The invention relates generally to scanning-based apparatuses and methods for obtaining tomosynthesis data for examination of an object.
An X-ray medical diagnostic method such as mammography is a low-dose procedure that creates one or more images of a part of a patient such as a breast thereof, which is to be examined, e.g. for detection of early stages of cancer.
The mammography diagnostic procedure generally includes obtaining two images of each of the patient's breasts, one from above and one from the side. A physician or radiologist then reviews the images of the breast, i.e., mammograms, to identify any breast cancer.
While this procedure is one of the best methods of detecting early forms of breast cancer, it is still possible for the detection of breast cancer to be missed by a physician or radiologist reviewing the mammograms. For example, breast cancer may be missed by being obscured by radiographically dense, fibroglandular breast tissue.
Tomosynthesis imaging, in which a plurality of images is acquired at different angles, has been studied in an effort to detect early forms of breast cancer. By shifting and adding the plurality of images, it is possible to reconstruct any plane in the breast being imaged that is parallel to the detector.
Further, various line detectors for detecting ionizing radiation are known in the art. While such detectors provide for instantaneous one-dimensional imaging, two-dimensional imaging can only be performed by means of scanning the line detector, and optionally the radiation source, in a direction traverse to the one-dimensional detector array. To use such a detector in tomosynthesis, wherein a plurality of images has to be acquired at different angles would be very time consuming.
A main object of the invention is therefore to provide a scanning-based apparatus and a method, respectively, for obtaining tomosynthesis data of an object at a higher speed than what is obtainable by using scanning-based apparatuses and methods of the prior art.
In this respect there is a particular object to provide such an apparatus and such a method, which are uncomplicated and can produce high-quality two-dimensional images with high spatial resolution, signal-to-noise ratio, dynamic range, and image contrast.
A yet further object of the invention is to provide such an apparatus and such a method, which are reliable, accurate, and inexpensive.
These objects, among others, are attained by apparatuses and methods as claimed in the appended claims.
The inventors have found that by providing a divergent radiation source emitting radiation centered around an axis of symmetry, and a radiation detector comprising a stack of line detectors, each being directed towards the divergent radiation source to allow a ray bundle of the radiation that propagates in a respective one of a plurality of different angles to enter the line detector after having been transmitted through an object to be examined, and moving the radiation source and the radiation detector relative the object linearly in a direction orthogonal to the axis of symmetry, while each of the line detectors records line images of radiation as transmitted through the object in a respective one of the different angles, a plurality of two-dimensional images can be formed, where each two-dimensional image is formed from a plurality of line images as recorded by a single one of the line detectors. Thus, a plurality of two-dimensional images at different angles are produced in a single scan, which reduces the detection time by a factor corresponding to the number of two-dimensional images produced. The data from the apparatus is excellent to be used in tomosynthesis or laminographic imaging.
The line detectors uses are preferably, but not exclusively, gaseous-based parallel plate detectors. Other line detectors that may be used include, scintillator-based arrays, CCD arrays, TFT- and CMOS-based detectors, liquid detectors, and diode arrays, e.g. PIN-diode arrays with edge-on, near edge-on or perpendicular incidence of X-rays.
Further characteristics of the invention, and advantages thereof, will be evident from the detailed description of preferred embodiments of the present invention given hereinafter and the accompanying
a-c illustrate each schematically, in a top view, a particular X-ray bundle as it traverses the examination object during scanning by the apparatus of FIG. 1.
The apparatus of
The radiation detector 6 comprises a stack of line detectors 6a, each being directed towards the divergent radiation source 1 to allow a respective ray bundle b1, . . . , bn, . . . , bN of the radiation 2 that propagates in a respective one of a plurality of different angles α1, . . . , αn, . . . , αN with respect to the front surface of the radiation detector 6 to enter the respective line detector 6a.
The collimator 4 may be a thin foil of e.g. tungsten with narrow radiation transparent slits etched away, the number of which corresponds to the number of line detectors 6a of the radiation detector 6. The slits are aligned with the line detectors 6a so that X-rays passing through the slits of the collimator 4 will reach the detector units 6a, i.e. as the respective ray bundles b1, . . . , bn, . . . , bN. The collimator 4, which is optional, prevents radiation, which is not directed directly towards the line detectors 6a, from impinging on the object 5, thereby reducing the radiation dose to the object. This is advantageous in all applications where the object is a human or an animal, or parts thereof.
During scanning the device 7 moves the radiation source 1 and the radiation detector 6 relative the object 5 in a linear manner parallel with the front of the radiation detector as being indicated by arrow 8, while each of the line detectors 6a records a plurality of line images of radiation as transmitted through the object 5 in a respective one of the different angles α1, . . . , αn, . . . , αN.
