1. Field of the Invention
The present invention is related to a scanning method of a capacitive touch panel, and more particularly to a scanning method and device of a single layer capacitive touch panel.
2. Description of the Prior Arts
With reference to
The single layer capacitive touch panel 50 may be further connected to a self capacitive scanning circuit (not shown) but a receiving circuit of the self capacitive scanning circuit has to be changed. With reference to
To overcome the shortcomings, the present invention provides a scanning method and device of a single layer capacitive touch panel to mitigate or obviate the aforementioned problems.
The objective of the present invention is to provide a scanning method and device of a single layer capacitive touch panel to correctly identify a position of a touch object during a self capacitive scanning procedure or a mutual capacitive scanning procedure. In addition, a receiving circuit of a self capacitive scanning circuit is not changed.
To achieve the objective, the single layer capacitive touch panel has multiple electrode groups and multiple shielding units, each of which is formed between the two corresponding adjacent electrode groups. A controller is electrically connected to the electrode groups and the shielding units, and each of the electrode groups has n driving electrodes, n leading lines respectively connected to the n driving electrodes and at least one sensing electrode. Each of the at least one sensing electrodes is formed adjacent to the n corresponding driving electrodes. The scanning method has a self capacitive scanning procedure and a mutual capacitive scanning procedure.
When the self capacitive scanning procedure is executed, the controller outputs a first driving signal to each of the electrode groups and each of the shielding units at the same time, and then receives a self capacitive sensing signal from each of the driven electrode groups. When the mutual capacitive scanning procedure is executed, the controller outputs a second driving signal to each of the electrode groups, and connects each of the shielding units to a ground, and then receives a mutual capacitive sensing signal from each of driven electrode groups.
Since the shielding units are connected to the ground, the driven electrode groups are not interfered with each other during the mutual capacitive scanning procedure. During the self capacitive scanning procedure, the shielding units are not connected to the ground and the first driving signal is outputted to the shielding unit and the driving electrode, which is going to be driven at the same time, so that the self capacitance value of the self capacitive sensing signal is not increased greatly. Therefore, the present invention provides a scanning method of the single layer capacitive touch panel to correctly identify a position of a touch object during a self capacitive scanning procedure or a mutual capacitive scanning procedure. In addition, a receiving circuit of a self capacitive scanning circuit for implementing the self capacitive scanning procedure is not changed.
To achieve the objective, the scanning device of a single layer capacitive touch panel has a substrate and a controller. The substrate has multiple electrode groups and multiple shielding units. Each of the shielding unit is formed between the two corresponding adjacent electrode groups and each of the electrode groups has n driving electrode, n leading lines arranged in parallel and respectively connected to the n driving electrodes and at least one sensing electrode. The controller is electrically connected to the electrode groups and the shielding units and has a self capacitive scanning procedure. When the controller executes the self capacitive scanning procedure, the controller outputs a first driving signal to each of the electrode groups and each of the shielding units at the same time, and then receives a self capacitive sensing signal from each of the driven electrode groups.
When the controller of the scanning device executes the self capacitive scanning procedure, the shielding units are not connected to the ground and the first driving signal are output to the electrode group, which is going to be driven, and the shielding unit adjacent to the electrode group at the same time. Accordingly, a coupling capacitance between the grounded shielding unit and the leading line of the driven electrode is not formed. Therefore, the present invention provides a scanning device of the single layer capacitive touch panel to correctly identify a position of a touch object during a self capacitive scanning procedure. In addition, a receiving circuit of a self capacitive scanning circuit is not changed.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The present invention provides a scanning method and device of a signal layer capacitive touch panel to obtain an accurate sensing capacitance under different scanning procedures and an accuracy of identifying touch object is increased. Using different embodiments describes details of the present invention.
