Scanners are used to create digital copies of documents or objects. There are many types of scanners, for example sheet feed scanners, flatbed scanners, stand alone scanners and scanners integrated into multifunctional printers (MFPs).
Flatbed scanners move the scan sensor relative to a page placed on a scan platen. When dust or debris is located on the top surface of the scan platen, the dust or debris shows up in the scanned image as small dots or specks. Sheet-feed scanners move pages across an automatic document feeder (ADF) scan glass that has a scan sensor fixed in place underneath the glass. When dust or debris is located on the top surface of the glass, the image of the dust or debris ends up as long vertical streaks in the image. These long vertical streaks are much more visible in the final image and therefore present more of a problem than the small dots or specks. If the dust or dirt can be detected on the top surface of the glass, the user can be warned and asked to clean the glass before the next scan occurs. Many flatbed scanners operate in the same way that a sheet-feed scanner operates when using an ADF (i.e. the scan sensor remains in a fixed location while the media is moved past the sensor).
In one example, dirt or debris can be detected by scanning a page moving through the ADF and comparing that scan to a scan of a stationary object like a stationary calibration strip. Both scans are examined to locate any long vertical streaks in the image. The positions of the long vertical streaks in the two images are compared. If a long vertical streak is located in the same position in both images it indicates that the top of the ADF scan glass is contaminated at that location. If the long vertical streak only shows up in the image of the page, then that streak is actually present in the original page. If the long vertical streak only shows up in the image of the calibration strip, then the calibration strip is contaminated at that location. By comparing a scan of a stationary object with a scan of a moving object, the location of contamination on the top surface of the ADF scan glass can be determined.
In this application “ADF scan glass” will be defined as any transparent material located between the scan sensor and the calibration strip in the ADF paper path. In some examples of a sheet-feed scanner, a single piece of glass is typically positioned between the scan sensor and the calibration strip (as shown in
Calibration strip 114 is positioned above ADF scan glass 110 and aligned with scan sensor 112. When there are no pages in the paper path between the ADF scan glass 110 and the calibration strip 114 the scan sensor 112 can view the bottom surface of the calibration strip 114. In one example, during a single scan of a page, the seamier will start scanning a little before the page reaches the scan sensor, of will continue to scan for a little while after the page has passed by the scan sensor.
On the left side of page 116b the scan distance DB shows the scan area when the scanner ends the scan after the bottom edge of page 116b passes the scan sensor 112. Area 220B will be an image of the bottom surface of the stationary calibration strip 114. Because this area is an image of the stationary calibration strip, it will be called stationary calibration data. The rest of the scan data will contain an image of the bottom surface of page 116b as it moves past the scan sensor 112. A small portion or segment of this scan data, typically near the top or bottom edge of page 116b, will be selected as moving calibration data. In another example, the stationary calibration data may be captured and stored at a time different from when a user is scanning a page.
Using the stationary calibration data and the moving calibration data it can be determined when dirt, dust or any type of debris is located on the top surface of ADF scan glass, above and inline with the scan sensor 112.
When the position of a LVS in the stationary calibration data does not match the position of a LYS in the moving calibration data (i.e. the streak is not in the moving calibration data) the calibration strip is contaminated at this location. In some examples the user may be asked to clean the calibration strip in addition to, or in place of, cleaning the top surface of the ADF scan glass.
Long vertical streaks can be located using a number of different techniques. In one example continuous vertical edge patterns are used. The dust streaks typically give a more continuous vertical edge pattern as compared to the other factors in moving calibration data. In order to measure the strength of vertical edge continuity, the number of contiguous edge pixels in each column is determined by traversing top to bottom along the streak. In other examples a threshold may be used on the image and the number of contiguous black pixels in each column can be counted.
Area 444 is an image of the stationary calibration data. Chart 448 is graph of the height and position of vertical streaks in the stationary calibration data. The vertical axis is the height of the streak and the horizontal axis is the position of the streak in the image. Most vertical streaks in the image are not very long. However there are a number of long vertical streaks (LVS). These LVS are marked as 2, 3, 4, 5, 6 and 7.
Comparing the locations or position of the LVS in the stationary calibration data with the location or position of the LVS in the moving calibration data will determine if the top surface of the ADF scan glass is contaminated with debris or if the bottom surface of the calibration strip is contaminated with debris. LVS b and d only occur in the moving calibration data. Therefore these LVS are in the image of the page being scanned. LVS 2, 4, 5, 6 and 7 occur only in the stationary calibration data. These LVS indicate that there is dust or debris located on the calibration strip at these locations and corrective action can be taken. LVS c in the moving calibration data is in the same position as LVS 3 in the stationary calibration data. This indicates that there is dust or debris located on the top surface of the ADF scan glass in this locations and corrective action can be taken.
