Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection

Abstract
Systems and methods for performing simultaneous nucleic acid amplification and detection. The systems and methods comprise methods for managing a plurality of protocols in conjunction with directing a sensor array across each of a plurality of reaction chambers. In certain embodiments, the protocols comprise thermocycling profiles and the methods may introduce offsets and duration extensions into the thermocycling profiles to achieve more efficient detection behavior.
Description
TECHNICAL FIELD

The systems and methods disclosed herein relate generally to the automated execution of nucleic acid amplification assays, such as Polymerase Chain Reaction (PCR), and in some instances real-time PCR, in a plurality of micro-fluidic reaction chambers in a microfluidic cartridge. The system may subsequently detect target nucleic acids, e.g., target amplicons, within each of the reaction chambers.


BACKGROUND OF THE INVENTION

The medical diagnostics industry is a critical element of today's healthcare infrastructure. At present, however, in vitro diagnostic analyses, no matter how routine, have become a bottleneck in patient care. There are several reasons for this. First, many diagnostic analyses can only be done with highly specialized equipment that is both expensive and only operable by trained clinicians. Such equipment may be found in only a few locations—often just one in any given urban area. This requires hospitals to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and possibly even sample loss or mishandling. Second, the equipment in question is typically not available “on-demand” but instead runs in batches, thereby delaying the processing time for many samples as they must wait for a machine to reach capacity before they can be run.


Understanding that diagnostic assays on biological samples may break down into several key steps, it is often desirable to automate one or more steps. For example, a biological sample, such as those obtained from a patient, can be used in nucleic acid amplification assays, in order to amplify a target nucleic acid (e.g., DNA, RNA, or the like) of interest. Once amplified, the presence of a target nucleic acid, or amplification product of a target nucleic acid (e.g., a target amplicon) reactor can be detected, wherein the presence of a target nucleic acid and/or target amplicon is used to identify and/or quantify the presence of a target (e.g., a target microorganism or the like). Often, nucleic acid amplification assays involve multiple steps, which can include nucleic acid extraction, nucleic acid amplification, and detection. It is desirable to automate certain steps of these processes.


There is a need for a method and apparatus for carrying out molecular diagnostic assays on multiple samples in parallel, with or without amplification of target nucleic acids, and detection on a prepared biological samples. The system may be configured for high throughput, and operation in a commercial reference laboratory or at the point of care, thereby eliminating the need to send the sample out to a specialized facility.


SUMMARY OF THE INVENTION

The embodiments disclosed herein relate to methods and devices for the simultaneous testing of multiple samples. Certain embodiments contemplate an apparatus for performing real-time nucleic acid amplification and detection. The apparatus can include a detector head comprising a plurality of photodetector and light source pairs. The detector head can be mounted on a rail, wherein the detector and light source pairs are aligned in a first row and a second row. The apparatus can include a receptacle for a microfluidic cartridge that has a plurality of independent reaction chambers aligned in adjacent columns of a first row and a second row. The apparatus can also include an aperture plate that is configured to be positioned over the microfluidic cartridge when the cartridge is present in the receptacle. The aperture plate can include a plurality of apertures that are each aligned over each of the plurality of reaction chambers when the receptacle is holding the microfluidic cartridge. The detector head can be located over the aperture plate, and be moveable along the rail, such that each of the plurality of photodetector and light source pairs in the first row can be positioned over each aperture in the first row of the aperture plate, and each of the plurality of photodetector and light source pairs in the second row can be positioned over each aperture in the second row of the aperture plate.


In some embodiments, the apparatus also includes a second detector head that has a plurality of photodetector and light source pairs aligned into a first row and a second row. The second detector head can be mounted on the rail. The apparatus can also include a second receptacle for a microfluidic cartridge including a plurality of independent reaction chambers aligned in adjacent columns of a first row and a second row. The apparatus can also include a second aperture plate configured to be positioned over the second microfluidic cartridge when the second cartridge is present in the second receptacle, and which can include a plurality of apertures that are each aligned over each of the plurality of reaction chambers of the second microfluidic cartridge when the second receptacle is holding the second microfluidic cartridge. The second detector head can be located over the aperture plate, and can be moveable along the rail such that each of the plurality of photodetector and light source pairs in the first row of the second detector head can be positioned over each aperture in the first row of the second aperture plate, and each of the plurality of photodetector and light source pairs in the second row of the second detector head can be positioned over each aperture in the second row of the second aperture plate.


In some embodiments, the photodetector and light source pairs can include at least six different photodetector and light source pairs operating in six different wavelengths. In some embodiments, the six different wavelengths comprise a light source emitting a green colored light, a light source emitting a yellow colored light, a light source emitting an orange colored light, a light source emitting a red colored light, and a light source emitting a crimson colored light. In some embodiments, the detector head includes at least N rows of photodetector and light source pairs, and the detector is configured to move to at least M+N−1 positions over an aperture plate comprising M rows of apertures.


In some embodiments, the aperture plate comprises steel, aluminum, nickel, or a combination thereof. In some embodiments, the aperture plate can have a thickness of approximately 0.25 inches. In some embodiments, at least part of the aperture plate is electrochemically oxidized to be darker than when the aperture plate is not electrochemically oxidized. In some embodiments, the aperture plate provides substantially uniform pressure across the area of the microfluidic cartridge, when the cartridge is present within the receptacle. In some embodiments, the aperture plate comprises at least one of aluminum, zinc or nickel, the aperture plate further comprising a colorant.


In some embodiments, the apparatus further comprises a heater plate, wherein the heater plate is positioned underneath the microfluidic cartridge when a cartridge is present in the receptacle. In some embodiments the heater plate comprises at least one of glass or quartz. In some embodiments, the aperture plate provides substantially uniform pressure across the area of the microfluidic cartridge when a cartridge is present within the receptacle. The substantially uniform pressure can facilitate substantially uniform thermal contact between the microfluidic reaction chambers and the heater plate. As such, in some embodiments, the aperture plate provide uniform pressure that can ensure that each of the plurality of reaction chambers or reactors in the microfluidic cartridge are in uniformly thermal contact or communication with a respective a plurality of heating elements located within the heater plate.


In some embodiments, the apparatus further comprises a photodetector, the photodetector located over the aperture plate, wherein the micro-fluidic chamber is configured to receive light at a glancing angle from a light source relative to the photodetector. In some embodiments, the heater plate comprises a plurality of heating elements, wherein each of the plurality of heating elements is positioned such that when the microfluidic cartridge is present in the receptacle, the plurality of heating elements are in thermal connection with each of the plurality of reaction chambers, respectively.


Certain embodiments contemplate a method implemented on one or more computer processors for optimizing protocols, such as polymerase chain reaction (PCR) protocols or the like, for simultaneously performing a plurality of thermal cycling reactions, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the thermal cycling reactions are performed in a plurality of reactors. The method can include the steps of determining or providing or accessing a detection cycle time for each of the plurality of reactors; receiving or accessing a protocol step, the step associated with a step duration, the step comprising a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.


In some embodiments the method further comprises determining a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments the method further comprises determining a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time comprises the amount of time required for a detector head to perform a predetermined plurality of detections for a reactor. In some embodiments, the detection cycle time includes a time required for movement of the detector head to each of a plurality of reactors and movement of the detector head to the start position. In some embodiments, the method further comprises initiating the protocol.


Certain embodiments contemplate a non-transitory computer-readable medium comprising instructions, the instructions configured to cause one or more processors to perform the following steps: determining or providing or accessing a detection cycle time; receiving or accessing a protocol step, wherein the step is associated with a step duration, and the wherein step includes a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.


In some embodiments, the protocol step is associated with a protocol from a plurality of protocols. Each of the plurality of protocols can be associated with at least one of a plurality of thermal cycling reactions, such as polymerase chain reaction (PCR) protocols, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the determining a first adjustment is based at least in part on a timing of one or more detection steps associated with the thermal cycling reactions of at least two or more of the plurality of protocols when the two or more of the plurality of protocols are simultaneously run. In some embodiments, the method also includes the step of determining a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments, the method also includes the step of determining a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time includes the amount of time required for a detector head to perform a predetermined plurality of detections for a reaction chamber. In some embodiments, the detection cycle time also includes a time required for movement of the detector head to each of a plurality of reaction chamber detection positions and movement of the detector head to a start position. In some embodiments, the method further comprises initiating the protocol.


Certain embodiments contemplate a system for optimizing protocols for a plurality of reaction chambers. The system can include a processor configured to perform the following: determining or providing or accessing a detection cycle time; receiving or accessing a protocol step, wherein the step can be associated with a step duration, and wherein the step includes a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.


In some embodiments, the protocol step is associated with a protocol from a plurality of protocols. Each of the plurality of protocols can be associated with at least one of a plurality of thermal cycling reactions, such as a polymerase chain reaction (PCR) protocol, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the determining a first adjustment is based at least in part on a timing of one or more detection steps associated with the thermal cycling reactions of at least two or more of the plurality of protocols when the two or more of the plurality of protocols are simultaneously run. In some embodiments, the processor is also configured to determine a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments, the processor is also configured to determine a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time includes the amount of time required for a detector head to perform a predetermined plurality of detections for a reaction chamber. In some embodiments, the detection cycle time also includes a time required for movement of the detector head to each of a plurality of reaction chamber detection positions and movement of the detector head to the start position. In some embodiments, the processor is further configured to initiate the protocol.


Certain embodiments contemplate a method for simultaneously performing real-time PCR in a plurality of PCR reaction chambers, comprising: (a) providing a scan time sufficient for a detector assembly to perform a scan cycle during which it can scan each of the plurality of PCR reaction chambers for at least one detectable signal and become ready to repeat the scan; (b) providing a reaction protocol for each of the PCR reaction chambers that includes multiple cycles, each cycle comprising a cycle time that includes at least one heating step, at least one cooling step, and at least one temperature plateau that includes a reading cycle period during which the detector assembly is to scan the reaction chamber for at least one detectable signal; (c) determining, using a processor, whether the cycle time for that reaction chamber is the same as or an integer multiple of the scan time, and if not, adjusting the scan time or the cycle time so that the cycle time is the same as or an integer multiple of the scan time; (d) performing at least steps (b) and (c) for the reaction protocol for each of the plurality of PCR reaction chambers so that the cycle time for each reaction protocol is the same as or an integer multiple of the scan time; and (e) under direction of a processor, performing real time PCR on each of the reaction chambers using the reaction protocol for each of the reaction chambers, including performing multiple scan cycles with the detector assembly, wherein each PCR reaction chamber is scanned by the detector assembly during each reading cycle period for that reaction chamber.


In some embodiments the method further comprises phase adjusting the cycle time of the reaction protocol for at least one of the reaction chambers. In some embodiments, at least one said reaction protocol is different from another said reaction protocol. In some embodiments, at least one cycle time in one reaction protocol is different from the cycle time in another reaction protocol.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front plan view of a diagnostic apparatus as used in certain of the embodiments.



FIG. 1B is a top perspective view of the diagnostic apparatus of FIG. 1A showing certain of the apparatus' internal components.



FIG. 2 illustrates an interior view of the diagnostic apparatus of FIGS. 1A and 1B.



FIG. 3A illustrates a top-plan view of one possible microfluidic arrangement within certain embodiments of a microfluidic cartridge as described herein.



FIG. 3B illustrates the layout of a heater substrate in relation to the reaction chamber of certain of the embodiments.



FIG. 4A illustrates an exterior view of the optical module including the detector head of certain of the embodiments described herein.



FIG. 4B illustrates a view of the optical module of FIG. 4A with a side cover removed.



FIG. 4C illustrates a bottom view of the optical module of FIG. 4A.



FIG. 5 illustrates a detector head used within the optical module of certain of the embodiments along the line 13 of FIG. 4B.



FIG. 6 depicts the layout of the light sources and optical detectors as used in certain of the embodiments of the detector head disclosed herein.



FIG. 7 is a graph of the fluorescence versus time of using real time PCR of target nucleic acids performed in an apparatus of certain embodiments as described herein.



FIG. 8 is an abstract depiction of certain of the chamber, aperture, and heating layers found in certain of the embodiments as described herein.



FIGS. 9A-H illustrate various perspectives of one embodiment of the aperture plate.



FIGS. 10A-H illustrate various dimensions of the perspectives of the aperture plate of FIGS. 9A-H.



FIG. 11 is plot of a portion of a thermal profile for a possible protocol implemented in certain of the embodiments.



FIG. 12 is a flow diagram depicting a process for determining protocol durations, offsets, and detection times, so as to optimize and regiment detector efficiency.



FIG. 13 illustrates a portion of a user interface for selecting durations of certain protocol steps and substeps and determination of the accompanying intra-cycle adjustment.



FIG. 14 is a plot of a thermal profile comprising an inter-cycle adjustment.



