Scanning LiDAR system and method with unitary optical element

Information

  • Patent Grant
  • 11474218
  • Patent Number
    11,474,218
  • Date Filed
    Monday, July 15, 2019
    5 years ago
  • Date Issued
    Tuesday, October 18, 2022
    2 years ago
Abstract
A LiDAR apparatus includes a first substrate and a unitary optical element mounted thereon. The unitary optical element includes: (i) a fast axis collimator (FAC) lens receiving light from a laser diode source and generating therefrom a collimated light beam; (ii) a polarizing beam splitter optically coupled to the FAC lens, at least a portion of the collimated light beam passing through the polarizing beam splitter to a region being observed by the LiDAR apparatus; (iii) an aperture element optically coupled to the polarizing beam splitter; and (iv) an opaque coating formed on a back side of the aperture element, the opaque coating being patterned to provide a transparent aperture. At least of portion of light returning to the LiDAR apparatus from the region being observed is directed by the polarizing beam splitter, through the transparent aperture in the opaque coating on the aperture element, to an optical detector.
Description
BACKGROUND
1. Technical Field

The present disclosure is related to LiDAR detection systems and, in particular, to a LiDAR system with integrated unitary optical components for efficient control of optical alignment of the detection system.


2. Discussion of Related Art

A typical LiDAR detection system includes a source of optical radiation, for example, a laser, which emits light into a region. An optical detection device, which can include one or more optical detectors and/or an array of optical detectors, receives reflected light from the region and converts the reflected light to electrical signals. A processing device processes the electrical signals to identify and generate information associated with one or more target objects in the region. This information can include, for example, bearing, range, velocity, and/or reflectivity information for each target object.


One very important application for LiDAR detection systems is in automobiles, in which object detections can facilitate various features, such as parking assistance features, cross traffic warning features, blind spot detection features, autonomous vehicle operation, and many other features. In automotive LiDAR detection systems, it is important that the system be optically aligned to close tolerances to ensure high optical performance to eliminate missed target detections as well as false indications of detections. Alignment of the optical components in a LiDAR system can be a costly and time consuming task.


SUMMARY

According to one aspect, a LiDAR apparatus is provided. The LiDAR apparatus includes a first substrate and a unitary optical element mounted on the first substrate. The unitary optical element comprises: a fast axis collimator (FAC) lens receiving light from a laser diode source and generating therefrom a collimated light beam; a polarizing beam splitter optically coupled to the FAC lens, at least a portion of the collimated light beam passing through the polarizing beam splitter to a region being observed by the LiDAR apparatus; an aperture element optically coupled to the polarizing beam splitter; and an opaque coating formed on a back side of the aperture element, the opaque coating being patterned to provide a transparent aperture. At least of portion of light returning to the LiDAR apparatus from the region being observed is directed by the polarizing beam splitter, through the transparent aperture in the opaque coating on the aperture element, to an optical detector.


In some exemplary embodiments, the LiDAR apparatus further comprises a second substrate in fixed spatial relation to the first substrate; wherein, the optical detector is mounted on the second substrate. The first and second substrates can be held in stationary spatial relation with respect to each other by a supporting frame. The first and second substrates can be held in stationary spatial relation substantially perpendicular to each other by a supporting frame.


In some exemplary embodiments, the unitary optical element further comprises a quarter wave plate optically coupled to the polarizing beam splitter between the polarizing beam splitter and the region being observed.


In some exemplary embodiments, the unitary optical element is a one-piece precision glass optical element.


In some exemplary embodiments, the laser diode source is part of the unitary optical element.


According to one aspect, a LiDAR apparatus is provided. The LiDAR apparatus includes a substrate; a laser diode on a surface of the substrate for outputting light; a fast axis collimator (FAC) lens on the surface of the substrate for receiving the light and generating therefrom a collimated light beam; a polarizing beam splitter optically coupled to the FAC lens for receiving the collimated light beam, at least a portion of the collimated light beam passing through the polarizing beam splitter to a region being observed by the LiDAR apparatus; an aperture element optically coupled to the polarizing beam splitter; an opaque coating formed on a back side of the aperture element, the opaque coating being patterned to provide a transparent aperture; a prism on the surface of the substrate for receiving light from the transparent aperture in the opaque coating on the aperture element and directing the received light from the transparent aperture in the opaque coating on the aperture element in a direction toward the surface of the substrate; and an optical detector optically coupled to the prism. At least of portion of light returning to the LiDAR apparatus from the region being observed is directed by the polarizing beam splitter, through the transparent aperture in the opaque coating on the aperture element, through the prism to the optical detector.


In some exemplary embodiments, the optical detector is on the surface of the substrate.


In some exemplary embodiments, the prism is a 45-degree prism.


In some exemplary embodiments, the FAC lens, the polarizing beam splitter, and the aperture element are formed as a unitary optical element on the surface of the substrate. The unitary optical element can be a one-piece precision glass optical element. The prism can also be formed as part of the unitary optical element. The laser diode can also be formed as part of the unitary optical element.


In some exemplary embodiments, the LiDAR apparatus further comprises a quarter wave plate optically coupled to the polarizing beam splitter between the polarizing beam splitter and the region being observed. The quarter wave plate, the FAC lens, the polarizing beam splitter, and the aperture element can be formed as a unitary optical element of the surface of the substrate. The unitary optical element can be a one-piece precision glass optical element.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of embodiments of the present disclosure, in which like reference numerals represent similar parts throughout the several views of the drawings.



FIG. 1 includes a schematic functional block diagram of a scanning LiDAR system, according to some exemplary embodiments.



FIGS. 2A and 2B include schematic functional diagrams illustrating portions of the scanning LiDAR system of FIG. 1, according to some exemplary embodiments.



FIG. 3 includes a schematic functional block diagram of a scanning LiDAR system, in which horizontal and vertical scanning are performed, according to exemplary embodiments.



FIGS. 4A and 4B include schematic diagrams illustrating portions of a scanning LiDAR system in which a coaxial configuration is implemented, according to some exemplary embodiments.



FIGS. 5A and 5B include schematic diagrams illustrating portions of scanning LiDAR systems, in which a coaxial configuration is implemented, according to some exemplary embodiments.



FIGS. 6A and 6B include schematic cross-sectional diagrams which illustrate two configurations of coaxial scanning LiDAR systems, in which discrete lasers and discrete detectors are used, according to some exemplary embodiments.



FIG. 7 includes a schematic perspective view illustrating a portion of a scanning LiDAR system, according to some exemplary embodiments.