The flatbed calibration strip 514a is positioned on top of the flatbed scan platen 556. The ADF exit ramp 558 covers the calibration strip. Scanner base 552 also supports a drive system (not shown for clarity) that moves the flatbed scan sensor 512a along the underside of the ADF scan glass 510 and the flatbed scan platen 554. The flatbed scan sensor 512a is shown located at the ADF scan position. An ADF is positioned on the top side of scanner base 552 above the ADF scan glass 510. The top surface of the ADF scan glass forms an ADF scan area.
ADF comprises an ADF feed guide 508. The ADF may also comprise a housing, an input tray, and output tray and a paper transport system containing motors, belts, paper picking mechanisms and the like, but these items are not shown for clarity. ADF exit ramp 558 is positioned on top of ADF scan glass 510. ADF exit ramp 558 helps guide pages through the ADF paper path and into an output tray (not shown for clarity). A page 116b is shown in the ADF paper path. The paper feeding direction is shown by arrows 524. The ADF paper path goes from an input tray, around ADF feed guide 508, across the ADF scan glass 510, up the ADF exit ramp 558 and into an output tray.
During an ADF scan the flatbed scan sensor 512s remains fixed in a positioned underneath the ADF scan glass 510 (as shown). As the page moves through the ADF paper path the flatbed scan sensor 510 remains stationary and captures an image of the downward facing side of the page as it passes above the flatbed scan sensor 512a.
During a flatbed scan, the page would be placed onto the flatbed scan platen 554 and the flatbed scan sensor 512a would move along the length of the flatbed scan platen capturing an image of the downward facing side of the page.
The flatbed scanner 500 can use the same method to detect debris on the top surface of the ADF scan glass 510 as describe above for the sheet-feed scanner. The scanner 500 can capture stationary calibration data of the bottom surface of the ADF calibration strip 514b during a time when there is no paper in the ADF paper path. The scanner 500 can capture moving calibration data when a page is being moved across the ADF scan glass during an ADF scan. The scanner 500 can then determine the location of LVS in the image of both the stationary and moving calibration data. When a LVS is in the same location in both images debris is located in that position on top of the ADF scan glass and corrective action can be taken.
Corrective action for a flatbed seamier can include moving the location of the flatbed scan sensor by a small amount for an ADF scan. If debris is detected in the new location additional locations can be tried. If a location without debris can't be found, the user can be notified that the top surface of the ADF scan glass needs to be cleaned.
I/O module 606 is used to couple seamier to other devices, for example the Internet or a computer. Scanner has code, typically called software, stored in the memory 604. The software is stored as computer readable instructions in the non-transitory computer readable medium (i.e. the memory 604). Processor 602 generally retrieves and executes the instructions stored in the non-transitory computer-readable medium to operate the scanner and to execute functions. In one example, the processor executes code that detects debris in the scanner.
The scanners described above may be integrated into a multifunction peripheral (MFP). A multifunction peripheral (MFP) is a device that typically contains a printer and an imaging system, typically a seamier. The MFP can be used as a printer, a scanner, a copier, a facsimile machine (FAX) or the like. MFPs are also called all-in-one devices (AiO), multifunction devices, multifunction printers or the like.
Number | Name | Date | Kind |
---|---|---|---|
5821977 | Nishimura | Oct 1998 | A |
5969371 | Andersen | Oct 1999 | A |
6900448 | Thompson | May 2005 | B1 |
7058236 | Ohashi | Jun 2006 | B2 |
7183532 | Gann | Feb 2007 | B2 |
7742180 | Saida et al. | Jun 2010 | B2 |
8010026 | Kobayashi | Aug 2011 | B2 |
8531743 | Wu | Sep 2013 | B2 |
8559065 | Deamer | Oct 2013 | B2 |
8786914 | Mui | Jul 2014 | B1 |
20020176634 | Ohashi | Nov 2002 | A1 |
20050152616 | Bailey | Jul 2005 | A1 |
20050185227 | Thompson | Aug 2005 | A1 |
20060268377 | Haas | Nov 2006 | A1 |
20090027741 | Quah | Jan 2009 | A1 |
20090190187 | Cornell | Jul 2009 | A1 |
20110141535 | Westcott et al. | Jun 2011 | A1 |
20120044515 | Ikegawa | Feb 2012 | A1 |
20130050771 | Deamer | Feb 2013 | A1 |
Entry |
---|
Canon Image Formula DR-X10C User Manual, (Research Paper), 2007. |
Number | Date | Country | |
---|---|---|---|
20140355077 A1 | Dec 2014 | US |