FIGS. 15A-C plot a plurality of thermal profiles for a plurality of protocols implemented in certain of the embodiments. FIGS. 15A and 15B illustrate the character of the protocol profiles prior to the starting offset adjustment. FIG. 15C illustrates the plurality of protocol profiles relative to one another after applying the starting offset adjustments.



FIG. 16 is plot of a thermal profile under active cooling as implemented in certain of the embodiments.





DETAILED DESCRIPTION

Certain of the present embodiments contemplate an apparatus, referred to herein as a thermocycler, which may consistently heat and analyze microfluidic chambers. Polynucleotide amplification, such as by real-time PCR, can be performed within the microfluidic chambers. In some embodiments, the thermocycler can be configured to perform individual thermocycling and detection protocols in a plurality of microfluidic reaction chambers within a microfluidic cartridge. The thermocycling can be used to amplify nucleic acids, e.g., DNA, RNA or the like, e.g., by real-time PCR or other nucleic acid amplification protocols described herein, within the microfluidic reaction chambers. The thermocycler may comprise a detector head, comprising a plurality of detector pairs, e.g., six or more detector head pairs, wherein each detector pair comprises a light-emitting source, e.g., an LED or the like, and a cognate photodiode. In some embodiments, each individual detector pair is configured to generate and detect light emitted from a fluorescent moiety, e.g., a fluorescent probe, to indicate the presence of a target polynucleotide.


As used herein, the term “microfluidic” refers to volumes of less than 1 ml, preferably less than 0.9 ml, e.g., 0.8 ml, 0.7 ml, 0.6 ml, 0.5 ml, 0.4 ml, 0.3 ml, 0.2 ml, 0.1 ml, 90 μl, 80 μl, 70 μl, 60 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, 5 μl, 4 μl, 3 μl, 2 μl, 1 μl, or less, or any amount in between. It is to be understood that, unless specifically made clear to the contrary, where the term PCR is used herein, any variant of PCR including but not limited to real-time and quantitative PCR, and any other form of polynucleotide amplification is intended to be encompassed.


The detection process used in the assay may also be multiplexed to permit multiple concurrent measurements on multiple reactions concurrently. In some embodiments, these measurements may be taken from separate reaction chambers. Certain of these embodiments perform a plurality of PCR reactions simultaneously in a single PCR reaction chamber, e.g., multiplex PCR. A PCR protocol may comprise guidelines for performing the successive annealing and denaturing of the polynucleotides in the reaction chamber prior to detection. Such guidelines, comprising a time profile for heating the chamber, may be referred to as a “protocol”. Certain of the disclosed embodiments facilitate consistent heating and/or cooling across a plurality of reaction chambers performing PCR, while facilitating detection using a sensor array. In certain embodiments, the apparatus may comprise an aperture plate which facilitates consistent heating and cooling of the reaction chambers by applying pressure to a cartridge containing a plurality of PCR reaction chambers. Certain details and methods for processing polynucleotides may be found in e.g., U.S. Patent Application Publication 2009-0131650 and U.S. Patent Application Publication 2010-0009351, incorporated herein by reference.


The skilled artisan will appreciate that the embodiments disclosed herein are useful for various types of nucleic acid amplification reactions. For example, methods of nucleic acid amplification in connection with the embodiments disclosed herein can include, but are not limited to: polymerase chain reaction (PCR), strand displacement amplification (SDA), for example multiple displacement amplification (MDA), loop-mediated isothermal amplification (LAMP), ligase chain reaction (LCR), immuno-amplification, and a variety of transcription-based amplification procedures, including transcription-mediated amplification (TMA), nucleic acid sequence based amplification (NASBA), self-sustained sequence replication (3SR), and rolling circle amplification. See, e.g., Mullis, “Process for Amplifying, Detecting, and/or Cloning Nucleic Acid Sequences,” U.S. Pat. No. 4,683,195; Walker, “Strand Displacement Amplification,” U.S. Pat. No. 5,455,166; Dean et al, “Multiple displacement amplification,” U.S. Pat. No. 6,977,148; Notomi et al., “Process for Synthesizing Nucleic Acid,” U.S. Pat. No. 6,410,278; Landegren et al. U.S. Pat. No. 4,988,617 “Method of detecting a nucleotide change in nucleic acids”; Birkenmeyer, “Amplification of Target Nucleic Acids Using Gap Filling Ligase Chain Reaction,” U.S. Pat. No. 5,427,930; Cashman, “Blocked-Polymerase Polynucleotide Immunoassay Method and Kit,” U.S. Pat. No. 5,849,478; Kacian et al., “Nucleic Acid Sequence Amplification Methods,” U.S. Pat. No. 5,399,491; Malek et al., “Enhanced Nucleic Acid Amplification Process,” U.S. Pat. No. 5,130,238; Lizardi et al., BioTechnology, 6:1197 (1988); Lizardi et al., U.S. Pat. No. 5,854,033 “Rolling circle replication reporter systems.”


In some embodiments disclosed herein, the target nucleic acid, e.g., target amplicon, can be detected using an oligonucleotide probe. Preferably, the probes include one or more detectable moieties that can be detected by the systems disclosed herein. The skilled artisan will appreciate that several probe technologies are useful in the embodiments described herein. By way of example, the embodiments disclosed herein can be used with TAQMAN® probes, molecular beacon probes, SCORPION™ probes, and the like.


TaqMan® assays are homogenous assays for detecting polynucleotides (see U.S. Pat. No. 5,723,591). In TAQMAN® assays, two PCR primers flank a central TAQMAN® probe oligonucleotide. The probe oligonucleotide contains a fluorophore and quencher. During the polymerization step of the PCR process, the 5′ nuclease activity of the polymerase cleaves the probe oligonucleotide, causing the fluorophore moiety to become physically separated from the quencher, which increases fluorescence emission. As more PCR product is created, the intensity of emission at the novel wavelength increases.


Molecular beacons are an alternative to TAQMAN® probes for the detection of polynucleotides, and are described in, e.g., U.S. Pat. Nos. 6,277,607; 6,150,097; and 6,037,130. Molecular beacons are oligonucleotide hairpins which undergo a conformational change upon binding to a perfectly matched template. The conformational change of the oligonucleotide increases the physical distance between a fluorophore moiety and a quencher moiety present on the oligonucleotide. This increase in physical distance causes the effect of the quencher to be diminished, thus increasing the signal derived from the fluorophore.


The adjacent probes method amplifies the target sequence by polymerase chain reaction in the presence of two nucleic acid probes that hybridize to adjacent regions of the target sequence, one of the probes being labeled with an acceptor fluorophore and the other probe labeled with a donor fluorophore of a fluorescence energy transfer pair. Upon hybridization of the two probes with the target sequence, the donor fluorophore interacts with the acceptor fluorophore to generate a detectable signal. The sample is then excited with light at a wavelength absorbed by the donor fluorophore and the fluorescent emission from the fluorescence energy transfer pair is detected for the determination of that target amount. U.S. Pat. No. 6,174,670 discloses such methods.


Sunrise primers utilize a hairpin structure similar to molecular beacons, but attached to a target binding sequence which serves as a primer. When the primer's complementary strand is synthesized, the hairpin structure is disrupted, thereby eliminating quenching. These primers detect amplified product and do not require the use of a polymerase with a 5′ exonuclease activity. Sunrise primers are described by Nazarenko et al. (Nucleic Acids Res. 25:2516-21 (1997) and in U.S. Pat. No. 5,866,336.


SCORPION™ probes combine a primer with an added hairpin structure, similar to Sunrise primers. However, the hairpin structure of SCORPION™ probes is not opened by synthesis of the complementary strand, but by hybridization of part of the hairpin structure with a portion of the target which is downstream from the portion which hybridizes to the primer.


DzyNA-PCR involves a primer containing the antisense sequence of a DNAzyme, an oligonucleotide capable of cleaving specific RNA phosphodiester bonds. The primer binds to a target sequence and drives an amplification reaction producing an amplicon which contains the active DNAzyme. The active DNAzyme then cleaves a generic reporter substrate in the reaction mixture. The reporter substrate contains a fluorophore-quencher pair, and cleavage of the substrate produces a fluorescence signal which increases with the amplification of the target sequence. DNAzy-PCR is described in Todd et al., Clin. Chem. 46:625-30 (2000), and in U.S. Pat. No. 6,140,055.


Fiandaca et al. describes a fluorogenic method for PCR analysis utilizing a quencher-labeled peptide nucleic acid (Q-PNA) probe and a fluorophore-labeled oligonucleotide primer. Fiandaca et al. Genome Research. 11:609-613 (2001). The Q-PNA hybridizes to a tag sequence at the 5′ end of the primer.


Li et al. describes a double stranded probe having a quencher and fluorophore on opposite oligonucleotide strands. Li et al. Nucleic Acids Research. 30(2): e5, 1-9 (2002). When not bound to the target, the strands hybridize to each other and the probe is quenched. However, when a target is present at least one strand hybridizes to the target resulting in a fluorescent signal.


Fluorophore labels and moieties useful in the embodiments disclosed herein include, but are not limited to, dyes of the fluorescein family, the carboxyrhodamine family, the cyanine family, and the rhodamine family. Other families of dyes that can be used in the invention include, e.g., polyhalofluorescein-family dyes, hexachlorofluorescein-family dyes, coumarin-family dyes, oxazine-family dyes, thiazine-family dyes, squaraine-family dyes, chelated lanthanide-family dyes, the family of dyes available under the trade designation Alexa Fluor J, from Molecular Probes, and the family of dyes available under the trade designation Bodipy J, from Invitrogen (Carlsbad, Calif.). Dyes of the fluorescein family include, e.g., 6-carboxyfluorescein (FAM), 2′,4′,1,4,-tetrachlorofluorescein (TET), 2′,4′,5′,7′,1,4-hexachlorofluorescein (HEX), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyrhodamine (JOE), 2′-chloro-5′-fluoro-7′,8′-fused phenyl-1,4-dichloro-6-carboxyfluorescein (NED), 2′-chloro-7′-phenyl-1,4-dichloro-6-carboxyfluorescein (VIC), 6-carboxy-X-rhodamine (ROX), and 2′,4′,5′,7′-tetrachloro-5-carboxy-fluorescein (ZOE). Dyes of the carboxyrhodamine family include tetramethyl-6-carboxyrhodamine (TAMRA), tetrapropano-6-carboxyrhodamine (ROX), Texas Red, R110, and R6G. Dyes of the cyanine family include Cy2, Cy3, Cy3.5, Cy5, Cy5.5, and Cy7. Fluorophores are readily available commercially from, for instance, Perkin-Elmer (Foster City, Calif.), Molecular Probes, Inc. (Eugene, Oreg.), and Amersham GE Healthcare (Piscataway, N.J.).


As discussed above, in some embodiments, the probes useful in the embodiments disclosed herein can comprise a quencher. Quenchers may be fluorescent quenchers or non-fluorescent quenchers. Fluorescent quenchers include, but are not limited to, TAMRA, ROX, DABCYL, DABSYL, cyanine dyes including nitrothiazole blue (NTB), anthraquinone, malachite green, nitrothiazole, and nitroimidazole compounds. Exemplary non-fluorescent quenchers that dissipate energy absorbed from a fluorophore include those available under the trade designation Black Hole™ from Biosearch Technologies, Inc. (Novato, Calif.), those available under the trade designation Eclipse™. Dark, from Epoch Biosciences (Bothell, Wash.), those available under the trade designation Qx1J, from Anaspec, Inc. (San Jose, Calif.), and those available under the trade designation Iowa Black™ from Integrated DNA Technologies (Coralville, Iowa).


In some embodiments discussed above, a fluorophore and a quencher are used together, and may be on the same or different oligonucleotides. When paired together, a fluorophore and fluorescent quencher can be referred to as a donor fluorophore and acceptor fluorophore, respectively. A number of convenient fluorophore/quencher pairs are known in the art (see, for example, Glazer et al, Current Opinion in Biotechnology, 1997; 8:94-102; Tyagi et al., 1998, Nat. Biotechnol., 16:49-53) and are readily available commercially from, for instance, Molecular Probes (Junction City, Oreg.), and Applied Biosystems (Foster City, Calif.). Examples of donor fluorophores that can be used with various acceptor fluorophores include, but are not limited to, fluorescein, Lucifer Yellow, B-phycoerythrin, 9-acridineisothiocyanate, Lucifer Yellow VS, 4-acetamido-4′-isothio-cyanatostilbene-2,2′-disulfonic acid, 7-di ethyl amino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin, succinimdyl 1-pyrenebutyrate, and 4-acetamido-4′-isothiocyanatostilbene-2-,2′-disulfonic acid derivatives. Acceptor fluorophores typically depend upon the donor fluorophore used. Examples of acceptor fluorophores include, but are not limited to, LC-Red 640, LC-Red 705, Cy5, Cy5.5, Lissamine rhodamine B sulfonyl chloride, tetramethyl rhodamine isothiocyanate, rhodamine×isothiocyanate, erythrosine isothiocyanate, fluorescein, diethylenetriamine pentaacetate or other chelates of Lanthanide ions (e.g., Europium, or Terbium). Donor and acceptor fluorophores are readily available commercially from, for instance, Molecular Probes or Sigma Chemical Co. (St. Louis, Mo.). Flourophore/quencher pairs useful in the compositions and methods disclosed herein are well-known in the art, and can be found, e.g., described in S. Marras, “Selection of Fluorophore and Quencher Pairs for Fluorescent Nucleic Acid Hybridization Probes” available at the world wide web site molecular-beacons.org/download/marras,mmb06%28335%293.pdf (as of Apr. 11, 2012).