FIG. 8 includes four schematic views, labeled (A), (B), (C), and (D), of a unitary integrated optical element, according to some exemplary embodiments.



FIG. 9 includes a schematic perspective view of a LiDAR system with a plurality of systems illustrated in FIGS. 7 and 8, according to some exemplary embodiments.



FIG. 10 includes a schematic perspective view illustrating a portion of a scanning LiDAR system, according to some exemplary embodiments.



FIG. 11 includes a schematic perspective view of a LiDAR system with a plurality of systems 900 illustrated in FIG. 10, according to some exemplary embodiments.



FIG. 12 includes a schematic perspective view of an automobile equipped with one or more scanning LiDAR systems described herein in detail, according to some exemplary embodiments.



FIG. 13 includes a schematic top view of an automobile equipped with two scanning LiDAR systems, as described herein in detail, according to some exemplary embodiments.





DETAILED DESCRIPTION


FIG. 1 includes a schematic functional block diagram of a scanning LiDAR system 100, according to exemplary embodiments. Referring to FIG. 1, system 100 includes a digital signal processor and controller (DSPC) 102, which performs all of the control and signal processing required to carry out the LiDAR target object detection functionality of system 100. An optical source 104, such as a laser, operates under control of DSPC 102 via one or more control signals 116 to generate the one or more optical signals transmitted into a region 106 being analyzed. Optical source 104 can include a single laser, or optical source 104 can include multiple lasers, which can be arranged in a one-dimensional or two-dimensional array. One or more optical signals 108 from source 104 impinge on scanning mirror 110, which can be a microelectromechanical system (MEMS) scanning mirror. Scanning mirror 110 is rotatable about an axis 114 by an actuator 112, which operates under control of one or more control signals 117 provided by DSPC 102 to control the rotation angle of scanning mirror 110, such that the one or more output optical signals are scanned at various angles into region 106. The output optical signals pass through a lens or glass plate 122, which generates one or more collimated optical signals 123 which are scanned across region 106.


Returning optical signals 125 are received from region 106 at receive subsystem 118. Receive subsystem 118 includes a lens 120 which receives and focuses light 125 returning from region 106. According to some exemplary embodiments, mask 124 is located at the focal plane of lens 120, such that the returning light is focused at mask 124. Light passing through mask 124 impinges on optical detector or detector array 126. Detector array 126 converts the received optical signals to electrical signals, and a processor 128 generates digital signals based on the electrical signals and transmits the digital signals 130 to DSPC 102 for processing to develop target object identification, tracking and/or other operations. Reports of detections to one or more user interfaces or memory or other functions can be carried out via I/O port 132.



FIGS. 2A and 2B include schematic functional diagrams illustrating portions of scanning LiDAR system 100 of FIG. 1, according to exemplary embodiments. FIGS. 2A and 2B illustrate scanning of the transmitted optical signals into region 106 and reception of returning optical signals for a first angular direction of scanning of scanning mirror 110 about axis 114 and a second opposite angular scanning direction of scanning mirror 110 about axis 114, respectively.


Referring to FIGS. 1, 2A and 2B, in some exemplary embodiments, optical source 104 can include one or more linear arrays of lasers disposed along an axis. That is, each linear array of lasers can include a plurality of lasers disposed along a vertical axis, i.e., a y-axis. In the exemplary embodiment illustrated in FIGS. 2A and 2B, two linear arrays are disposed along parallel axes in the y-axis direction. The axes can be displaced along a horizontal axis, i.e., an x-axis. Also, the two linear laser arrays can be displaced also in the vertical direction (y-axis) in order to generate different elevation angles. Alternatively, the linear laser arrays could be rotated around the x-axis in order to generate different elevation angles. Thus, as illustrated in FIGS. 2A and 2B, the two parallel linear laser arrays create a two-dimensional array of laser outputs transmitted orthogonal to the x-y plane. In some particular exemplary embodiments, each of two linear arrays includes 8 lasers disposed along the y-axis, for a total of 16 lasers in the two-dimensional array. It will be understood that any number of lasers can be used, in accordance with the present embodiments. For example, in some particular exemplary embodiments, two linear arrays of 11 lasers, i.e., a total of 22 lasers, are used.


Continuing to refer to FIGS. 1, 2A and 2B, in some exemplary embodiments, the optical output signals from the laser array in source 104 are focused by a lens 111 onto MEMS scanning mirror 110. The optical signals are reflected from scanning mirror 110 through glass plate or lens 122, which generates the substantially mutually parallel collimated optical output signals 123. Controlled rotation of scanning mirror 110 via actuator 112 and DSPC 102 scans the collimated optical output signals 123 over region 106. Output signals or beams 123 constitute a fan of beams 123, where each beam is collimated. In some particular exemplary embodiments, the fan angle can be 15° to 22°. In some alternative embodiments, beams 123 are substantially mutually parallel. Light 125 returning from region 106, for example, light reflected from one or more target objects, is received at lens 120 of receive subsystem 118. Lens 120 focuses the returning light 125 onto mask 124, which is positioned in front of optical detector array 126. Thus, in the particular illustrated exemplary embodiments, detectors are arranged to provide a focal plane detector. Detector array 126 converts the received optical signals to electrical signals, and processor 128 generates digital signals based on the electrical signals and transmits the digital signals 130 to DSPC 102 for processing to develop target object identification, tracking and/or other operations. Reports of detections to one or more user interfaces or memory or other functions can be carried out via I/O port 132.


Thus, as illustrated in FIGS. 2A and 2B, in some particular exemplary embodiments, two arrays of 1×8 lasers are used to generate 16 individual laser beams, each beam with a nominal divergence of <0.1°. The vertical divergence of the group of 8 beams is nominally approximately 15°. Scanning mirror 110 is controlled to scan across a nominal range of approximately 60°, i.e., ±30° from its centered position. These angular limits are illustrated in FIGS. 2A and 2B in the diagrams of the x-y plane. FIG. 2A illustrates the case in which the output optical signals 123 are scanned in a first direction (to the right in FIG. 2A) via angular rotation of scanning mirror 110 in a first angular direction, and FIG. 2B illustrates the case in which the output signals 123 are scanned in a second direction (to the right in FIG. 2B) via angular rotation of scanning mirror 110 in a second angular direction. The resulting returning optical signals are scanned across the columns of the 32×8 detector array 126 illuminating pixels in the array in a predetermined order determined by the scanning of the output optical signals 123 into region 106, as illustrated in the schematic illustrations of pixel illumination scanning 137 and 139 in FIGS. 2A and 2B, respectively. It will be understood that all of these parameters are exemplary nominal values. According to the present disclosure, any number of lasers can be used, having a group beam divergence of greater than or less than 15°, and the angular scanning limits can be greater than or less than ±30° from the centered position of scanning mirror 110.