The scanning of the object 5 is performed a length, which is sufficiently large so that each one of the line detectors 6a can be scanned across the entire object of interest to obtain, for each of the line detectors 6a, a two-dimensional image of radiation as transmitted through the object 5 in a respective one of the different angles α1, . . . , αn, . . . , αN.
In
As can be seen in
Preferably, the different angles are distributed over an angular range αN-α1 of at least 5°, preferably at least 10°, and most preferably at least 15° depending on the application or kind of examination in order to obtain high-quality tomosynthesis data for examination of the object. The number of line detectors 6a in the stack of line detectors is at least 3, preferably at least 5, and most preferably at least 10 depending on the number of images recorded at different angles, which is required during the examination.
The scanning step, in
It shall be noted that the present invention is applicable to any kind of examination employing tomosynthesis or laminographic imaging, including e.g. mammography examination and other soft tissue examinations.
A preferred line detector for use in the present invention is a gaseous-based parallel plate detector, preferably provided with an electron avalanche amplifier. Such a gaseous-based parallel plate detector is an ionization detector, wherein electrons freed as a result of ionization by ionizing radiation are accelerated in a direction essentially perpendicular to the direction of the radiation.
For further details regarding such kind of gaseous-based line detectors for use in the present invention, reference is made to the following U.S. Patents by Tom Francke et al. and assigned to XCounter AB of Sweden, which patents are hereby incorporated by reference: U.S. Pat. Nos. 6,546,070; 6,522,722; 6,518,578; 6,118,125; 6,373,065; 6,337,482; 6,385,282; 6,414,317; 6,476,397; and 6,477,223.
It shall particularly be pointed out that such kind of detector is very efficient in preventing Compton scattered radiation from being detected. This property is of outermost importance to obtain high-quality tomosynthesis data.
The distance between the parallel plates, i.e. electrodes, of the line detector may be below about 2 mm, preferably below about 1 mm, more preferably below about 0.5 mm, and most preferably between about 0.1 mm and 0.5 mm. XCounter AB has recently begun to verify the Compton scattering rejection characteristics of the line detector experimentally and good contrast has been observed using a wide X-ray spectrum of high energy X-rays, at which conditions a conventional detector system would not be capable to see any structure at all. It is believed that the above-depicted gaseous-based line detector discriminates more than 99% of the scattered photons; and by proper design it is assumed that about 99.9% or more of the scattered photons can be prevented from being detected.
It shall, nevertheless, be realized that any other may be used in the present invention. Such line detectors include scintillator-based arrays, CCD arrays, TFT- and CMOS-based detectors, liquid detectors, and solid-state detectors such as one-dimensional PIN-diode arrays with edge-on, near edge-on or perpendicular incidence of X-rays.
It shall further be appreciated that that the device 7 for rigidly connecting the X-ray source 1, the radiation detector 6, and the optional collimator 4 may be exchanged for separate devices (not illustrated) for the X-ray source 1, the radiation detector 6, and optionally the optional collimator 4, which may be controlled electronically to obtain synchronous linear movements of the separate devices to obtain the same scanning movement. Yet alternatively, the apparatus of
It shall still further be appreciated that the radiation detector 6 of the apparatus of
Number | Date | Country | Kind |
---|---|---|---|
0302022 | Jul 2003 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
4064440 | Roder | Dec 1977 | A |
4466113 | Strecker | Aug 1984 | A |
4953189 | Wang | Aug 1990 | A |
5022060 | Trotel | Jun 1991 | A |
5126938 | Oda | Jun 1992 | A |
5511106 | Doebert et al. | Apr 1996 | A |
6118125 | Carlson et al. | Sep 2000 | A |
6118841 | Lia | Sep 2000 | A |
6243438 | Nahaliel et al. | Jun 2001 | B1 |
6337482 | Francke | Jan 2002 | B1 |
6373065 | Francke et al. | Apr 2002 | B1 |
6385282 | Francke et al. | May 2002 | B1 |
6414317 | Francke et al. | Jul 2002 | B1 |
6474397 | Gunkel et al. | Nov 2002 | B1 |
6477223 | Francke | Nov 2002 | B1 |
6518578 | Francke et al. | Feb 2003 | B1 |
6522722 | Francke | Feb 2003 | B1 |
6546070 | Francke | Apr 2003 | B1 |
6628745 | Annis et al. | Sep 2003 | B1 |
20030072419 | Bruder et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
2070883 | Feb 1981 | GB |
WO 0159480 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050008124 A1 | Jan 2005 | US |