The detection process used in the assays disclosed herein advantageously permits multiple concurrent measurements of multiple detectable moieties, e.g., a plurality of probes containing different detectable moieties, etc. In some embodiments, these measurements may be taken from separate reaction chambers within a microfluidic cartridge, e.g., comprising a chamber layer (the chamber layer referring herein to that portion of the microfluidic cartridge containing the reaction chambers). Certain of these embodiments perform a plurality of amplification reactions simultaneously in a single reaction chamber, e.g., multiplex PCR. A PCR protocol may comprise guidelines for performing the successive annealing and denaturing of the polynucleotides in the reaction chamber prior to detection. In certain embodiments, the apparatus is configured to facilitate consistent heating and/or cooling across a plurality of reaction chambers to perform nucleic acid amplification, and to facilitate detection of target amplicons in individual reaction chambers, e.g., by detecting fluorescent emissions, using a sensor array.


In certain embodiments, the apparatus may comprise an aperture plate which facilitates consistent heating and cooling of the reaction chambers by applying pressure to a cartridge containing a plurality of reaction chambers via multiple, independent optical pairs. The aperture plate is preferably configured to enable and facilitate the generation and detection of fluorescent signals from probes within multiple, independent reaction chambers. In some embodiments, the aperture plate is configured such that there is an individual aperture (or windows), positioned over each of the individual reaction chambers in the microfluidic cartridge.


Diagnostic Apparatus



FIGS. 1A and 1B show a diagnostic apparatus 10 of certain of the present embodiments. In the embodiment illustrated in FIG. 1A, the diagnostic apparatus includes an apparatus housing 30. The housing 30 may ensure a controlled environment for processing of the microfluidic samples and for preventing undesirable light from entering the detection space. The housing 30 may comprise a cover 16 which includes a handle 14 and a translucent window 12. The cover 16 may be brought down to close the opening in the front of the diagnostic apparatus 10 when the diagnostic apparatus 10 is in operation.


As seen in the embodiments of FIGS. 1A and 1B, the diagnostic apparatus 10 may house two specimen racks 24a, 24b in the front portion of the diagnostic apparatus 10. The skilled artisan will appreciate, however, that the depiction of the diagnostic apparatus in FIGS. 1A and 1B is exemplary only, and that in some embodiments, the apparatus can be configured to house more than two specimen racks, e.g., three, four, five, six, seven, eight, nine, ten, or more specimen racks. Preferably, the apparatus is configured to house the same number of specimen racks, e.g., two, as microfluidic cartridges.


In some embodiments, each specimen rack 24a, 24b may include multiple holders 26. The holders 26 may include receptacles for holding diagnostic reagents, such as reagents for nucleic acid amplification, e.g., PCR reagents or the like. The racks 24 may also include specimen tubes (not shown) and mixing tubes (not shown) for preparing diagnostic-ready samples, such as amplification-ready samples. The apparatus may prepare the desired reagents in the racks 24a, 24b using the dispenser 400. Further description of various fluid dispensers may be found in e.g., U.S. Patent Application Publication 2009-0130719 and U.S. Patent Application Publication 2009-0155123, incorporated herein by reference.


In some embodiments, the reaction chambers within the microfluidic cartridge(s) includes one or more reagents, buffers, etc., used in the nucleic amplification assay. For example, in some embodiments, the reaction chambers of the microfluidic cartridge can include, e.g., amplification primers, probes, nucleotides, enzymes such as polymerase, buffering agents, or the like. By way of example, in some embodiments, the reaction chambers can include lyophilized reagents, to which processed biological sample (e.g., a solution of extracted nucleic acids) is added. The prepared fluids may then be transferred to a microfluidic cartridge and be inserted into heater/optical modules 500a, 500b for processing and analysis.



FIG. 1A is a front plan view of the diagnostic apparatus 10 of certain of the embodiments. As seen in FIG. 1A, the diagnostic apparatus 10 can include a fluid dispenser 400, mounted on a lateral rail 20. The lateral rail 20 may be part of a motor-driven gantry 18, which may also include a fore-aft rail 22 (not shown). The fore-aft rail 22 may be connected to the lateral rail 20 and mounted perpendicularly to the lateral rail 20 in the diagnostic apparatus 10.



FIG. 1A further illustrates the cover 28 over the heater/optical modules 500a, 500b. Receiving trays 520a and 520b may be located beneath or within the housing of the heater/optical modules 500a, 500b. Receiving tray 520a is illustrated in an open position, making it available to receive a microfluidic cartridge 200. Receiving tray 520b is illustrated in a closed position. Closing the tray not only places the reagents in the appropriate position for processing, but also further protects the interior of the heater/optical modules from receiving any unwanted stray light. Were stray light introduced into the detection area, the system may identify erroneous fluorescent levels derived from light which is not emitted from the reaction chamber.



FIG. 1B is a perspective view of the diagnostic apparatus 10 showing certain of the internal components found in certain of the embodiments. To better illustrate certain features, the apparatus housing 30, the cover 16, and the heater/optical cover 28 found in FIG. 1A have been removed from view in FIG. 1B. Shown in FIG. 1B is the gantry 18, including the lateral rail 20 fore-aft rail 22. The fluid dispenser 400 may be mounted on the lateral rail 20 and may slide laterally along the long lateral rail 20. The lateral rail 20 may be connected to the fore-aft rail 22 which may move in the fore-aft direction. In this manner the fluid dispenser 400 is available to move in the X, Y direction throughout the diagnostic device 10. As described below, the fluid dispenser 400 may also able to move up and down in the z-plane on the lateral rail 20, thereby giving the dispenser 400 the ability to move in three directional degrees throughout the diagnostic device 10.


Also shown in FIG. 1B are the heater/optical modules 500a, 500b with the cover 28 of the heater/optical modules of FIG. 1A removed. The receiving trays 520a and 520b are depicted in the open position and are each holding cartridges 200. In some embodiments, the receiving trays may each include a heater substrate 600 (not shown) beneath each of the microfluidic cartridges 200. The heater/optical modules 500a, 500b may also each include a detector head 700 described in greater detail below.


As will be described in more detail below, the diagnostic apparatus 10 may be capable of conducting real-time diagnostics on one or more samples. The sample to be tested may first be placed in a specimen tube (not shown) on the rack 24a or 24b. Diagnostic reagents may be located in the holders 26 on the rack 24a inside the diagnostic apparatus 10. The fluid dispenser 400 may mix and prepare the sample for diagnostic testing and may then deliver the prepared sample to the microfluidic cartridge 200 for thermal cycling and analyte detection in the heater/optical modules 500a, 500b. Alternatively, the fluid dispenser 400 may deliver nucleic acid samples to the reaction chambers of the microfluidic cartridge, wherein the reaction chambers of the microfluidic cartridge already contain reagents for an amplification reaction.



FIG. 2 illustrates an interior view of the diagnostic apparatus 10, showing the rack 24a holding a number of sample tubes 32 and reagent holders 26, and a cartridge 200 situated in the receiving tray 520a. The receiving tray 520a is in an open position extending from the heater/optical module 500a which has the cover 28 attached. The receiving tray 520b is in a closed position. Advantageously, in some embodiments the receiving trays 520a, b may allow easy placement of the microfluidic cartridge 200, by a user or by an auto-loading device. Such a design may also accommodate multiplexed pipetting of samples using the robotic fluid dispenser 400.


Receiving Tray


As illustrated in FIG. 2, the recessed bay 524 can be a portion of the receiving tray 520 that is configured to selectively receive the microfluidic cartridge 200. For example, the recessed bay 524 and the microfluidic cartridge 200 can have an edge 526 which is complementary in shape so that the microfluidic cartridge 200 is selectively received in, e.g., a single orientation. For example, the microfluidic cartridge 200 can have a registration member 202 that fits into a complementary feature of the bay. The registration member 202 can be, for example, a cut-out on an edge of the cartridge 200 (as shown in FIG. 3A) or one or more notches that are made on one or more of the sides. The skilled artisan will readily appreciate that complementarity between the cartridge and the receiving bay can be easily achieved using other suitable arrangements, e.g., a post or protrusion that fits within an aperture. By selectively receiving the cartridge 200, the recessed bay 524 can help a user to place the cartridge 200 so that the optical module 502 can properly operate on the cartridge 200. In this way, error-free alignment of the cartridges 200 can be achieved.


The receiving tray 520 may be aligned so that various components of the apparatus that can operate on the microfluidic cartridge 200 (such as, heat sources, detectors, force members, and the like) are positioned to properly operate on the microfluidic cartridge 200 while the cartridge 200 is received in the recessed bay 524 of the receiving tray 520. For example, contact heat sources on the heater substrate 600 may be positioned in the recessed bay 524 such that the heat sources can be thermally coupled to distinct locations on the microfluidic cartridge 200 that is received in the receiving tray 520.


Microfluidic Cartridge


Certain embodiments contemplate a microfluidic cartridge configured to carry out amplification, such as by PCR, of one or more polynucleotides from one or more samples. By cartridge is meant a unit that may be disposable, or reusable in whole or in part, and that may be configured to be used in conjunction with some other apparatus that has been suitably and complementarily configured to receive and operate on (such as deliver energy to) the cartridge.


By microfluidic, as used herein, is meant that volumes of sample, and/or reagent, and/or amplified polynucleotide are from about 0.1 μl to about 999 μl, such as from 1-100 μl, or from 2-25 μl, as defined above. Similarly, as applied to a cartridge, the term microfluidic means that various components and channels of the cartridge, as further described herein, are configured to accept, and/or retain, and/or facilitate passage of microfluidic volumes of sample, reagent, or amplified polynucleotide. Certain embodiments herein can also function with nanoliter volumes (in the range of 10-500 nanoliters, such as 100 nanoliters).



FIG. 3A is a top plan view of a microfluidic cartridge 200. The cartridge 200 may comprise a plurality of sample lanes 1706a-c. The lanes may lead to PCR chambers 1703 located on “left” and a “right” sides (i.e., rows) of the cartridge. As indicted in FIG. 3a, the lanes may provide inlet ports 1705 in a convenient location near the user. However, the lanes to which the ports are connected may then take independent paths to separate chambers 1703a-c. In the embodiment of FIG. 3a, for example, the first lane 1706a is in communication with the first chamber 1703a of the left side, the second lane 1706b is in communication with the first chamber of the right side 1703b, the third lane 1706c is in communication with the second chamber 1703c of the left side, etc. Each of the microfluidic lanes may also comprise microfluidic valves 1702, 1704, microfluidic gates, and microfluidic channels. These gates and valves may be configured, e.g., by thermal actuation, to facilitate timed release and controlled diffusion of certain fluids within the lanes 1706 of cartridge 200. The cartridge of this embodiment may comprise venting holes 1701 which prevent air from blocking fluid passage within the cartridge. Further description of various cartridge components, such as valves, may be found in e.g., U.S. Patent Application Publication 2009-0130719, incorporated herein by reference.


The microfluidic cartridge 200 may include a registration member 202, for example, a cutout, which corresponds to a complementary edge in the recessed bay 524 of the receiving tray 520a,b of the heater/optical modules 500a, 500b. The registration member 202 and the complementary edge 526 may allow for secure and correct placement of the microfluidic cartridge 200 in the receiving tray 520a, b.


In various embodiments, the components of a microfluidic networks in the sample lanes 1706 of the cartridge 200 may be heated by thermally coupling them with the heaters in a heater substrate 600. The heater substrate 600 may be configured to heat a sample mixture comprising amplification reagents and an amplification-ready polynucleotide sample and cause it to undergo thermal cycling conditions suitable for creating amplicons from the amplification-ready sample. The heater substrate 600 may be located on the cartridge 200 in some embodiments or in the recessed bay 524.