In some embodiments, in addition to horizontal scanning as described above in detail, scanning can also be carried out vertically. The vertical scanning can be performed in order to increase vertical resolution. FIG. 3 includes a schematic functional block diagram of a scanning LiDAR system 100A, in which horizontal and vertical scanning are performed, according to exemplary embodiments. In FIG. 3, elements that are substantially the same as those in FIGS. 1, 2A and 2B are identified by the same reference numerals. Referring to FIG. 3, in this embodiment, actuator 112A, in addition to initiating and controlling horizontal scanning of scanning mirror 110A about vertical axis 114, initiates and controls vertical scanning of scanning mirror 110A about horizontal axis 114A. In this alternative embodiment, mask 124 is also moved vertically alternately up and down in synchronization with the vertical scanning of scanning mirror 110A. Vertical movement of mask 124 is initiated by a mechanical actuation device, such as a piezoelectric actuator 202, in synchronization with scanning of scanning mirror 110A, such that alignment of mask 124 with returning light 125 is maintained. This synchronization is accomplished via interface 204 with DSPC 102.



FIGS. 4A and 4B include schematic diagrams illustrating portions of a scanning LiDAR system 200 in which a coaxial configuration is implemented, according to some exemplary embodiments. FIG. 4A illustrates a single coaxial configuration, and FIG. 4B illustrates multiple coaxial configurations in parallel. Referring to FIGS. 4A and 4B, a laser light source 304 integrated on or in a substrate 306 generates an output beam of light. The output beam is reflected by a polarizing beam splitting cube 302 such that output signals 323 are transmitted into region 106. Returning light signals 325 from region 106 are transmitted through beam splitting cube 302, through an opening 308 in substrate 306. The light may pass through an optional bandpass filter 305, which further reduces the ambient light. In some exemplary embodiments, bandpass filter 305 is characterized by a drift in its wavelength pass band which is dependent on temperature. Laser light source 304 can also have a temperature-dependent drift in wavelength of its output. In some exemplary embodiments, the temperature drift of laser light source 304 and that of bandpass filter 305 are matched, such that temperature effects on operation of the overall system are substantially reduced.



FIGS. 5A and 5B include schematic diagrams illustrating portions of scanning LiDAR systems 300A and 300B, respectively, in which a coaxial configuration is implemented, according to some exemplary embodiments. The primary difference between systems 300A, 300B of FIGS. 5A and 50B is that, in system 300A, mask 324 is under substrate 306, and, in system 300B, mask 324 is at the top side of substrate 306. In both systems 300A and 300B, incoming light from polarizing beam splitting cube 302 passes through slits, openings or apertures 342 in mask 324 and impinges on detector 326. In the embodiments of FIGS. 5A and 5B, lens 322 generates the substantially mutually parallel collimated optical output signals 323A. Controlled rotation of the scanning mirror scans the substantially mutually parallel collimated optical output signals 323A over the region being analyzed.


It should be noted that polarizing beam splitting cube 302 in the embodiments described above in detail in connection with FIGS. 4A, 4B, 5A and 5B need not be a cube. In alternative embodiments, polarizing beam splitting cube 302 can be replaced with a polarizing beam splitting plate tilted at an appropriate angle with respect to the optical paths of the respective systems.



FIGS. 6A and 6B include schematic cross-sectional diagrams which illustrate two configurations of coaxial scanning LiDAR systems 600 and 700, respectively, in which discrete lasers and discrete detectors are used, according to some exemplary embodiments. Referring to FIG. 6A, a laser light source 604 is integrated on or over a substrate 606, with a layer of inert spacing material 605, made of, for example, printed circuit board (PCB) material, epoxy, metal or similar material, mounted therebetween. Laser light source 604 generates an output beam of light 607, which impinges on a beam splitting cube 602, such that output signals 623 are transmitted into region 106. Returning light signals from region 106 are transmitted through beam splitting cube 602, through a slit 642 in mask 624 and then through opening 608 in substrate 606. It should be noted that beam splitting cube 602 can be a polarizing beam splitting cube. It should also be noted that, as with the embodiments described above, beam splitting cube 602, or polarizing beam splitting cube 602, need not be a cube. It may be a beam splitting plate or polarizing beam splitting plate tilted at an appropriate angle with respect to the optical path(s). Light beams 625 from slit 642 pass through opening 608 in substrate 606 and are detected by detector 626, which is mounted to the bottom side of substrate 606. In some exemplary embodiments, detector 626 is a surface mount device mounted to the bottom surface of substrate 606. It should be noted that, in some exemplary embodiments, laser light source 604 is one of an array of laser light sources disposed in parallel along an axis directed substantially normal to the page of FIG. 6A. Similarly, polarizing or non-polarizing beam splitting cube or plate 602 can be a single long cube or plate, or multiple cubes or plates, extending along the same axis normal to the page. Similarly, detector 626 can be a single long detector or array of detectors, or multiple detectors or arrays of detectors, extending along the same axis normal to the page.


Referring to FIG. 6B, a laser light source 704 is integrated on or over a substrate 706, with a layer of inert spacing material 705, made of, for example, printed circuit board (PCB) material, epoxy, or other similar material, mounted therebetween. Laser light source 704 generates an output beam of light 707, which impinges on a beam splitting cube 702, such that output signals 723 are transmitted into region 106. Returning light signals from region 106 are transmitted through beam splitting cube 702, through a slit 742 in mask 724. It should be noted that beam splitting cube 702 can be a polarizing beam splitting cube. It should also be noted that, as with the embodiments described above, beam splitting cube 702, or polarizing beam splitting cube 702, need not be a cube. It may be a beam splitting plate or polarizing beam splitting plate tilted at an appropriate angle with respect to the optical path(s). Light beams 725 from slit 742 are detected by detector 726, which is mounted to the top side or surface of second substrate 728. First substrate 706 and second substrate 728 are mechanically supported and properly located with respect to each other by a mounting/spacing support layer 709. Mounting/spacing support layer 709 can be made of, for example, a layer of inert spacing material, made of, for example, printed circuit board (PCB) material, epoxy, metal, or other similar material. The physical configuration of mounting/spacing support layer 709, i.e., dimensions, location, etc., are selected to provide appropriate support and stability among components such as laser light source 704, beam splitting cube 702, first substrate 706, second substrate 728, mask 724 and slit 742, such that the performance requirements of system 700 are met.


