The present invention is directed to a scanning optical system and more particularly to such a system having asymmetric focusing optics.
Large-scan-depth anterior segment OCT is important in understanding accommodation to measure the following: lens shape change with accommodation, age-related optical changes in the lens, and the efficacy of accommodative intraocular lenses (IOLs). However, the limitations of current anterior segment OCTs include a limited depth penetration, as shown in
More specifically, the total axial length of the anterior segment from the apex of the anterior cornea to the back surface of the lens is approximately 7.7 mm (10.2 mm optical path length at n=1.33). That poses a challenge, since sensitivity of an OCT system decreases with depth. Thus, the signal from the deeper ocular surfaces, especially the posterior surface of the lens, becomes weak. Most of the commercial anterior segment OCT systems use telecentric scan geometry in which the beam is shined straight into the eye parallel to the optical axis. The angle of incidence on the ocular surfaces, and especially the posterior surface of the crystalline lens, increases as the regions farther away from the optical axis of the eye are scanned. That leads to a significant reduction in the amount of backscattered light collected by the OCT system. The other limitation with traditional telecentric scan is the fact that pupil dilation is necessary to image a large diameter of the lens. The pupil dilation may cause some differences in accommodative response from naturally stimulated accommodation in which pupil size actually decreases with accommodation (known as pupil miosis).
It is therefore an object of the invention to overcome those limitations.
To achieve the above and other objects, the present invention is directed to an asymmetric focusing optics system which provides an angle of incidence of each scan beam normal to the ocular surfaces. That system includes a lens divided into two halves: one optimized to achieve normal incidence angles on the posterior surface of the lens, the other optimized for the anterior surface of the lens. Two semicircular halves from each system were glued together to form a single optical system. That configuration results in a substantial increase in light intensity reflected from each surface.
The inventor's work is described in Yadav et al, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Optics Letters, Vol. 35, no. 11, Jun. 1, 2010, whose disclosure is hereby incorporated by reference in its entirety into the present disclosure.
A preferred embodiment of the present invention will be set forth in detail with reference to the drawings, in which:
A preferred embodiment of the present invention will be set forth in detail with reference to the drawings, in which like reference numerals refer to like elements throughout.
The first design principle will be described with reference to
The second design principle will be described with reference to
Two optical systems are used in the preferred embodiment. One is the asymmetric relay optics with one asymmetric concave mirror and symmetric concave mirror with different radii of curvatures. The other is the asymmetric focusing lens in front of the eye. These two systems are dependent each other to achieve what is needed; if the design of one of the two systems is changed, the other has to be redesigned as well.
More specifically, the images obtained by a swept source OCT system (λ=1300 nm, δλ=100 nm) for the model eye by using a conventional telecentric scan (
From the above, the following may be concluded. The proposed scanning method significantly increases scan-depth and SNR. A larger diameter of the posterior surface of the lens is thus imaged without pupil dilation. Anterior segment OCT with the proposed scanning system can be a powerful tool for understanding the mechanism of accommodation and presbyopia.
While a preferred embodiment has been set forth in detail above, those skilled in the art who have reviewed the present disclosure will readily appreciate that other embodiments can be realized within the scope of the invention. For example, the specifics of the system shown in
The present application claims the benefit of U.S. Provisional Patent Application No. 61/414,088, filed Nov. 16, 2010, whose disclosure is hereby incorporated by reference in its entirety into the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
8049873 | Hauger et al. | Nov 2011 | B2 |
20090168017 | O'Hara et al. | Jul 2009 | A1 |
20100091243 | Bor | Apr 2010 | A1 |
Entry |
---|
Yadav, et al., “Scanning system Design for Large Scan Depth Anterior Segment Optical Coherence Tomography”, The Institute of Optics, University of Rochester, Rochester, New York; Optics Letters/vol. 35, No. 11/Jun. 1, 2010 (3 pgs). |
Number | Date | Country | |
---|---|---|---|
20120127431 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61414088 | Nov 2010 | US |