The microfluidic network in each lane may be configured to carry out nucleic acid amplification, such as by PCR, on an amplification-ready sample, such as one containing nucleic acid extracted from a sample. An amplification-ready sample may comprise a mixture of amplification reagents and the extracted polynucleotide sample. The mixture may be suitable for subjecting to thermal cycling conditions to create amplicons from the extracted polynucleotide sample. For example, an amplification-ready sample, such as a PCR-ready sample, may include a PCR reagent mixture comprising a polymerase enzyme, a positive control nucleic acid, a fluorogenic hybridization probe selective for at least a portion of the positive control nucleic acid and a plurality of nucleotides, and at least one probe that is selective for a target polynucleotide sequence. The microfluidic network may be configured to couple heat from an external heat source with the mixture comprising the PCR reagent and the extracted polynucleotide sample under thermal cycling conditions suitable for creating PCR amplicons from the extracted polynucleotide sample.


In various embodiments, the reagent mixture may comprise fluorescent or other optically-detectable labels for the detection of the generation of a desired amplicon. In some embodiments, multiple sets of primers and multiple labels can be used in a multiplex assay format, e.g., multiplexed PCR, where each of a plurality of different amplicons can be detected in a single reaction chamber, if present. For example, one assay chamber could include template nucleic acids from a test sample, positive control template nucleic acids, one or more primer pairs for the amplification of specific target sequences, one or more probes for the detection of target amplicons, and one or more primer pairs and a probe for the detection of positive control amplicons. Additionally, the skilled artisan will appreciate that in some embodiments, the microfluidic cartridge accommodates a negative control polynucleotide that will not produce an amplicon with primer pairs used to amplify target or positive control sequences.


In certain of the illustrated embodiments, the chambers 1703a-c respectively associated with each lane 1706a-c of a multi-lane cartridge 200 may perform independent amplification reactions. The results of the reactions for the first column of chambers (1703a, 1703b) for the first two lanes (1706a,1706b) may then be simultaneously and independently measured using a detector head which comprises a “left” and a “right” light source-photodetector pair. That is each chamber 1703a-b of each lane 1706a-b may receive light from a separate light source and be observed by a separate photodetector simultaneously. In this manner, a variety of combinations of reactions may be performed in the cartridge efficiently. For example, in some embodiments, a plurality of amplification assays for the detection of a plurality target nucleic acids can be performed in one lane, a positive control and a negative control in two other lanes; or one or more amplification assays for the detection of one or more target nucleic acids, respectively, in combination with an internal positive control in one lane, with a negative control in a separate lane. In one particular embodiment, 2, 3, 4, 5, 6, or more assays are multiplexed in a single lane, with at least that number of fluorescently distinct fluorophores in the reaction chamber.


A microfluidic cartridge 200 may be constructed from a number of layers. Accordingly, one aspect of the present technology relates to a micro fluidic cartridge that comprises a first, second, third, fourth, and fifth layers wherein one or more layers define a plurality of microfluidic networks, each network having various components configured to carry out PCR on a sample in which the presence or absence of one or more polynucleotides is to be determined. In another embodiment, the microfluidic cartridge 200 can comprise a plurality of lanes, each including a reaction chamber, etched or molded in a single plane, such as in a molded plastic substrate, with each lane being closed by a cover layer, such as an adhesive plastic film layer. Embodiments with 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, or more lanes per cartridge are contemplated. For example, one suitable design is a single cartridge 200 having 24 reaction chambers, arranged in two rows of 12 reaction chambers, optionally having relatively aligned inlet ports. Further description of various cartridges and their components may be found in e.g., U.S. Patent Application Publication 2008-0182301 and U.S. Patent Application Publication 2009-0130719, incorporated herein by reference.


Heater Substrate


Shown in FIG. 3B is a top plan view of certain embodiments of the heater substrate 600. Any type of heater can be used, including resistive, Peltier, or moving-fluid heaters, with either passive or active cooling contemplated. One of many possible embodiments includes a plurality of resistive heaters in thermal contact with each reaction chamber, preferably also including one or more temperature sensors. Because resistive heaters also exhibit some thermistor effect, i.e., their resistance changes with temperature, the resistive heaters themselves can double as temperature sensors, allowing precise temperature control of each reaction chamber while simplifying the product design. Although the heaters can be controlled in concert with each other, in some embodiments each reaction chamber can have one or more individual heaters in thermal contact therewith, such that the heaters are separately controllable and each reaction chamber can be heated and allowed to cool independently of the other reaction chambers. This allows different assays to be performed simultaneously in each of a plurality of reaction chambers. One particular resistive heater assembly for use with an individual reaction chamber is shown in FIG. 3B. In the embodiment shown in FIG. 3B, any combination of a top sensor heater/sensor 1604, a bottom heater/sensor 1603, a side heater/sensor 1601 and a center heater/sensor 1602 may be used to heat the reaction chamber located above. For ease of comprehension, an outline of the PCR chamber 1703 of certain of the embodiments is overlaid on the heater substrate. In certain embodiments, the heaters in the heater substrate 600 may be contact heaters. Such contact heaters may comprise (for example) a resistive heater (or network thereof), a radiator, a fluidic heat exchanger and a Peltier device. The contact heat source may be configured in the recessed bay 524 to be thermally coupled to one or more distinct locations of the microfluidic cartridge 200 received in the receiving tray 520a, b whereby the distinct locations are selectively heated. The contact heat sources may each be configured in the heater substrate 600 to be independently thermally coupled to a different distinct location in a microfluidic cartridge 200 received in the receiving tray 520a,b whereby the distinct locations are independently heated. The contact heat sources can advantageously be configured to be in direct physical contact with distinct locations of a microfluidic cartridge 200 received in the receiving tray 520a,b. In various embodiments, each contact source heater may be configured to heat a distinct location having an average diameter in 2 dimensions from about 1 millimeter (mm) to about 15 mm (typically about 1 mm to about 10 mm), or a distinct location having a surface area of between about 1 mm about 225 mm (in some embodiments between about 1 mm and about 100 mm, or in some embodiments between about 5 mm and about 50 mm).


The heater substrate 600 may be organized into “lanes” 1605a, b paralleling the structure of the lanes 1706a-c of the cartridge 200. In some embodiments, the heater substrate 600 may include 24 heater lanes 1605a, 1605b corresponding to the sample lanes 1706 of cartridge 200. When the microfluidic cartridge 200 is placed in the recessed bay 524 of the receiving tray 520a,b, the components of the cartridge 200 may be aligned adjacent to, and above, the corresponding heaters in the heater substrate 600. When the microfluidic cartridge 200 is placed in the recessed bay 524, the heaters may be in physical contact with the respective components. In some embodiments the heaters remain thermally coupled to their respective components, e.g., through one or more intermediate layers or materials, though not in direct physical contact. Further description of lanes may be found e.g., in U.S. Patent Application Publication 2009-0130719, herein incorporated by reference.


In some embodiments, multiple heaters may be configured to simultaneously and uniformly activate to heat their respective adjacent cartridge components of the microfluidic network in the microfluidic cartridge 200. Each heater may be independently controlled by a processor and/or control circuitry used in conjunction with the apparatus described herein. Generally, the heating of microfluidic components (gates, valves, chambers, etc.) in the microfluidic cartridge 200, is controlled by passing currents through suitably configured micro-fabricated heaters. Under control of suitable circuitry, the lanes 1706 of a multi-lane cartridge can then be heated independently, and thereby controlled independently, of one another. Furthermore, as is described in more detail below, the individual heaters 1601-1604 can be heated independently, and thereby controlled independently, of one another. This can lead to a greater energy efficiency and control of the apparatus, because not all heaters are heating at the same time, and a given heater is receiving current for only that fraction of the time when it is required to heat.


The heater substrate 600 may also include one or more heat sensors. In order to reduce the number of sensor or heaters required to control the heaters in a heater lanes 1605a, 1605b, the heaters may be used to sense temperature as well as heat, and thereby obviate the need to have a separate dedicated sensor for each heater. For example, the impedance and/or resistance of some materials change with the surrounding temperature. Accordingly, the resistance of heater/sensors 1601-1604 may be used as an indication of temperature when the sensors are not being actively heated.


In some embodiments, the heaters in the heater substrate 600 may be designed to have sufficient wattage to allow the heaters to be grouped in series or in parallel to reduce the number of electronically-controllable elements, thereby reducing the burden on the associated electronic circuitry. Heaters that are grouped together in this manner would be operated under synchronized and substantially simultaneous control.


In some embodiments, the reaction chamber heaters on opposite sides of the second stage heaters can be grouped and configured to operate under synchronized control. For example, in some embodiments, the PCR/amplification heaters 1601-1602 can be grouped and configured to operate under synchronized control. Alternative groupings and configurations can be applied to other heater groups of the PCR/amplification heaters 1601-1604. The PCR/amplification heaters 1601-1604 may be configured to operate individually and independently or they can be configured to operate in groups of two (pairs), three (thirds), four, five or six.


In some embodiments, the heating may be controlled by periodically turning the current on and off to a respective heater with varying pulse width modulation (PWM), wherein pulse width modulation refers to the on-time/off-time ratio for the current. The current can be supplied by connecting a micro fabricated heater to a high voltage source (for example, 30V), which can be gated by the PWM signal. In some embodiments, the device may include 48 PWM signal generators. In some embodiments there will be two PWM signal generators associated with each reaction chamber. Operation of a PWM generator may include generating a signal with a chosen, programmable period (the end count) and granularity. For instance, the signal can be 4000 us (micro-seconds) with a granularity of 1 us, in which case the PWM generator can maintain a counter beginning at zero and advancing in increments of 1 us until it reaches 4000 us, when it returns to zero. Thus, the amount of heat produced can be adjusted by adjusting the end count. A high end count corresponds to a greater length of time during which the micro fabricated heater receives current and therefore a greater amount of heat produced.


In various embodiments, the operation of a PWM generator may also include a programmable start count in addition to the aforementioned end count and granularity. In such embodiments, multiple PWM generators can produce signals that can be selectively non-overlapping (e.g., by multiplexing the on-time of the various heaters) such that the current capacity of the high voltage power is not exceeded.


Multiple heaters can be controlled by different PWM signal generators with varying start and end counts. The heaters can be divided into banks, whereby a bank defines a group of heaters of the same start count. Control of heating elements, and cooling elements, if present, in certain embodiments is discussed in further detail below.


Optical Module



FIGS. 4A-C illustrate the heater/optical module 500 of the detection apparatus 10 found in certain embodiments. The heater/optical module 500 may comprise an optical module 502 and a receiving tray 520 or a portion of the receiving tray. FIG. 4A shows one embodiment of the enclosed optical module 502 having a motor 504 externally attached thereto for driving movement of detector head 700. The detector head 700 may be housed inside the optical module 502. FIG. 4A illustrates the receiving tray 520 coupled to a bottom side 506 of the optical module 502. The receiving tray 520 may receive a cartridge 200 comprising samples upon which detection is to be performed. After receiving the samples, the receiving tray 520 may be moved (e.g., mechanically or manually) on rails 522 to a position underneath the optical module 502. In some embodiments, described in greater detail below, the receiving tray may comprise an auto-loading device, which automatically aligns the cartridge once positioned beneath the optical module 502. In some embodiments, a recessed bay 524 of the receiving tray 520 may contain a heater substrate 600. In some embodiments, the receiving tray may subsequently be raised to place the cartridge in contact with the optical module 502, such as in contact with an aperture plate 540 at the base of the optical module 502



FIG. 4B illustrates an embodiment of the optical module 502 with a front panel 508 removed to show the interior of the optical module 502. Shown in FIG. 4B is the detector head 700. As described in detail below, movement of the detector head 700 may be driven by the motor 504 to move laterally across the interior of the optical module 502 to provide optical scanning and detection on the cartridge 200 when the cartridge 200 is positioned below the optical module 502 in the receiving tray 520. Shown in FIG. 4B is an aperture plate 540, positioned on the bottom side 506 of the optical module 502.



FIG. 4C provides a bottom plan view of the optical module 502. Shown in FIG. 4C is the aperture plate 540 and a normalizer plate 546 attached to the bottom of the 506 of the optical module 502. The normalizer plate may be used to calibrate the light source—photodetector pairs of the detector head. The normalizer plate 546 preferably comprises a one or more components having known, standardized optical characteristics, and is configured to calibrate, standardize, or confirm proper operation of the detector head 700 and associated circuitry. The normalizer plate 546 may extend into the optical module and the detector head 700 may be positioned over the normalizer plate. In some embodiments, prior to the start of cartridge optical measurements the detector head 700 is calibrated using the known properties of the normalizer plate 546. If the detector head 700 is not working properly, corrective action may be taken, such as including an offset in the measurements or notifying the user of the error. In some embodiments, the normalizer plate may be made of optically-transparent material such as polycarbonate mixed with a highly fluorescent dye, or other standardized chromophore or fluorophore. In one embodiment, the normalizer plate includes a standardized chromophore or fluorophore for each channel or color in the detector head 700.