It should be noted that, in some exemplary embodiments, laser light source 704 is one of an array of laser light sources disposed in parallel along an axis directed substantially normal to the page of FIG. 6B. Similarly, polarizing or non-polarizing beam splitting cube or plate 702 can be a single long cube or plate, or multiple cubes or plates, extending along the same axis normal to the page. Similarly, detector 726 can be a single long detector or array of detectors, or multiple detectors or arrays of detectors, extending along the same axis normal to the page.



FIG. 7 includes a schematic perspective view illustrating a portion of a scanning LiDAR system 800, according to some exemplary embodiments. Referring to FIG. 7, system 800 includes laser diode source 804 for emitting illuminating light. A fast axis collimating (FAC) lens 808 receives the light from laser diode source 804, collimates the light and passes it to polarizing beam splitting cube 806. Illuminating light which passes through polarizing beam splitting cube 806 may pass through an optional quarter wave plate 810 which converts linearly polarized light into circularly polarized light The illuminating light passing through polarizing beam splitting cube 806 and/or quarter wave plate 810 is scanned into region 106 being monitored. Light returning from region 106 is reflected by polarizing beam splitting cube 806 through slit aperture mask 812. In some exemplary embodiments, slit aperture mask 812 includes a glass substrate with an opaque coating 814 deposited on the glass. Opaque coating 814 is patterned to provide a slit opening or aperture through with returning light passes. This light is received by a photo detector or photo detector array 822.


As illustrated in FIG. 7, optical components including laser diode 804, FAC lens 808, polarizing beam splitting cube 806, quarter wave plate 810, and slit aperture mask 812 are mounted or formed on a first substrate or printed circuit board (PCB) 820. Detector 822 is mounted or formed on a second substrate or PCB 818. First and second PCBs 820 and 818 are spatially supported and fixedly attached to each other and held stationary with respect to each other by a supporting frame element 816. In some exemplary embodiments, PCBs 820, 818 are held substantially perpendicular.


In conventional LiDAR systems, active alignment of optical components is required. This active alignment can be inefficient and time consuming, and, therefore, costly. In contrast, according to the present disclosure, optical components such laser source 804, FAC lens 808, polarizing beam splitting cube 806, quarter wave plate 810 and slit aperture mask 812 can be integrated in a single unitary optical element, which can be manufactured to very close tolerances, such that spatial relationships among the optical elements are precisely, accurately and permanently controlled, thus eliminating the need for active alignment.



FIG. 8 includes four schematic views, labeled (A), (B), (C), and (D), of a unitary integrated optical element 850, according to some exemplary embodiments. Referring to FIG. 8, unitary integrated optical element 850 includes one-piece precision glass optics, which includes laser diode source 804, FAC lens 808, polarizing beam splitting cube 806, slit aperture mask 812, 814 and quarter wave plate 810 in a single precision optical element. It is noted that laser diode source need not be integrated in unitary integrated optical element 850. In alternative embodiments, laser diode source is a separate element, which can be formed on PCB 820, or formed on a separate laser PCB, which is mounted on PCB 820. All of the elements are made to very tight tolerances to provide the desired device alignment. In particular, slit, opening or aperture 817 formed in mask 814 in slit aperture mask 812 is positioned precisely with respect to FAC lens 808 and polarizing beam splitting cube 806 portions of the single unitary optical element 850.


It should be noted that, in some embodiments, mask 814 including the patterned opaque coating providing slit, opening or aperture 817 need not be a separate element 812. Instead, coating 814 and slit, opening or aperture 817 can be formed directly on the surface of polarizing beam splitting cube 806. In this alternative embodiment, referring to FIGS. 7 and 8, slit aperture mask element 812 would be omitted, and coating 814 with slit, opening or aperture 817 would be formed directly on the surface of polarizing beam splitting cube 806.



FIG. 9 includes a schematic perspective view of a LiDAR system 890 with a plurality of systems 800 illustrated in FIGS. 7 and 8, according to some exemplary embodiments. Referring to FIG. 9, each system 800 includes the unitary one-piece integrated optic element 850A, 850B, 850C mounted on first substrate or PCB 820A, 820B, 820C. As described above, each integrated optic element 850A, 850B, 850C includes a laser diode source 804A, 804B, 804C; a FAC lens 808A, 808B, 808C; a polarizing beam splitting cube 806A, 806B, 806C; a slit aperture mask 812A, 812B, 812C with a respective patterned mask 814A, 814B, 814C; and an optional quarter wave plate 810A, 810B, 810C. First substrates or PCBs 820A, 820B, 820C and second substrate or PCB 818 are spatially supported and fixedly attached to each other and held stationary with respect to each other by a respective supporting frame element 816A, 816B, 816C. In some exemplary embodiments, PCBs 820A, 820B, 820C are held substantially perpendicular to second substrate or PCB 818.



FIG. 10 includes a schematic perspective view illustrating a portion of another scanning LiDAR system 900, according to some exemplary embodiments. System 900 of FIG. 10 is different from system 800 of FIG. 7 in that, in system 900 of FIG. 10, a single substrate or PCB 920 is used instead of a pair of substrates 818, 820 held perpendicular to each other. This is accomplished in system 900 by the addition of a 45-degree prism 923 added at the optical slit or aperture of slit aperture mask 912. Light passing through slit aperture mask 912 is directed down to the surface of substrate or PCB 920, on which optical detector or array of detectors 922 is mounted.


System 900 includes laser diode source 904 mounted on or in laser PCB 905, which is mounted on substrate or PCB 920. A fast axis collimating (FAC) lens 908 receives the light from laser diode source 904, collimates the light and passes it to polarizing beam splitting cube 906. Illuminating light which passes through polarizing beam splitting cube 806 may pass through an optional quarter wave plate 910 which converts linearly polarized light into circularly polarized light The illuminating light passing through polarizing beam splitting cube 906 and/or quarter wave plate 910 is scanned into region 106 being monitored. Light returning from region 106 is directed by polarizing beam splitting cube 906 through slit aperture mask 912. In some exemplary embodiments, slit aperture mask 912 includes a glass substrate with an opaque coating 914 deposited on the glass. Opaque coating 914 is patterned to provide a slit opening or aperture 917 through with returning light passes. The light passing through slit opening or aperture 917 is reflected by 45-degree prism 923 toward substrate or PCB 920. This light is received by photo detector or photo detector array 922, which is mounted on substrate or PCB 920.