With reference to
With reference to
With reference to
In a preferred embodiment, the switching unit 33 has m multiple switches 331, and the m shielding units 23a to 23f are respectively connected to the self capacitive scanning unit 31 or the ground GND through the multiple switches 331. When the processing unit 34 executes the self capacitive scanning procedure, the controller 30 controls the switches 331 of the switching unit 33 to switch the shielding units 23a to 23f to connect to the self capacitive scanning unit 31. The self capacitive scanning unit 31 outputs the first driving signal to the shielding units 23a to 23f as shown in
With reference to FIGS. 2 and 3-1A, the processing unit 34 of the controller 30 executes a first type of the self capacitive scanning procedure. Using the first electrode group 20a as an example, the processing unit 34 controls the self capacitive scanning unit 31 to output the first driving signal to the leading line 211 of the kth driving electrode 21 and the leading line 211 of the (k−1)th driving electrode 21 and the shielding unit 23a adjacent to the electrode group 20a, wherein 1<k≦n. The self capacitive scanning unit 31 only receives the self capacitive sensing signal of the kth driving electrode 21 after outputting the first driving signal. TX1 to TX5 respectively represent the five driving electrodes 21 of the first electrode group 20a, hereafter. In another words, to obtain the self capacitive sensing signal of the kth driving electrode TX5 (k=5), the first driving signal is outputted to the kth and (k−1)th driving electrodes TX4, TX5 and the shielding unit 23a at the same time, as shown in
With further reference to FIGS. 2 and 3-1B, the processing unit 34 of the controller 30 executes a second type of the self capacitive scanning procedure. Using the first electrode group 20a as an example and in order to obtain the self capacitive sensing signal of the kth driving electrode, the first driving signal is outputted to the (k−1)th, kth and (k+1)th driving electrodes 21 and the shielding unit 23a at the same time, wherein 1<k≦n. TX1 to TX5 respectively represent the five driving electrodes 21 of the first electrode group 20a, hereafter. In a case, to receive the self capacitive sensing signal (k=4) of the fourth driving electrode TX4 of the first electrode group 20a, the first driving signal is outputted to three driving electrodes TX3, TX4 and TX5 and the shielding unit 23a. Each of the electrode groups 20a, 20b . . . or 20f has 5 driving electrodes (n=5). In another case, to receive the self capacitive sensing signal (k=5) of the fifth driving electrode TX5 of the first electrode group 20a, the first driving signal is only outputted to the fourth driving electrode TX4, the fifth driving electrode TX5 and the shielding unit 23a adjacent to the fifth driving electrode TX5 at the same time since the leading line 211 of the fifth driving electrode TX5 is adjacent to the shielding unit 23a. Since the electric potentials of the leading line 211 of the fifth driving electrode TX5 and the fifth driving electrode TX5 are equal to those of the leading line 211 of the fourth driving electrode TX4 and the fourth driving electrode TX4, and equal to that of the shielding unit 23a, the received self capacitive sensing signal does not include a first coupling capacitance between the leading line 211 of the fifth driving electrode TX5 and the leading line 211 of the fourth driving electrode TX4 and a second coupling capacitance between the leading line 211 of the fifth driving electrode TX5 and the shielding unit 23a. With reference to FIGS. 2 and 3-2B, the self capacitance value of the self capacitive sensing signal of the fifth driving electrode TX5 is greater than that of other driving electrode TX1, TX2, TX3 or TX4, when the touch object 40 touches the fifth driving electrode TX5 of the first electrode group 20a.
With reference to FIGS. 2 and 3-1C, the processing unit 34 of the controller executes a third type of the self capacitive scanning procedure. TX1 to TX5 respectively represent the five driving electrodes 21 of the first electrode group 20a, hereafter. To obtain the self capacitive sensing signal from any one of the driving electrodes, the self capacitive scanning unit 31 outputs the first driving signal to all of the driving electrodes TX1˜TX5 of the first driving group 20a and shielding unit 23a. As a result, the electric potentials of the kth driving electrode 21 and the leading line 211 thereof are equal to those of the other driving electrodes 21 and the leading lines 211 thereof and is equal to that of the shielding unit 23a. The self capacitance value of the received self capacitive sensing signal of the kth driving electrode 21 does not include the coupling capacitances among the kth driving electrode 21, each of the other driving electrodes 21 and the shielding unit 23a. With reference to
With reference to
Based on the foregoing description, the scanning method has a self and mutual capacitive scanning procedures. When the self capacitive scanning procedure is executed, the controller outputs the first driving signal to drive the electrode group and also outputs the first driving signal to the shielding unit adjacent to the driven electrode group, and then the self capacitive sensing signal of the driven electrode group is received. When the mutual capacitive scanning procedure is executed, the controller outputs the second driving signal to drive the electrode group, which is going to be driven and connects the shielding unit adjacent to the electrode group to the ground, and then a mutual capacitive sensing signal of the driven electrode group is received. As a result, coupling signals between two adjacent electrode groups are shielded by the shielding unit, which is connected to the ground during executing the mutual capacitive scanning procedure. The self capacitive sensing signal does not include the coupling capacitances between the leading line of the driven driving electrode and the shielding unit, since the first driving signal is outputted to the driving electrode and the shielding unit at the same time during executing the self capacitive scanning procedure. The self capacitance value of the self capacitive sensing signal is not increased greatly since the shielding units are not connected to the ground. Therefore, the present invention provides a scanning method and device of a single layer capacitive touch panel to correctly identify a position of a touch object during a self capacitive scanning procedure or a mutual capacitive scanning procedure. In addition, a receiving circuit of a self capacitive scanning circuit is not changed.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
103141120 | Nov 2014 | TW | national |
This application claims the benefit of U.S. provisional application filed on Sep. 26, 2014 and having application Ser. No. 62/055,660, the entire contents of which are hereby incorporated herein by reference. This application is based upon and claims priority under 35 U.S.C. 119 from Taiwan Patent Application No. 103141120 filed on Nov. 27, 2014, which is hereby specifically incorporated herein by this reference thereto.
Number | Date | Country | |
---|---|---|---|
62055660 | Sep 2014 | US |