As shown in FIG. 4C, the aperture plate 540 contains apertures 557. The dimensions of apertures 557 are such that the detector's light sources and photodetectors may have access to (optically excite or view) the contents in cartridge 200's reaction chambers when the detector is moved to a plurality of positions within optical module 502. That is, when a light source-photodetector pair of the detector is located in a position over a particular aperture light may travel from the light source and reach the chamber reactor through the aperture 557. The fluorescing reagents in the reaction chamber may then be visible to the photodetector via the aperture 557.


Detector Head



FIG. 5 shows a cross-section of the detector head 700 taken along line 13 of FIG. 4B. The detector head 700 may be configured to optically excite and/or monitor fluorescence emitted in connection with detection of from one or more polynucleotides present in the reaction chambers 1703. Note that a positive result (presence of a target amplicons) may be indicated by increased fluorescence or decreased fluorescence, depending on assay design. For example, when the assay involves a fluorophore and a quencher, the quencher may quench fluorescence when the target is present, or in other assay designs, when the target is absent. The system may comprise, for example, a plurality of detector pairs, e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or more, such as the detector pair 726. Each detector pair 726 can be comprised of a light source 726a, such as a light-emitting diode (LED), and a corresponding light detector 726b, such as a photodiode. The light source 726a may selectively emit light in an absorption band of a fluorescent probe. The light detector 726b may selectively detect light in an emission band of the fluorescent probe, wherein the fluorescent probe corresponds to a polynucleotide probe or a fragment thereof. In certain embodiments the light source 726a may comprise a bandpass-filtered diode that selectively emits light in the absorption band of the fluorescent probe. Light detector 726b may comprise a bandpass filtered photodiode that selectively detects light in the emission band of a fluorescent moiety, e.g., emission from a fluorescent probe. In certain embodiments, a filter 726a1, such as a bandpass filter may be applied to the light source 726a's light. The light from the light source 726a passes through a filter before passing through the sample in the micro-fluidic channel (300 g deep in certain embodiments). In certain embodiments, the optical path-length for the light from the reaction chamber to the light detector 726b may be very small. The incident light from light source 726a generates fluorescence in the reaction chamber. Light from the reaction chamber then travels to the light detector 726b. Certain embodiments seek to mitigate any undesired light from entering the detector and thereby adversely affecting the light signal from the reaction chamber.


In some embodiments, each one of the plurality of detector pairs may be arranged along the length of the detector head 700 in rows. That is, behind the pairs 726 and 727 illustrated in FIG. 5 may be another column of pairs in a similar or same orientation. For the sake of explanation, a collection of cartridges or detector pairs along the length of the cartridge are referred to as a “row” and those along the width as a “column”. Thus, the vertical direction in FIGS. 3A and 6 indicates a “column” and the horizontal direction a “row”. Certain embodiments contemplate six or more columns of such detector pairs. In these embodiments, there would be 12 detector pairs in total (two rows of six) with two detector pairs per column, permitting 12 separate and simultaneous detections.


Each light source, such as for example light source 726a, may be configured to produce light of a wavelength specific to a specific fluorescent moiety associated with, e.g., a probe, contained in the reaction chambers. Each light detector, such as for example 726b, may be configured to detect the light emitted from the fluorescent probes associated with the light produced by the light emitter in the detector pair. The detector pairs may be configured to independently detect a plurality of fluorescent moieties, e.g., different fluorescent probes, having different fluorescent emission spectra, wherein in each reaction chamber, emission from each fluorescent probe is indicative of the presence or absence of one particular target polynucleotide or a fragment thereof. Although folded light paths can be used, one embodiment utilizes a detector and emitter pair where each is in direct optical contact with the reaction chamber, preferably simultaneously in such contact. Optionally, the detector and emitter of a pair are aligned with the reaction chamber along lines that substantially intersect at an acute angle at the reaction chamber. The angle can be, for example, between about 5 and 70 degrees, preferably between about 8 and 60 degrees, more preferably between about 10 and 50 degrees.


In some embodiments, the detector head includes two rows of photodetector and light source pairs that correspond to two rows of reaction chambers of microfluidic cartridges, when present in the apparatus. For example, the detector head can include a first or top row of six photodetector and light source pairs, and a second, or bottom row of photodetector and light source pairs, that are configured to query first and second rows of reaction chambers within a microfluidic cartridge, respectively.



FIG. 6 illustrates one possible photodetector and light source layout implemented in certain embodiments of the detector. The first column comprises ROX light emitters 201a, 201b and corresponding detectors 207a, 207b. The second column comprises HRM light emitters 201c, 201d and corresponding detectors 207c, 207d. The third column comprises CY5 light emitters 201e, 201f and corresponding detectors 207e, 207f. The fourth column comprises FAM light emitters 201g, 201h and corresponding detectors 207g, 207h. The fifth column comprises Q705 light emitters 201i, 201j and corresponding detectors 207i, 207j. The sixth column comprises VIC light emitters 201k, 201l and corresponding detectors 207k, 207l. In some instances, the detectors and emitters are selected with reference to particular fluorophores to be used in an assay. In the embodiment illustrated in FIG. 6, the first or top row detector and light source pairs comprises a plurality of photodetector and light source pairs, e.g. emitters 201a, 201c, 201e, 201g, 201i, and 201k and detectors 207a, 207c, 207e, 207g, 207i, and 207k. The second or bottom row detector and light source pairs comprises a plurality of photodetector and light source pairs, e.g. emitters 201b, 201d, 201f, 201h, 201j, and 201l and detectors 207b, 207d, 207f, 207h, 207j, and 207l. A summary of the properties of exemplary emitters and detectors is shown in Table 1 below.













TABLE 1







Wavelength




Color
Dye
Name


(Spec)
(Assay)
(Ex/Em)
Software
CT#







Green
FAM
470/510
FAM
4


Yellow
TET, VIC
530/555
VIC
6


Orange
Texas Red, ROX
585/610
Cal Red/ROX
1


Red
Cy5
625/660
Cy5
3


Crimson
Cy5.5
680/715
Cy5.5
5


ultraviolet
null
ultraviolet
HRM
2









The exemplary arrangement of photodetectors and light sources depicted in FIG. 6 can inhibit cross-talk between detection columns. That is, the wavelength range for each emitter detector pair may be selected so as to possess a minimal overlap with its neighboring emitter-detector pairs. Thus, for example, where CT# refers to the column of a particular emitter-detector pair in a 6-column detector head, Ex is the excitation wavelength of a fluorophore, and Em is the emission wavelength, it will be apparent that adjacent emission wavelengths are not adjacent to each other in the detector head. That the row HRM's dye is null merely indicates that a variety of dyes, not required for this particular example, may be used. In some embodiments, HRM refers to a “High Resolution Melt” and a corresponding light source for this photodetector may comprise an LED operating in the ultraviolet spectrum. One will recognize that the columns may be arranged in alternative variations and that alternative selections of light emitting sources and detectors may be substituted for those shown.


The light-emitter and photodetector pairs of each column may be calibrated using the normalizer plate. After calibration, the detector head may be moved to a position such that a first column of light-emitter and photodetector pairs is located over a first group of lanes such that each light-emitter and photodetector pair has access to a reaction chamber of the lanes. Detection of the reaction chambers in the first group of lanes will then be performed using the first column of emitters/detectors. Then, the detector head may be moved to a second position such that the first column is over a second group of lanes and the second column is over the first group of lanes. Detection of the reaction chambers in the second group of lanes will then be performed using the first column of emitters/detectors and detection of the reaction chambers in the first group of lanes will then be performed using the second column of emitters/detectors. The process may continue until each column has passed over each lane. Thus, for N columns of detectors and M columns of chambers, the detector will perform detections at least M+N−1 positions. For example, in the embodiments of FIG. 6 there are 6 columns. For a cartridge comprising 12 lanes, the detector would need to move between at least 17 positions (18 if the calibration position is considered).



FIG. 7 depicts the final results after operation of certain of the embodiments. Plotted are the detected fluorescent levels for each light emitter—photodetector pair 801-805 over time for a single reaction chamber (or reactor) associated with a single lane. After a sufficient number of iterations (approximately 30 in this example) of the annealing and denaturing protocol, the detectors identify increasing levels of fluorescence within the reactor.


Chamber Plate


Certain of the present embodiments relate to the plating surrounding and including the chamber layer. Particularly, certain embodiments contemplate the manufacture of an aperture layer comprising characteristics that advantageously facilitate consistent results across trials of the heating/detection module, as discussed in further detail below.



FIG. 8 illustrates the plating arrangement found in certain embodiments of the scanning thermocyler's optical module and the associated receiving tray and cartridge. When the cartridge is brought within proximity of the aperture layer 540 of the optical module 500a, the thermal layer 600, chamber layer 200 (which may comprise a chamber substrate), and aperture layer 540 may be situated as depicted in the embodiment of FIG. 8. As discussed above, the chamber layer 200 may comprise a plurality of reaction chambers 1703a-d, which may be located so as to be thermally controlled separately from one another, or in groups. Thermal layer 600 may comprise a plurality of thermal units 1605a, 1605b, 1605c. FIG. 8 is a simplified, abstract diagram of the above description, and certain features of the microfluidic pathway are not shown. In certain embodiments the thermal units may be both mechanically and thermally disconnected from one another (as illustrated by their physical separation in FIG. 4). However, in other embodiments, the thermal units may be each placed within a same substrate material, but spaced such that they remain thermally disconnected, as discussed above. Thus, it is possible for the thermal units to be thermally separated, but not mechanically separated.


In this manner, each thermal unit may be associated with one or more reaction chambers 1703a-d, separately from the remaining reaction chambers. In agreement with the protocol specified for each reaction chamber, the thermal units may successively heat and/or cool their corresponding chamber appropriately. For example, thermal unit 1605c may cool and/or heat chamber 1703a such that the temperature of chamber 1703a is substantially independent of the cooling and thermal state of the chamber 1703a. While heating may be accomplished by running current through a microfluidic or electronic circuit, cooling may be “passive” in that only convection between the microfluidic chamber and is used to reduce the chamber's temperature. The thermal units 1605a, 1605b, 1605c may be controlled using a closed loop control system.


In some embodiments, aperture plate 540 may be located over the chamber layer 200 and can provide pressure to chamber layer 200 to facilitate heating and cooling of the microfluidic cartridge, e.g., the chamber layer, by thermal layer 600. The aperture plate can include a plurality of apertures 557a-d to facilitate each photodetector's 726b observation of an individual reaction chambers 1703a-d. In the absence of aperture plate 540, and depending on the configuration of the thermal layer 600 and chamber layer 200, chamber layer 200 may “warp” and/or be sufficiently flexible that the thermal communication between chambers and the respective thermal units is inconsistent. Inconsistent heating and cooling can lead to less accurate execution of the protocols and less precise and accurate results. As described above, significant warping may restrict the optical head from lateral movement. Thus, the thickness of the aperture plate must be appropriately selected to facilitate a proper light path between each reaction chamber and the light sources and photodetectors while still ensuring proper heating and cooling of the chamber layer. If the aperture layer is too thick, the distance from the photodetector 726b to the chamber may be too great, undesirably attenuating the fluorescence reading from the reaction chamber. In addition to increasing the distance to the reaction chamber, an aperture layer 540 which is too thick or too heavy will place too much pressure on the reaction chamber, causing convection to be too great. Conversely, if the aperture layer 540 is too thin it may not prevent the chamber layer 200 from bending and warping, and the aperture layer 540 may bend and warp itself. Warping of apertures 557a-d or the chambers 1703a-d may deflect light from the light source 726a and prevent accurate readings by photodetector 726b.


Accordingly, the embodiments described herein provide aperture layers that advantageously avoid the drawbacks described above. In certain embodiments, the aperture layer 540 is made, at least in part, of steel. In these embodiments, steel provides the appropriate strength, density and resistance to deflection desired for operation. Furthermore, the steel may provide low self-fluorescence and is therefore less likely to adversely affect the reading of photodetector 726b. The steel may also be electrochemically treated to diminish its self-fluorescence and thereby be less likely to adversely affect the reading of the photodetector. In certain embodiments, the aperture layer may instead comprise black nickel (Ni), i.e. Ni with a colorant added to it to reduce self-fluorescence. Certain embodiments contemplate combinations of these different materials and electrochemical treatments. In certain embodiments, the aperture layer 540 is made of aluminum and when secured by the adjoining support panels 500, 506, and 546, provide the appropriate strength. The aluminum may be electrochemically plated with an anodic oxide finish, e.g., with a black colorant added to reduce self-fluorescence.