As with the embodiments of FIGS. 7-9, the optical elements of system 900 can be integrated in a single unitary optical element 950, which can be manufactured to very close tolerances, such that spatial relationships among the optical elements are precisely, accurately and permanently controlled, thus eliminating the need for active alignment. Specifically, optical components such as laser diode source 904, FAC lens 908, polarizing beam splitting cube 906, quarter wave plate 910, slit aperture mask 912, and 45-degree prism 923 can be integrated in a single unitary optical element 950. In some exemplary embodiments, unitary integrated optical element 950 includes one-piece precision glass optics, which includes laser diode source 904, FAC lens 908, polarizing beam splitting cube 906, quarter wave plate 910, slit aperture mask 912, and 45-degree prism 923 in a single precision optical element. All of the elements are made to very tight tolerances to provide the desired device alignment. In particular, slit, opening or aperture 917 formed in mask 914 in slit aperture mask 912 is positioned precisely with respect to FAC lens 908 and polarizing beam splitting cube 906 portions of the single unitary optical element 950.


As with the embodiments of FIGS. 7-9, laser diode source 904 need not be integrated in unitary integrated optical element 950. In alternative embodiments, laser diode source 904 is a separate element, which can be formed on PCB 920, or formed on laser PCB 905, which is mounted on PCB 920. Also, as with the embodiments of FIGS. 7-9, in some embodiments, mask 914 including the patterned opaque coating providing slit, opening or aperture 917 need not be a separate element 912. Instead, coating 914 and slit, opening or aperture 917 can be formed directly on the surface of polarizing beam splitting cube 906. In this alternative embodiment, slit aperture mask element 912 would be omitted, and coating 914 with slit, opening or aperture 917 would be formed directly on the surface of polarizing beam splitting cube 906.



FIG. 11 includes a schematic perspective view of a LiDAR system 990 with a plurality of systems 900 illustrated in FIG. 10, according to some exemplary embodiments. Referring to FIG. 11, each system 900 includes the unitary one-piece integrated optic element 950A, 950B, 950C mounted on substrate or PCB 920. As described above, each integrated optic element 950A, 950B, 950C includes a laser diode source 904A, 904B, 904C on a respective laser PCB 905A, 905B, 905C; a FAC lens 908A, 908B, 908C; a polarizing beam splitting cube 906A, 906B, 906C; a slit aperture mask 912A, 912B, 912C with a respective patterned mask 914A, 914B, 914C; an optional quarter wave plate 910A, 910B, 910C; and a 45-degree prism 912A, 923B, 923C.



FIG. 12 includes a schematic perspective view of an automobile 500, equipped with one or more scanning LiDAR systems 800, 900, described herein in detail, according to exemplary embodiments. Referring to FIG. 12, it should be noted that, although only a single scanning LiDAR system 800, 900 is illustrated, it will be understood that multiple LiDAR systems 800, 900 according to the exemplary embodiments can be used in automobile 500. Also, for simplicity of illustration, scanning LiDAR system 800, 900 is illustrated as being mounted on or in the front section of automobile 500. It will also be understood that one or more scanning LiDAR systems 800, 900 can be mounted at various locations on automobile 500. Also, it will be understood that LiDAR system 800, 900 can be replaced with any of the LiDAR systems described herein. That is, the description of FIG. 12 is applicable to an automobile equipped with any of the embodiments described herein.



FIG. 13 includes a schematic top view of automobile 500 equipped with two scanning LiDAR systems 800, 900, as described above in detail, according to exemplary embodiments. In the particular embodiments illustrated in FIG. 13, a first LiDAR system 800, 900 is connected via a bus 560, which in some embodiments can be a standard automotive controller area network (CAN) bus, to a first CAN bus electronic control unit (ECU) 558A. Detections generated by the LiDAR processing described herein in detail in LiDAR system 100, 100A can be reported to ECU 558A, which processes the detections and can provide detection alerts via CAN bus 560. Similarly, in some exemplary embodiments, a second LiDAR scanning system 800, 900 is connected via CAN bus 560 to a second CAN bus electronic control unit (ECU) 558B. Detections generated by the LiDAR processing described herein in detail in LiDAR system 800, 900 can be reported to ECU 558B, which processes the detections and can provide detection alerts via CAN bus 560. It should be noted that this configuration is exemplary only, and that many other automobile LiDAR configurations within automobile 500 can be implemented. For example, a single ECU can be used instead of multiple ECUs. Also, the separate ECUs can be omitted altogether. Also, it will be understood that LiDAR system 800, 900 can be replaced with any of the LiDAR systems described herein. That is, the description of FIG. 17 is applicable to an automobile equipped with any of the embodiments described herein.


It is noted that the present disclosure describes one or more scanning LiDAR systems installed in an automobile. It will be understood that the embodiments of scanning LiDAR systems of the disclosure are applicable to any kind of vehicle, e.g., bus, train, etc. Also, the scanning LiDAR systems of the present disclosure need not be associated with any kind of vehicle.


Whereas many alterations and modifications of the disclosure will become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that the particular embodiments shown and described by way of illustration are in no way intended to be considered limiting. Further, the subject matter has been described with reference to particular embodiments, but variations within the spirit and scope of the disclosure will occur to those skilled in the art. It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present disclosure.


While the present inventive concept has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present inventive concept as defined by the following claims.

