | Aug 2005 | A1 |
20060027751 | Kurita | Feb 2006 | A1 |
20060284094 | Inbar | Dec 2006 | A1 |
20070110215 | Hu | May 2007 | A1 |
20070140423 | Foland | Jun 2007 | A1 |
20070172129 | Tortora | Jul 2007 | A1 |
20070189454 | Georgeson | Aug 2007 | A1 |
20070210255 | Bjorkholm | Sep 2007 | A1 |
20070269005 | Chalmers | Nov 2007 | A1 |
20070280416 | Bendahan | Dec 2007 | A1 |
20070280502 | Paresi | Dec 2007 | A1 |
20070286337 | Wang | Dec 2007 | A1 |
20080044801 | Modica | Feb 2008 | A1 |
20080084963 | Clayton | Apr 2008 | A1 |
20080304622 | Morton | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
0077018 | Apr 1983 | EP |
0176314 | Apr 1986 | EP |
0287707 | Oct 1988 | EP |
0919186 | Jun 1999 | EP |
1413898 | Apr 2004 | EP |
2255634 | Nov 1992 | GB |
2424065 | Sep 2006 | GB |
2438317 | Nov 2007 | GB |
9855851 | Dec 1998 | WO |
2004010127 | Jan 2004 | WO |
2005098400 | Oct 2005 | WO |
2006036076 | Apr 2006 | WO |
2006045019 | Apr 2006 | WO |
2006078691 | Jul 2006 | WO |
2006095188 | Sep 2006 | WO |
2007035359 | Mar 2007 | WO |
2007051092 | May 2007 | WO |
2008017983 | Feb 2008 | WO |
Entry |
---|
International Search Report for PCT/GB2009/000497, Jan. 22, 2010. |
International Search Report for PCT/GB2009/000556, Feb. 19, 2010, Rapiscan Security Products, Inc. |
International Search Report for PCT/GB2009/001250, Mar. 2, 2010, Rapiscan Security Products Inc. |
International Search Report for PCT/GB2009/001275, Jul. 24, 2009, Rapiscan Security Products Inc. |
International Search Report PCT/GB2009/000515, Feb. 23, 2010, Rapiscan Security Products, Inc. |
International Search Report PCT/GB2009/001277, Jul. 20, 2010, Rapiscan Systems, Inc. |
International Search Report PCT/GB2009/001444, Apr. 6, 2010, Rapiscan Security Products. |
Mobile X-Ray Inspection Systems, Internet Citation, Feb. 12, 2007, pp. 1-2, URL:http://web.archive.org/web/20070212000928/http://www.bombdetecti- on.com/cat--details.php?catid=20. |
Molchanov P A et al: ‘Nanosecond gated optical sensors for ocean optic applications’ Sensors Applications Symposium, 2006. Proceedings of the 2006 IEEE Houston, Texas,USA Feb. 7-9, 2006, Piscataway, NJ, USA,IEEE, Feb. 7, 2006 (Feb. 7, 2006) , pp. 147-150, XP010917671 ISBN: 978-0-7803-9580-0. |
Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/993,834. |
Number | Date | Country | |
---|---|---|---|
20150036798 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12993834 | US | |
Child | 14460130 | US |