The illumination optics may be designed so that the excitation light falling on the reaction chamber, or reactor, is incident along an area that is similar to the shape of the reactor. As the reactor may be long and narrow, the illumination spot may also be long and narrow, i.e., extended, as well. Thus the shape of apertures 557a-d may be designed with consideration both to the dimensions of the reaction chamber underneath, as well as to the relative positions of the corresponding light emitter and photodetector. The length of the spot may be adjusted by altering a number of factors, including: the diameter of the bore where the photodetector 726b is placed (the tube that holds the filter and lens may have an aperturing effect); the distance of the photodetector 726b from the PCR reactor; and the use of proper lens in photodetector 726b.


Force Member


In certain embodiments, the receiving tray 520 places the chamber layer 200 in proximity to the thermal layer 600 or aperture layer 540, but does not mechanically couple and/or thereby place the layers in contact with one another. In this manner, the chamber layer 200 may be thermally, but not mechanically, coupled to the thermal layer 600. In other embodiments, the receiving tray places the thermal layer 600 in both mechanical and thermal contact with the chamber layer 200 and the chamber layer in mechanical contact with the aperture layer 540. In various embodiments, the apparatus may include one or more force members (not shown) that are configured to apply pressure to the receiving tray 520 in order to thermally couple the heat sources to the microfluidic cartridge 200 positioned in the receiving tray 520. The application of pressure may be important to ensure consistent thermal contact between the heater substrate and the reaction chambers, gates, and valves, etc., in the microfluidic cartridge 200. When the receiving tray 520 is in a closed position, thereby being positioned under the aperture plate 540 of the optical module 502, the force member, such as a motor assembly, below the receiving tray 520 may begin traveling upwards towards the optical module 502, thereby bringing the receiving tray 520 closer to the optical module 502. As the receiving tray 520 travels upwards towards the optical module 502, the cartridge 200 may begin to come in contact with a bottom surface of the aperture plate 540. The cartridge 200 may continue traveling upward until sufficient pressure is received on the cartridge 200. As discussed above, the aperture plate 540 may apply an equal pressure across all points of the top of the cartridge 200 and thus, presses the cartridge 200 against the heater substrate 600 with uniform pressure. As discussed, the aperture layer may be selected to possess properties which facilitate this operation. For example, the material selection of the aperture plate 540 may provide very little deflection of the cartridge 200, when pressed against it.


The application of uniform pressure of the cartridge 200 against the heater substrate 600 may allow for uniform heating for each of the components of the cartridge when desirable. Although uniform pressure and contact may be obtained between the heaters in the heater substrate 600 and the components (valves, gates, chambers, etc.) of the microfluidic networks in the cartridge 200, the heaters are not necessarily activated simultaneously, as discussed above. In certain embodiments, application of even pressure does not necessarily result in equal heating of different components of the cartridge 200. In some embodiments, both the activation of a specific heater in the heater substrate 600 along with the pressure applied by the aperture plate 540 to the cartridge 200 activate a particular component of cartridge 200.



FIGS. 9A-H are diagrams of the dimensions of one possible embodiment of the aperture plate. In this embodiment, a chemical conversion coat may be applied to adjust the reflective properties of the aperture layer. Some portions 9002 may be selected not to receive the chemical conversion coat. The coating may be applied to the surface of plate 540 or deposited throughout its material. In some embodiments, the material of the plate 540 may comprise steel. In other embodiments, the plate 540 may comprise aluminum. In yet other embodiments, the material of the plate 540 may comprise nickel. In some embodiments, the material of the plate can be a combination of two or more materials, including for example, aluminum, nickel, or steel.


In the embodiment shown in FIGS. 9A-H the dimensions of the plate have been selected to meet the constraints regarding chamber pressure and optical path to the detector pairs discussed above. The material thickness of the plate 540 starts out at 0.3125 inches and is machined down to the desired thickness. As indicated, much of the plate comprises a thickness of approximately 0.25 inches. However this thickness may vary, for example, the thickness over the aperture openings 557 may be 0.19 inches. As discussed above, the aperture opening thickness facilitates an unimpeded optical path between the photodetector and light source to the contents of the reaction chamber.


In general the dimensions of the aperture plate 540 are selected such that in combination with the properties of the materials constituting the aperture plate 540, the plate 540 provides sufficient pressure to the underlying chamber plate to facilitate proper heating and cooling as well as sufficient rigidity to prevent warping or deformation of the chamber plate. Such deformation may result in obstructions to the light source and photodetector optical path to the reaction chamber. Simultaneously, the dimensions of the plate should not impose an unfavorable distance from the reaction chamber of the chamber layer to the light-source and photodetector pair through the apertures 557. Neither should the aperture plate's dimensions 540 obstruct the optical path from the light-source and photodetector pair to the contents of the chamber reactor.


In some embodiments the normalizer plate 546 may be attached to the aperture plate by inserting screws at positions 9001 or other fixation means through an aperture. In other embodiments, these positions may facilitate broader calibration techniques via the apertures over the normalizer plates than with regard to the remaining apertures.



FIG. 10 illustrates various dimensions of the perspectives of the aperture plate of FIGS. 9A-H. As discussed above, in this embodiment, a chemical conversion coat may be first applied to prevent the base materials, e.g., aluminum, nickel or steel, from oxidation while also providing enhancing electrical grounding for proper electronics operation. Only surfaces which may be exposed to the optical operation are then selectively coated with black anodization.


Diagnostic Analysis Consistency


Certain of the present embodiments contemplate methods for ensuring consistent diagnostic analyses across trials within the same heater/detector and across different heater/detectors. Particularly, embodiments of a system and process for determining the duration and offsets for a plurality of PCR protocols so as to synchronize detection therebetween are disclosed. Additionally, methods for adjusting the reactor cooling time to ensure more consistent results are discussed.



FIG. 11 is a temperature profile for a reaction chamber undergoing a particular protocol 2000. As illustrated above, the system in operation may comprise many different protocols of many different durations operating simultaneously in different reaction chambers. The protocol 2000 involves a plurality of identical heating/cooling cycles, where each cycle comprises denaturing plateaus 2000B and annealing plateaus 2000D where the temperature is maintained constant for a period of time. These cycles may be preceded by a non-periodic cycle of the protocol, such as an incubation period. In certain embodiments, the protocol may be specified as a collection of temperatures and periods of time. That is, the protocol may initially specify only that the chamber is to be held at 95° C. for the duration B and then held at 61° C. for the duration D. Certain embodiments contemplate grouping these segments into “steps” and “substeps” to facilitate user and automated control. For example, the heating and cooling cycle 2000B and D may be referred to as a “step” with the duration B at 95° C. and the duration D at 61° C. referred to as “substeps”. In certain embodiments, a user may specify the durations of the substeps. In other embodiments, these durations may be retrieved from a database. Typically, these times are established either from a standard protocol or by user input, sometimes using an established “recipe” of temperatures and plateau times. In addition to these substeps, the protocol's temperature profile will also comprise transitions, such as transition 2000A from 61° C. to 95° C. and transition 2000C from 95° C. to 61° C. The duration of these transitions may be a consequence of the materials and environment about the reaction chamber and the nature of the heating elements employed.


In certain embodiments the thermal trajectory for both heating and cooling may be determined for the entirety of the reaction prior to the start of the run. In some systems, the contour of temperature versus time is monitored and adjusted throughout the reaction in order to minimize transition temperatures, and taking into account the variations in efficiencies of different heating elements. In other words, some systems utilize feedback control loops to drive to a target temperature, wherein the actual contour of the temperature time relationship can vary from cycle to cycle. Such adjustments can result in different overall reaction times, and, more importantly, different overall reaction efficiencies. Accordingly, in some embodiments, the systems and methods described herein advantageously provide systems wherein the contour of the temperature versus time relationship of the complete reaction for each independent reaction chamber (or group of chambers) is predetermined set prior to the start of the run. Not only does this advantageously allow for synchronization of the multiple detection steps across a plurality of different reactors, but it also enables for stricter control over parameters that minimize differences in reaction efficiencies that may arise as a result of different temperature/time contours. In some embodiments, the systems and methods provided herein provide for the report of errors at the end of a reaction if the measured temperature is different from the expected value when a run is completed.


At various points in the protocol temperature profile 2000, the user or recipe may specify that a detection occur. For example, for some protocols a detection may be requested at the end of segment 2000D. Were detections arbitrarily specified in each protocol, the detector head would need to travel between positions in an inefficient manner and may even find it impossible to perform detections at the requested times. That is, were each of a plurality of protocols to be initiated simultaneously and run in parallel simultaneously across each of the reaction chambers in the cartridge, it would be very inefficient for the detector to meet each protocol's detection requests. Particularly, once calibration was complete the detector would need to first travel to positions suitable to perform detections for each light source-detector pair in its array for the first profile. By the time the detector finished, however, each of the remaining protocols would be entering a period when detection is not to be performed. There will therefore be a “dead time” period when the detector cannot perform any detections and must instead simply sit idle waiting for the opportunity to perform the next detection. This “dead time” is inefficient and unnecessarily prolongs the diagnostic process. Furthermore, where successive detections are to be performed, the “dead time” may generate irregular and aperiodic detections of the same chamber, possibly introducing inconsistent readings.


Certain of the present embodiments contemplate automated adjustments to portions of the profile 2000 to facilitate efficient detection across multiple protocols. This may be accomplished by allowing the user to edit, or the system may edit automatically, the length of segment 2000B or 2000D.


It should be understood that so long as at least a minimum plateau time occurs, some minor extension of plateau times can be accommodated in most amplification protocols. This flexibility is utilized to all efficient accommodation of different assays being performed simultaneously, while performing real-time monitoring of amplification by reading the various assays using a scanning detector head.


If detection were to be performed during segment 2000B, for example, the system or the user may extend the duration of segment 2000B as necessary to accommodate detector head movement and to coordinate the reading of a plurality of assays being performed simultaneously. The duration of segments 2000A and 2000C may be calculated using a predetermined standard cooling rate from the preceding temperatures and incorporated into the analysis. Some embodiments do not allow the user to edit these segments and they are instead accounted for by the system internally.


In certain embodiments, the protocol adjustments determined by the system may comprise at least three separate forms. The first adjustment may comprise an “intra-cycle adjustment” wherein plateaus such as 2000B and 2000D of the protocol are extended such that the entire step cycle 2000A-D achieves a desired duration, in some instances an integer multiple of a detection cycle time. This adjustment is described with respect to FIG. 13. Once the intra-cycle adjustment is complete, the system may then perform an “inter-cycle adjustment”. An inter-cycle adjustment may ensure that detection events within each cycle occur at integer multiples of a desired duration apart from one another (such as an integer multiple of the detection cycle time) between the cycles. These adjustments are discussed with regard to FIG. 14. The third adjustment may comprise a “starting offset adjustment” which may depend only on the lane used for protocol execution. These adjustments are discussed with respect to FIGS. 15A-C.


Protocol Adjustment Overview



FIG. 12 depicts a flow diagram of a process 4000 used in certain of the disclosed embodiments to determine an appropriate solution for the detector detection times and protocol profiles. Process 4000 may be implemented in software, hardware, or a firmware combination of the two. For example, the process may be implemented in any of an FPGA, a microcontroller, or software running on a computer processor. Portions of the process may be performed by a general purpose processor, such as a microcontroller, while other portions may be performed by dedicated hardware, software, or firmware systems. The process begins 4001 by determining a detection cycle time (or using a predetermined detection cycle time, e.g., already in memory) for the system 4002. The detection cycle time may comprise the time that is required for the detector to move to each of the detection positions (detection with each of the emitter/detector pairs in a detection head in each of the six columns of FIG. 6), perform all necessary detections, and return to an initial position. Optionally, the user or system may be allowed to make adjustments to the detection procedure so as to modify the detection cycle time. For example, the user may wish to only perform detection using a subset of the detectors. In some embodiments the detection cycle time is approximately 10 seconds, when the embodiment comprises six columns of detector pairs and all six columns are used.


In some embodiments, the process may first determine a plurality of “intra-cycle adjustments” for one or more of the protocols 4003. As discussed below with respect to FIG. 13, the durations for a step or substep may comprise the time to perform a particular step or substep within the protocol. The cycle times may be determined by a combination of user specifications and system identified constraints. In certain embodiments, the system will require the plurality of cycle times to be integer multiples of the detection cycle time. “Intra-cycle adjustments” may be introduced to satisfy this constraint. For example, if the detection cycle time were 12.2 seconds, the cycle times for a protocol step may be 22.4, 33.6, 44.8, or any other N*12.2 duration, where N is an integer greater than 0. In some embodiments, it is only necessary to impose this constraint when a detection is to be performed within the cycle.


Thus, intra-cycle adjustments ensure that the cycle of the protocol is an integer multiple of the detection cycle time. However, a detection may be requested at any point within a cycle. If the detection cycle time is 10 seconds, then the very earliest that a detection may be performed is at 10 seconds after the protocol initiates. Detections may then be performed at integer multiples after that time (20, 30, 40 seconds, etc.).