Claims
  • 1. A LiDAR apparatus, comprising: a first substrate;a unitary optical element mounted on the first substrate, the unitary optical element comprising: a fast axis collimator (FAC) lens receiving light from a laser diode source and generating therefrom a collimated light beam,a polarizing beam splitter optically coupled to the FAC lens, at least a portion of the collimated light beam passing through the polarizing beam splitter to a region being observed by the LiDAR apparatus,an aperture element optically coupled to the polarizing beam splitter, andan opaque coating formed on a back side of the aperture element, the opaque coating being patterned to provide a transparent aperture; whereinat least of portion of light returning to the LiDAR apparatus from the region being observed is directed by the polarizing beam splitter, through the transparent aperture in the opaque coating on the aperture element, to an optical detector.
  • 2. The LiDAR apparatus of claim 1, further comprising a second substrate in fixed spatial relation to the first substrate; wherein, the optical detector is mounted on the second substrate.
  • 3. The LiDAR apparatus of claim 2, wherein the first and second substrates are held in stationary spatial relation with respect to each other by a supporting frame.
  • 4. The LiDAR apparatus of claim 2, wherein the first and second substrates are held in stationary spatial relation substantially perpendicular to each other by a supporting frame.
  • 5. The LiDAR apparatus of claim 1, wherein the unitary optical element further comprises a quarter wave plate optically coupled to the polarizing beam splitter between the polarizing beam splitter and the region being observed.
  • 6. The LiDAR apparatus of claim 1, wherein the unitary optical element is a one-piece precision glass optical element.
  • 7. The LiDAR apparatus of claim 1, wherein the laser diode source is part of the unitary optical element.
  • 8. A LiDAR apparatus, comprising: a substrate;a laser diode on a surface of the substrate for outputting light;a fast axis collimator (FAC) lens on the surface of the substrate for receiving the light and generating therefrom a collimated light beam;a polarizing beam splitter optically coupled to the FAC lens for receiving the collimated light beam, at least a portion of the collimated light beam passing through the polarizing beam splitter to a region being observed by the LiDAR apparatus;an aperture element optically coupled to the polarizing beam splitter;an opaque coating formed on a back side of the aperture element, the opaque coating being patterned to provide a transparent aperture;a prism on the surface of the substrate for receiving light from the transparent aperture in the opaque coating on the aperture element and directing the received light from the transparent aperture in the opaque coating on the aperture element in a direction toward the surface of the substrate; andan optical detector optically coupled to the prism; whereinat least of portion of light returning to the LiDAR apparatus from the region being observed is directed by the polarizing beam splitter, through the transparent aperture in the opaque coating on the aperture element, through the prism to the optical detector.
  • 9. The LiDAR apparatus of claim 8, wherein the optical detector is on the surface of the substrate.
  • 10. The LiDAR apparatus of claim 8, wherein the prism is a 45-degree prism.
  • 11. The LiDAR apparatus of claim 8, wherein the FAC lens, the polarizing beam splitter, and the aperture element are formed as a unitary optical element on the surface of the substrate.
  • 12. The LiDAR apparatus of claim 11, wherein the unitary optical element is a one-piece precision glass optical element.
  • 13. The LiDAR apparatus of claim 11, wherein the prism is also formed as part of the unitary optical element.
  • 14. The LiDAR apparatus of claim 11, wherein the laser diode is also formed as part of the unitary optical element.
  • 15. The LiDAR apparatus of claim 8, further comprising a quarter wave plate optically coupled to the polarizing beam splitter between the polarizing beam splitter and the region being observed.
  • 16. The LiDAR apparatus of claim 15, wherein the quarter wave plate, the FAC lens, the polarizing beam splitter, and the aperture element are formed as a unitary optical element of the surface of the substrate.
  • 17. The LiDAR apparatus of claim 16, wherein the unitary optical element is a one-piece precision glass optical element.
US Referenced Citations (192)
Number Name Date Kind
3712985 Swarner et al. Jan 1973 A
3898656 Jensen Aug 1975 A
4125864 Aughton Nov 1978 A
4184154 Albanese et al. Jan 1980 A
4362361 Campbell et al. Dec 1982 A
4439766 Kobayashi et al. Mar 1984 A
4765715 Matsudaira et al. Aug 1988 A
4957362 Peterson Sep 1990 A
5200606 Krasutsky et al. Apr 1993 A
5210586 Grage et al. May 1993 A
5274379 Carbonneau et al. Dec 1993 A
5428215 Dubois et al. Jun 1995 A
5604695 Cantin et al. Feb 1997 A
5793491 Wangler et al. Aug 1998 A
5889490 Wachter et al. Mar 1999 A
5966226 Gerber Oct 1999 A
6078395 Jourdain et al. Jun 2000 A
6122222 Hossack Sep 2000 A
6292285 Wang et al. Sep 2001 B1
6384770 de Gouy May 2002 B1
6437854 Hahlweg Aug 2002 B2
6556282 Jamieson et al. Apr 2003 B2
6559932 Halmos May 2003 B1
7202941 Munro Apr 2007 B2
7227116 Gleckler Jun 2007 B2
7272271 Kaplan et al. Sep 2007 B2
7440084 Kane Oct 2008 B2
7483600 Achiam et al. Jan 2009 B2
7489865 Varshneya et al. Feb 2009 B2
7544945 Tan et al. Jun 2009 B2
7570347 Ruff et al. Aug 2009 B2
7675610 Redman et al. Mar 2010 B2
7832762 Breed Nov 2010 B2
8044999 Mullen et al. Oct 2011 B2
8050863 Trepagnier et al. Nov 2011 B2
8134637 Rossbach et al. Mar 2012 B2
8223215 Oggier et al. Jul 2012 B2
8363511 Frank et al. Jan 2013 B2
8508723 Chang et al. Aug 2013 B2
8629975 Dierking et al. Jan 2014 B1
8742325 Droz et al. Jun 2014 B1
8836761 Wang et al. Sep 2014 B2
8836922 Pennecot Sep 2014 B1
8879050 Ko Nov 2014 B2
9007569 Amzajerdian et al. Apr 2015 B2
9063549 Pennecot et al. Jun 2015 B1
9086273 Gruver et al. Jul 2015 B1
9090213 Lawlor et al. Jul 2015 B2
9097646 Campbell et al. Aug 2015 B1
9140792 Zeng Sep 2015 B2
9157790 Shpunt et al. Oct 2015 B2
9267787 Shpunt et al. Feb 2016 B2
9285477 Smith et al. Mar 2016 B1
9575162 Owechko Feb 2017 B2
9618742 Droz et al. Apr 2017 B1
9651417 Shpunt et al. May 2017 B2
9658322 Lewis May 2017 B2
9696427 Wilson et al. Jul 2017 B2
9711493 Lin Jul 2017 B2
9753351 Eldada Sep 2017 B2
9823351 Haslim et al. Nov 2017 B2
9857472 Mheen et al. Jan 2018 B2
9869754 Campbell et al. Jan 2018 B1
10018725 Liu Jul 2018 B2
10018726 Hall et al. Jul 2018 B2
10024655 Raguin et al. Jul 2018 B2
10078133 Dussan Sep 2018 B2
10088557 Yeun Oct 2018 B2
10148060 Hong et al. Dec 2018 B2
10175360 Zweigle et al. Jan 2019 B2
10183541 Van Den Bossche et al. Jan 2019 B2
10408924 Mheen Sep 2019 B2
10411524 Widmer et al. Sep 2019 B2
10416292 de Mersseman et al. Sep 2019 B2
10473767 Xiang et al. Nov 2019 B2
10473784 Puglia Nov 2019 B2
10473943 Hughes Nov 2019 B1
10557923 Watnik et al. Feb 2020 B2
10558044 Pan Feb 2020 B2
10564268 Turbide et al. Feb 2020 B2
10578724 Droz et al. Mar 2020 B2
10678117 Shin et al. Jun 2020 B2
10775508 Rezk et al. Sep 2020 B1
20010052872 Hahlweg Dec 2001 A1
20030043363 Jamieson Mar 2003 A1
20040028418 Kaplan et al. Feb 2004 A1
20040031906 Glecker Feb 2004 A1
20040135992 Munro Jul 2004 A1
20040155249 Narui et al. Aug 2004 A1
20050219506 Okuda et al. Oct 2005 A1
20060221250 Rossbach et al. Oct 2006 A1
20060232052 Breed Oct 2006 A1
20060239312 Kewitsch et al. Oct 2006 A1
20070140613 Achiam et al. Jun 2007 A1
20070181810 Tan et al. Aug 2007 A1
20070211786 Shatill Sep 2007 A1
20070219720 Trepagnier et al. Sep 2007 A1
20080088499 Bonthron et al. Apr 2008 A1
20080095121 Shatill Apr 2008 A1
20080100510 Bonthron May 2008 A1
20080219584 Mullen et al. Sep 2008 A1
20080246944 Redman et al. Oct 2008 A1
20090002680 Ruff et al. Jan 2009 A1
20090010644 Varshneya et al. Jan 2009 A1
20090190007 Oggier et al. Jul 2009 A1
20090251361 Bensley Oct 2009 A1
20100027602 Abshire et al. Feb 2010 A1
20100128109 Banks May 2010 A1
20100157280 Kusevic et al. Jun 2010 A1
20100182874 Frank et al. Jul 2010 A1
20120075422 Wang et al. Mar 2012 A1
20120182540 Suzuki Jul 2012 A1
20120206712 Chang et al. Aug 2012 A1
20120236379 da Silva et al. Sep 2012 A1
20120310516 Zeng Dec 2012 A1
20120310519 Lawlor et al. Dec 2012 A1
20130088726 Goyal et al. Apr 2013 A1
20130093584 Schumacher Apr 2013 A1
20130120760 Raguin et al. May 2013 A1
20130166113 Dakin et al. Jun 2013 A1
20130206967 Shpunt et al. Aug 2013 A1
20130207970 Shpunt et al. Aug 2013 A1
20130222786 Hanson et al. Aug 2013 A1
20130250276 Chang et al. Sep 2013 A1
20140036252 Amzajerdian et al. Feb 2014 A1
20140049609 Wilson Feb 2014 A1
20140152975 Ko Jun 2014 A1
20140168631 Haslim Jun 2014 A1
20140233942 Kanter Aug 2014 A1
20140313519 Shpunt et al. Oct 2014 A1
20150009485 Mheen Jan 2015 A1
20150055117 Pennecot et al. Feb 2015 A1
20150234308 Lim et al. Aug 2015 A1
20150260843 Lewis Sep 2015 A1
20150301162 Kim Oct 2015 A1
20150371074 Lin Dec 2015 A1
20150378011 Owechko Dec 2015 A1
20160047895 Dussan Feb 2016 A1
20160047896 Dussan Feb 2016 A1
20160047903 Dussan Feb 2016 A1
20160138944 Lee et al. May 2016 A1
20160178749 Lin et al. Jun 2016 A1
20160200161 Van Den Bossche et al. Jul 2016 A1
20160245902 Watnik et al. Aug 2016 A1
20160280229 Kasahara Sep 2016 A1
20160291160 Zweigle et al. Oct 2016 A1
20160357187 Ansari Dec 2016 A1
20160363669 Liu Dec 2016 A1
20160380488 Widmer et al. Dec 2016 A1
20170023678 Pink et al. Jan 2017 A1
20170090013 Paradie et al. Mar 2017 A1
20170102457 Li Apr 2017 A1
20170199273 Morikawa et al. Jul 2017 A1
20170219696 Hayakawa et al. Aug 2017 A1
20170269215 Hall et al. Sep 2017 A1
20170270381 Itoh et al. Sep 2017 A1
20170285346 Pan Oct 2017 A1
20170307736 Donovan Oct 2017 A1
20170307737 Ishikawa et al. Oct 2017 A1
20170310948 Pei Oct 2017 A1
20170329010 Warke et al. Nov 2017 A1
20170329011 Warke et al. Nov 2017 A1
20180052378 Shin et al. Feb 2018 A1
20180113193 Huemer Apr 2018 A1
20180128903 Chang May 2018 A1
20180136328 Moss May 2018 A1
20180143309 Pennecot et al. May 2018 A1
20180180718 Lin Jun 2018 A1
20180224529 Wolf et al. Aug 2018 A1
20180241477 Turbide et al. Aug 2018 A1
20180284237 Campbell Oct 2018 A1
20180284282 Hong et al. Oct 2018 A1
20180284286 Eichenholz Oct 2018 A1
20180286909 Eichenholz Oct 2018 A1
20180306913 Bartels Oct 2018 A1
20180341009 Niclass et al. Nov 2018 A1
20180364334 Xiang et al. Dec 2018 A1
20180372870 Puglia Dec 2018 A1
20190018143 Thayer et al. Jan 2019 A1
20190101644 DeMersseman et al. Apr 2019 A1
20190123508 Hong et al. Apr 2019 A1
20190129009 Eichenholz et al. May 2019 A1
20190139951 T'Ng et al. May 2019 A1
20190146060 Qiu et al. May 2019 A1
20190195990 Shand Jun 2019 A1
20190235064 Droz et al. Aug 2019 A1
20200081129 de Mersseman Mar 2020 A1
20200088847 DeMersseman et al. Mar 2020 A1
20200249354 Yeruhami et al. Aug 2020 A1
20200341120 Ahn Oct 2020 A1
20200341121 Ahn Oct 2020 A1
20210018602 de Mersseman et al. Jan 2021 A1
Foreign Referenced Citations (22)
Number Date Country
509180 Jan 2016 AT
19757840 Sep 1999 DE
102004033944 Feb 2006 DE
102006031114 Jul 2008 DE
102008045387 Mar 2010 DE
102014218957 Mar 2016 DE
102015217908 Mar 2017 DE
0112188 Jun 1987 EP
0578129 Jan 1994 EP
2696166 Dec 2014 EP
2824418 Jan 2015 EP
3203259 Aug 2017 EP
3457080 Mar 2019 EP
3147685 Jan 2020 EP
1994019705 Sep 1994 WO
2008008970 Jan 2008 WO
2015014556 Feb 2015 WO
2016072483 May 2016 WO
2016097409 Jun 2016 WO