Thus, a further adjustment, an “inter-cycle” adjustment 4004, may then be determined to ensure that the requested detection occurs at the appropriate time. These “inter-cycle adjustments” may be incorporated into the protocol as additional delays between protocol steps or substeps. Phrased differently, a PCR protocol once subjected to “intra-cycle” adjustments may comprise “valid” cycle steps. The PCR protocol may then be generated by chaining together each of the steps and adding transitions from step to step. The “inter-cycle adjustments” 4004 ensure that the detection times occur at the desired integer multiples of the detection cycle time after the cycles have been chained together.


For example, for a system having a detection cycle time of 10 seconds a protocol may comprise a step having its first detection at 18 seconds into a cycle. The cycle duration (the duration of the entire step) may last for 30 seconds (perhaps after an “intra-cycle” adjustment). Thus, while the cycle time as a whole is properly aligned with the 10 second detection cycle time (3×10=30 seconds) the first detection is itself not properly aligned with the detection (18 second is not a multiple of 10 seconds). The system will add 2 seconds of “inter-cycle” adjustment to the very first detection run so that the first detection occurs 20 seconds after the start of the protocol. This may be done by extending the previous step's final hold temperature for an additional 2 seconds via a “padding adjustment”. If there is no previous step, the system would insert a 2 second hold at ambient temperature to the beginning of the first run of the cycle. Thus, if the system begins operation at T0, the first detection will occur at T0+20 seconds, the second detection at T0+50 seconds, and so forth.


Because of the inter and intra-cycle adjustments, the protocol is now in a form such that detections will only be requested at times convenient for the detector head to move to the reaction chamber performing the protocol. Were all protocols performed in reaction chambers located in the first column of the cartridge (and sufficient number of detectors present in the detector head) intra and inter-cycle adjustments alone would suffice to properly modify the protocol for efficient detection (a first column here referring to a column of lanes such as lanes 1706a and 1706b with associated chambers 1703a and 1703b in FIG. 3A). However, because the protocols operate in different columns of the cartridge it is further necessary to offset the protocol's initiation to compensate for the detector head's delay in reaching the chamber location.


Thus “starting adjustment offsets” are added to the protocol based on the location of the chamber in which the protocol is performed. These “starting adjustment offsets” 4005 are described in greater detail with respect to FIGS. 15A-C. In some embodiments, these adjustments are made at run time and rely solely on the location of the lane of execution. For example, no adjustment may be necessary for a protocol running in lanes located in a first column of the chamber, so a protocol run in these lanes' chambers will have a delayed start time of +0 seconds. Each subsequent column of lanes gains a delay of 400 milliseconds for its distance from the first column, due to the time required for the detections (two detections at 100 milliseconds each, performed asynchronously in this embodiment) and the detector motor movement (200 milliseconds). In this example, with a detection cycle time of 10 seconds, the first possible detection for each column of lanes is as follows: column 1 has its first detection at 10 seconds, column 2 has its first detection at 10.4 seconds, column 3 has its first detection at 10.8 seconds, etc. By delaying the start of a properly aligned protocol by the necessary time for a particular lane, the expected alignment can be maintained. While this particular example assumes that the protocol is already aligned (from adjustments 4003 and 4004), the skilled artisan will readily appreciate that other embodiments may determine the offsets anticipating future adjustments.


Although described in the order of steps 4003, 4005, and 4004, one will readily recognize that these steps may be arranged into any other suitable order, and neither need the system perform each step successively. In some embodiments, however, such as that described above, it may be necessary to perform inter-cycle adjustments after performing intra-cycle adjustments, as the inter-cycle adjustment depends on the intra-cycle modification. In contrast, the starting-offset adjustment 4005 may not depend on any previous determination. That is, in some embodiments the starting offset 4005 need be determined only once at run time, whereas the intra-cycle adjustments 4003 and inter-cycle adjustments 4004 may be performed for each cycle step in the protocols.


In some embodiments, once the protocol times have been properly adjusted, the process may then initiate the protocols 4006. In some embodiments a processor may simply place the offsets in a memory location for retrieval by a separate dedicated component of the system which itself initiates each protocol.


Intra-Cycle Adjustment


“Intra-cycle adjustments” comprise adjustments to step or substep intervals, as may have been specified by a user or received from a database, so that the step as a whole is an integer multiple of a predetermined duration. With reference to FIG. 13 in certain embodiments the user may specify certain features of the protocol profile, such as the desired times for a protocol substep, using a user interface, or graphical user interface (GUI). In some embodiments, the system may then validate the user's selection. After calculating segment lengths for each of the substeps, the system software will validate the step cycle time and indicate if any adjustments are necessary. In some embodiments a “valid” step cycle time is a step cycle time that is an integer multiple of the detection cycle time. If a step cycle time is not valid, the user may be prompted to make adjustments for that step 5003b. If no adjustment is necessary, the user may be notified that the step is aligned properly 5003a.


In the example of FIG. 13, the user has required an incubation step 5001 comprising a single substep of 900 seconds. The user has requested that the step 5001 occur only once 5010 and therefore comprises a single step cycle. In this example, the detection cycle comprises 10 seconds. The user has not specified that any detection is to be performed and accordingly the step is valid, since the step will not require that the detector head's position be adjusted. When no detection is requested the system records the requested time intervals, for future offset considerations, but may not impose any constraint that the time interval be a multiple of the detection time (though the duration may be considered in determining a subsequent inter-cycle adjustment). If, however, in this example the user had requested detection during this step, the step would still be valid if no other delays are incurred, as 900 seconds is a multiple of the 10 seconds detection cycle. In either event, in the illustrated embodiment, the system has determined that this step entry is valid.


In the example illustrated in FIG. 13, the step PCR 5002 comprises two substeps, a first substep where the chamber is to be held at 95° C. and another substep where the chamber is to be held at 61° C. The user has requested that 45 cycles of this step be performed 5011. The user has requested that the first substep last 2 seconds and that the second substep last 10.2 seconds for a total of 12.2 seconds. As discussed above with respect to FIG. 7, the system may have also calculated the transition time from 95° C. to 61° C. and added this duration to the user requests. In this example, heating from 61° C. to 95° C. requires 4.25 seconds and cooling from 95° C. to 61° C. in 7.05 seconds. These values may be stored internally in the system's memory or determined dynamically based on the user inputs. Finally, in some embodiments, when a detection is requested for a substep 5004, as the user has requested here, the system adds an additional delay to the hold time for that substep. In this example, that delay is 2.2 seconds, which accounts for the minimal time required to allow the detector to move and detect with each of six columns of light emitter-photodetector pairs in the detector head. That is, in this example, each color detection requires 200 milliseconds of exposure time and 200 milliseconds to move the motor between columns (5 transitions*200 ms+6 detections*200 ms=2.2 seconds).


Thus, the total duration for the step as a whole is:

4.25 (heat)+2.0 (denature)+7.05 (cool)+10.2 (anneal)+2.2 (detection)=25.7 seconds.


As 25.7 seconds is not a multiple of the 10 second detection time, adjustment will be necessary. As indicated 5003b, the system informs the user that they may either remove 5.7 seconds from the step duration or add an additional 4.3 seconds to achieve a multiple of the detection cycle time (i.e., a multiple of 10 seconds). These “intra-cycle step adjustments” will be incorporated into the protocol after the user's selection.


One will recognize that the system may consider a plurality of other factors not indicated in this example when providing the user with an adjustment range. For example, additional delays to motor movement or incubation preparation may be factored in to the system's analysis.


Inter-Cycle Adjustments


As mentioned above, “inter-cycle adjustments” comprise adjustments to the first cycle of a substep so as to create a delay between cycle steps. “Inter-cycle adjustments” may depend on the timing of the preceding steps and the end temperature of the immediately preceding step (if one exists). With reference to FIG. 14 the “inter-cycle adjustment” 6005 determined to achieve a proper detection time occurrence, will be described.


In some embodiments the adjustment 6005 is determined by first determining the time required to heat or cool the temperature from the end of the previous step to the first substep temperature of the next step. If any additional time is necessary for alignment, the temperature from the end of the previous step may be maintained for this time. An example of alignment between the end temperature of a hold step at 75° C. to the first substep temperature of 95° C. is shown in FIG. 14. The temperature is ramped at 8° C./s from 75° C. to 95° C. from points 6001b to 6001c, with the remaining time required for alignment spent holding at 75° C. after the end of the previous step, from points 6001a to 6001b. This period may be referred to as an “inter-cycle adjustment”. To achieve continuance of detection alignment between steps, it may be necessary to shift (or delay) the start of a step cycle after the end of the previous step by this “inter-cycle adjustment”. The time required to heat or cool the temperature from the end of the previous step to the first substep temperature of the next step may then be calculated. If any additional time is necessary for alignment, the temperature from the end of the previous step is maintained for the time of the “inter-cycle adjustment”. In some embodiments, the system may factor in these considerations when receiving user input via GUI 5000 and incorporate them into the proposed variance 5003b.


Starting Offset Adjustments



FIG. 15A illustrates the beginning cycles of two separate protocol profiles 3001 and 3005. In each of these protocols the inter and intra-cycle adjustments may have been performed, but the starting offset has yet to be applied. In this example, profile 3001 includes a step with a cycle time of 30 seconds (the interval from time 0 to time 30). A time for detection 3020a, or a detection request occurs 30 seconds. Note that pursuant to the inter-cycle adjustments discussed above, a small delay may have been included in the protocol 3001 just prior to the first heat ramp for alignment of the first detection 3020a. As discussed above, the inter-cycle and intra-cycle adjustments facilitate detection requests being made at integer multiples of the detection cycle time. Here, for a detection cycle time of 10 seconds, the requests 3020a and 3020b occur at the integer multiples 30 and 60 seconds.


The second protocol 3005 includes a different profile from 3001. The profile 3005 comprises an initialization step lasting from 0 to 30 seconds. The profile 3005 is then followed by a plurality of 50 second cycles, with the first detection at 40 seconds. These cycles represent a 3-Temperature PCR, which includes a denature at a high temperature, the anneal and detection at the low temperature, and then an extension at a middle temperature. As before, the first initialization cycle may include a small inter-cycle delay at the beginning for alignment. One will recognize that his inter-cycle delay may be inserted at a variety of positions about the initialization step to ensure detection alignment.



FIG. 15B illustrates multiple instances of the two protocols from FIG. 15A. Were it possible to perform detections across all lanes in all chamber columns simultaneously, the profiles illustrated in FIG. 15B would be suitable. However, due to time delay required for the detector head to scan across a chamber column with each of its columns of detector pairs, it is necessary to offset each of the protocols 3001-3007 based on the location of the chamber in which they are executed. For simplicity, each of the protocols 3001-3007 is presumed to be run in a neighboring column. If protocol 3001 is run in the first chamber column, then protocol 3002 is run in the second, 3003 in the third, 3004 in the fourth, etc.



FIG. 15C illustrates the execution of the protocols 3001-3007 with the “starting offset adjustments” 3010-3015 introduced to ensure detection alignment. The starting offsets demonstrate the movement of the detector across the lanes of the cartridge and the synchronization of that movement with the detections required by each of the executing protocols. Thus, protocol 3001 will request detection, using the first detector head column at request 3020a. When the detector head moves to align the second detector head column with the chamber of protocol 3001, the first detector head column will be arranged over the chamber of 3002 which, advantageously, is now also requesting a detection 3021a. Subsequently, the process continues with the first column of the detector head now reading protocol 3003 at request 3022a, the second column reading 3002, and the third reading 3001. One will recognize that the skew illustrated in FIG. 15C is not to scale (in some embodiments the skew may be on the order of ˜400 milliseconds), and has been illustrated as shown for only for purposes of explanation.


Thus, with properly selected “starting adjustments” the system can ensure consistent detection times across each of the reactors. As illustrated in FIG. 15C, orderly and efficient detections are made along lines 3007a-d when the determined solution is implemented by the detector system. Thus, detection for a particular reactor will occur at the same time from cycle to cycle. The details for one embodiment for determining these solutions will be described in greater detail with regard to FIG. 16.


Active Cooling


In certain of the embodiments while heating of the reactor chamber is active, that is, heaters are actively applied to the chamber, cooling of the reactor chamber may passive, where convection alone is used to cool the reactor contents. In order to further provide for consistent diagnostic performance, certain of the embodiments contemplate active participation in the reactor's cooling process to ensure consistent behavior. FIG. 16 illustrates a thermal profile 7001 comprising a cooling component. The profile 7001 comprises a rise time 7006, a plateau 7005, and a cooling period 7002/7003.