2016204139 Dec 2016 WO
2019050643 Mar 2019 WO
2019099166 May 2019 WO
Non-Patent Literature Citations (43)
Entry
Communication from EP Application No. 18773034.6 dated Sep. 13, 2021.
Kasturi et al., UAV-Bome LiDAR with MEMS Mirror Based Scanning Capability; SPIE Defense and Commercial Sensing Conference 2016, Baltimore, MD; 10 pages, 2016.
Internet URL: https://www.continental-automotive.com/en-gl/Passenger-Cars/Chassis-Safety/Advanced-Driver-Assistance-Systems/Cameras [retrieved on Dec. 20, 2018].
Internet URL: https://www.continental-automotive.com/en-gl/Passenger-Cars/Chassis-Safety/Advanced-Driver-Assistance-Systems/Cameras/Multi-Function-Camera-with-Lidar [retrieved on Dec. 20, 2018].
Hi-Res 3d Flash LIDAR will Supplement Continental's Existing Portfolio for Automated Driving [online], Press Release, Mar. 3, 2016, [retrieved on Dec. 20, 2018]. Retrieved from the Internet URL: https://www.continental-corporation.com/en/press/press-releases/hi-res-3d-flash-lidar-will-supplement-continental-s-existing-portfolio-for-automated-driving-15758.
A milestone for laser sensors in self-driving cars [online], Trade Press, Jul. 11, 2016, [retrieved on Dec. 19, 2018]. Retrieved from the Internet URL: https://www.osram.com/os/press/press-releases/a_milestone_for_lasersensors_in_self-driving_carsjsp.
Hewlett-Packard Application Note 77-4, Swept-Frequency Group Delay Measurements, Hewlett-Packard Co., September, 7 pages, 1968.
Kravitz et al., High-Resolution Low-Sidelobe Laser Ranging Based on Incoherent Pulse Compression, IEEE Jhotonic,s Technology Letters, vol. 24, No. 23, pp. 2119-2121, 2012.
Journet et al., A Low-Cost Laser Range Finder Based on an FMCW-like Method, IEEE Transactions on nstrumentation and Measurement, vol. 49, No. 4, pp. 840-843, 2000.
Campbell et al., Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements; NASA Langley Research Center, 32 pages, 2018.
Levanon et al., Non-coherent Pulse Compression-Aperiodic and Periodic Waveforms; The Institution of Engineering and Technology, 9 pages, 2015.
Peer et al., Compression Waveforms for Non-Coherent Radar, Tel Aviv University, 6 pages, 2018.
Li, Time-of-Flight Camera—An Introduction, Technical White Paper, SLOA190B, Texas Instruments, 10 pages, 2014.
Pierrottet et al., Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements, Coherent Applications, Inc., NASA Langley Research Center, 9 pages, 2018.
Kahn, Modulation and Detection Techniques for Optical Communication Systems, Stanford University, Department of Electrical Engineering, 3 pages, 2006.
Niclass et al., Development of Automotive LIDAR, Electronics and Communications in Japan, vol. 98, No. 5, 6 pages, 2015.
Su et al, 2-D FFT and Time-Frequency Analysis Techniques for Multi-Target Recognition of FMCW Radar Signal, Proceedings of the Asia-Pacific Microwave Conference 2011, pp. 1390-1393.
Wojtkiewicz et al., Two-Dimensional Signal Processing in FMCW Radars, Instytut Podstaw Elektroniki Politechnika Warszawska, Warszawa, 6 pages, 2018.
Winkler, Range Doppler Detection for Automotive FMCW Radars, Proceedings of the 4th European Radar Conference, Munich Germany, 4 pages, 2007.
Li et al., Investigation of Beam Steering Performances in Rotation Risley-Prism Scanner, Optics Express, vol. 24, No. 12, 11 pages, 2016.
THORLABS Application Note, Risley Prism Scanner, 33 pages, 2018.
Simpson et al., Intensity-Modulated, Stepped Frequency CW Lidar for Distributed Aerosol and Hard Target Measurements, Applied Optics, vol. 44, No. 33, pp. 7210-7217, 2005.
Skolnik, Introduction to Radar Systems, 3rd Edition, McGraw-Hill, New York, NY 2001, pp. 45-48.
Wang et al., Range-Doppler image processing in linear FMCW Radar and FPGA Based Real-Time Implementation, Journal of Communication and Computer, vol. 6, No. 4, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2018/057727 dated Jan. 28, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2018/052837 dated Jan. 24, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2017/033263 dated Aug. 29, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2018/048869 dated Nov. 8, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2018/051281 dated Nov. 22, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2018/054992 dated Dec. 11, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2018/049038 dated Dec. 12, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2017/033265 dated Sep. 1, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/033271 dated Sep. 1, 2017.
Invitation to Pay Additional Fees for International Application No. PCT/US2018/052849 dated Mar. 8, 2019.
http://www.advancedscientificconcepts.com/products/overview.html.
Roncat, Andreas, The Geometry of Airborne Laser Scanning in a Kinematical Framework, Oct. 19, 2016, www.researchgate.net/profile/Andreas_Roncat/publication/310843362_The_Geometry_of Airborne_LaserScanningin_a_Kinematical_Frameworldinks/5839add708ae3a74b49ea03b1The-Geometry-of-Airborne-Laser-Scanning-in-a-Kinematical-Framework.pdf.
International Search Report and Written Opinion for International Application No. PCT/US2020/064474, dated Apr. 1, 2021.
International Search Report and Written Opinion for International Application No. PCT/US2018/057676, dated Jan. 23, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2018/052849, dated May 6, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2019/046800, dated Nov. 25, 2019.
Church et al., “Evaluation of a steerable 3D laser scanner using a double Risley prism pair,” SPIE Paper.
Luhmann, “A historical review on panorama photogrammetry,” http://www.researchgate.net/publication/228766550.
International Search Report and Written Opinion for International Application No. PCT/US2020/039760, dated Sep. 18, 2020.
Related Publications (1)
Number Date Country
20210018602 A1 Jan 2021 US