The ambient temperature in the location where the heating/detection unit is located may not be the same. That is, a system operating in southern Arizona may not be subjected to the same ambient temperatures as a system operating in northern Alaska. Thus, in the hottest ambient temperature in which the system is expected to be operated, the profile 7001 may have a cooling curve 7003. In a cooler environment, the cooling profile 7002 may instead result. To compensate for the difference, certain embodiments contemplate monitoring the reactor cooling profile via the temperature sensors, possibly those discussed with regard to FIG. 3b. When deviations from the maximum profile 7003 are detected, sufficient heating may be applied so that the profile 7002 instead follows the profile 7003. In some embodiments heat may be applied periodically at times 7004a-c, whereas the heat may be applied continuously in other embodiments. In this manner, consistent profiles may be achieved regardless of the thermocycler's geographic location or operating ambient temperature.


Certain of these embodiments apply Newton's law of cooling to determine when to apply the heaters:

T(t)=Ta+(T(0)−Ta)e−rt


Where: T(t) is the temperature at time t, T(0) is the initial temperature, Ta is the ambient temperature parameter, r is the decay constant parameter, and t is time. In some embodiments 50.2 degrees Celsius and 0.098 may be used as the ambient temperature parameter and decay constant parameter, respectively. In this embodiment, the ambient temperature parameter is selected to be higher than any expected ambient operating temperature, thus allowing full control over the cooling cycle by applying at least some small amount of heat during each cooling cycle, regardless of ambient temperature, in order to match the actual cooling to the cooling curve of the maximal profile 7003 in each instance.


As used herein, an “input” can be, for example, data received from a keyboard, rollerball, mouse, voice recognition system or other device capable of transmitting information from a user to a computer. The input device can also be a touch screen associated with the display, in which case the user responds to prompts on the display by touching the screen. The user may enter textual information through the input device such as the keyboard or the touch-screen.


The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, microcontrollers, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices.


As used herein, “instructions” refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware and include any type of programmed step undertaken by components of the system.


A “microprocessor” or “processor” may be any conventional general purpose single- or multi-core microprocessor such as a Pentium® processor, Intel® Core™, a 8051 processor, a MIPS® processor, or an ALPHA® processor. In addition, the microprocessor may be any conventional special purpose microprocessor such as a digital signal processor or a graphics processor. A “processor” may also refer to, but is not limited to, microcontrollers, field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), complex programmable logic devices (CPLDs), programmable logic arrays (PLAs), microprocessors, or other similar processing devices.


The system is comprised of various modules as discussed in detail below. As can be appreciated by one of ordinary skill in the art, each of the modules comprises various sub-routines, procedures, definitional statements and macros. Each of the modules are typically separately compiled and linked into a single executable program. Therefore, the following description of each of the modules is used for convenience to describe the functionality of the preferred system. Thus, the processes that are undergone by each of the modules may be arbitrarily redistributed to one of the other modules, combined together in a single module, or made available in, for example, a shareable dynamic link library.


Certain embodiments of the system may be used in connection with various operating systems such as SNOW LEOPARD®, iOS®, LINUX, UNIX or MICROSOFT WINDOWS®, or any other suitable operating system.


Certain embodiments of the system may be written in any conventional programming language such as assembly, C, C++, BASIC, Pascal, or Java, and run under a conventional operating system, or the like, or any other suitable programming language.


In addition, the modules or instructions may be stored onto one or more programmable storage devices, such as FLASH drives, CD-ROMs, hard disks, and DVDs. One embodiment includes a programmable storage device having instructions stored thereon.


While the above processes and methods are described above as including certain steps and are described in a particular order, it should be recognized that these processes and methods may include additional steps or may omit some of the steps described. Further, each of the steps of the processes does not necessarily need to be performed in the order it is described.


While the above description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the system or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.


The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium may be coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

Claims
  • 1. A method implemented on one or more computer processors for optimizing protocols for simultaneously performing a plurality of thermal cycling reactions, wherein the thermal cycling reactions are performed in a plurality of reactors using a plurality of heating elements in thermal communication with the plurality of reactors and a detector head comprising a plurality of photodetector and light source pairs, wherein the detector head is movable such that the detector head can perform a detection with each of the plurality of photodetector and light source pairs at each of the plurality of reactors, the method comprising: determining or providing or accessing a detection cycle time for each of the plurality of reactors, the detection cycle time comprising an amount of time required to perform a detection with the detector head on each of the plurality of reactors with each of the photodetector and light source pairs;receiving or accessing a step cycle of a protocol, the step cycle having a step cycle time, the step cycle including activating at least one of the plurality of heating elements to reach a temperature plateau,maintaining the temperature plateau using the at least one of the plurality of heating elements for a first portion of the step cycle time,deactivating the at least one of the plurality of heating elements for a second portion of the step cycle time, andactivating the detector head;determining a first adjustment to the duration of the first portion or the second portion of the step cycle time such that the step cycle time is an integer multiple of the detection cycle time; andcontrolling the detector head and the at least one of the plurality of heating elements to perform the protocol modified to include the first adjustment to the duration of the first portion or the second portion of the step cycle.
  • 2. The method of claim 1, further comprising determining a second adjustment to the step cycle time such that activating the detector head occurs at an integer multiple of the detection cycle time when the step cycle time is adjusted by the first adjustment and by the second adjustment.
  • 3. The method of claim 1, further comprising determining a starting offset adjustment based on a position of the reactor associated with the protocol.
  • 4. The method of claim 1, wherein the detection cycle time comprises the amount of time required for the detector head to perform a predetermined plurality of detections for a reactor.
  • 5. The method of claim 4, wherein the detection cycle time further comprises a time required for movement of the detector head to each of a plurality of reactors and movement of the detector head to a start position.
  • 6. The method of claim 1, wherein the protocol comprises a polymerase chain reaction (PCR) protocol.
  • 7. The method of claim 1, further comprising initiating the protocol.
  • 8. The method of claim 1, wherein the first adjustment comprises removing seconds from or adding seconds to the duration of the first portion of the step cycle time.
  • 9. The method of claim 2, wherein the second adjustment comprises extending a duration of a first substep of a plurality of substeps of the step cycle time.
  • 10. The method of claim 9, wherein extending the duration of the first substep comprises extending the duration a reactor associated with the protocol is held at ambient temperature.
  • 11. The method of claim 1, wherein the first adjustment comprises removing seconds from or adding seconds to the duration of the second portion of the step cycle time.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 15/706,313, filed Sep. 15, 2017 and scheduled to issue as U.S. Pat. No. 10,781,482 on Sep. 22, 2020, which is a divisional of U.S. application Ser. No. 14/054,397, filed Oct. 15, 2013 and issued as U.S. Pat. No. 9,765,389, on Sep. 19, 2017, which is a continuation of International Patent Application No. PCT/US2012/033667, filed Apr. 13, 2012, entitled “SYNCHRONIZED THERMOCYCLING AND SCANNING OPTICAL DETECTION,” which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/476,175, filed on Apr. 15, 2011, entitled “SOFTWARE CONTROL PROCESS TO SYNCHRONIZE THERMOCYCLING AND SCANNING OPTICAL DETECTION” and U.S. Provisional Patent Application Ser. No. 61/476,167, filed on Apr. 15, 2011, entitled “6-COLOR SCANNING REAL-TIME MICROFLUIDIC THERMOCYCLER.” Each of the aforementioned applications is incorporated by reference herein in its entirety.

US Referenced Citations (1141)
Number Name Date Kind
D189404 Nicolle Dec 1960 S
3050239 Williams Aug 1962 A
3444742 Ellis et al. May 1969 A
3905772 Hartnett et al. Sep 1975 A
3985649 Eddelman Oct 1976 A
4018089 Dzula et al. Apr 1977 A
4018652 Lanham et al. Apr 1977 A
4038192 Serur Jul 1977 A
4055395 Honkawa et al. Oct 1977 A
D249706 Adamski Sep 1978 S
4139005 Dickey Feb 1979 A
D252157 Kronish et al. Jun 1979 S
D252341 Thomas Jul 1979 S
D254687 Fadler et al. Apr 1980 S
4212744 Oota Jul 1980 A
D261033 Armbruster Sep 1981 S
D261173 Armbruster Oct 1981 S
4301412 Hill et al. Nov 1981 A
4439526 Columbus Mar 1984 A
4457329 Werley et al. Jul 1984 A
4466740 Kano et al. Aug 1984 A
4472357 Levy et al. Sep 1984 A
4504582 Swann Mar 1985 A
4522786 Ebersole Jun 1985 A
D279817 Chen et al. Jul 1985 S
D282208 Lowry Jan 1986 S
4599315 Terasaki et al. Jul 1986 A
4612873 Eberle Sep 1986 A
4612959 Costello Sep 1986 A
D288478 Carlson et al. Feb 1987 S
4647432 Wakatake Mar 1987 A
4654127 Baker et al. Mar 1987 A
4673657 Christian Jun 1987 A
4678752 Thorne et al. Jul 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4698302 Whitehead et al. Oct 1987 A
D292735 Lovborg Nov 1987 S
4720374 Ramachandran Jan 1988 A
4724207 Hou et al. Feb 1988 A
4795698 Owen et al. Jan 1989 A
4798693 Mase et al. Jan 1989 A
4800022 Leonard Jan 1989 A
4827944 Nugent May 1989 A
4841786 Schulz Jun 1989 A
D302294 Hillman Jul 1989 S
4855110 Marker et al. Aug 1989 A
4871779 Hat et al. Oct 1989 A
4889818 Gelfand et al. Dec 1989 A
4895650 Wang Jan 1990 A
4902624 Columbus et al. Feb 1990 A
4914710 Ward et al. Apr 1990 A
4919829 Gates et al. Apr 1990 A
4921809 Schiff et al. May 1990 A
4935342 Seligson et al. Jun 1990 A
4946562 Guruswamy Aug 1990 A
4948561 Hinckley et al. Aug 1990 A
4949742 Rando et al. Aug 1990 A
D310413 Bigler et al. Sep 1990 S
4963498 Hillman Oct 1990 A
4965188 Mullis et al. Oct 1990 A
4967950 Legg et al. Nov 1990 A
D312692 Bradley Dec 1990 S
4978502 Dole et al. Dec 1990 A
4978622 Mishell et al. Dec 1990 A
4989626 Takagi et al. Feb 1991 A
4994373 Stavrianopoulos et al. Feb 1991 A
4997772 Sutton et al. Mar 1991 A
5001417 Pumphrey et al. Mar 1991 A
5004583 Guruswamy et al. Apr 1991 A
5048554 Kremer Sep 1991 A
5053199 Keiser et al. Oct 1991 A
5060823 Perlman Oct 1991 A
5061336 Soane Oct 1991 A
5064618 Baker et al. Nov 1991 A
5071531 Soane Dec 1991 A
5089233 DeVaney, Jr. et al. Feb 1992 A
5091328 Miller Feb 1992 A
D324426 Fan et al. Mar 1992 S
5096669 Lauks et al. Mar 1992 A
5098663 Berthold et al. Mar 1992 A
D325638 Sloat et al. Apr 1992 S
5126002 Iwata et al. Jun 1992 A
5126022 Soane et al. Jun 1992 A
D328135 Fan et al. Jul 1992 S
D328794 Frenkel et al. Aug 1992 S
5135627 Soane Aug 1992 A
5135872 Pouletty et al. Aug 1992 A
5147606 Charlton et al. Sep 1992 A
5147777 Sutton et al. Sep 1992 A
5155166 Danielson et al. Oct 1992 A
5169512 Wiedenmann et al. Dec 1992 A
5173269 Mon et al. Dec 1992 A
D333522 Gianino Feb 1993 S
5186339 Heissler Feb 1993 A
5192507 Taylor et al. Mar 1993 A
5208163 Charlton et al. May 1993 A
5217694 Gibler et al. Jun 1993 A
5223226 Wittmer et al. Jun 1993 A
5229297 Schnipelsky et al. Jul 1993 A
5231015 Cummins et al. Jul 1993 A
D338275 Fischer et al. Aug 1993 S
5234809 Boom et al. Aug 1993 A
5250263 Manz Oct 1993 A
5252743 Barrett et al. Oct 1993 A
5256376 Callan et al. Oct 1993 A
5273716 Northrup et al. Dec 1993 A
5275787 Yuguchi et al. Jan 1994 A
5282950 Dietze et al. Feb 1994 A
5296375 Kricka et al. Mar 1994 A
5304477 Nagoh et al. Apr 1994 A
5304487 Wilding et al. Apr 1994 A
D347478 Pinkney May 1994 S
5311896 Kaartinen et al. May 1994 A
5311996 Duffy et al. May 1994 A
5316727 Suzuki et al. May 1994 A
5327038 Culp Jul 1994 A
5334499 Burdick et al. Aug 1994 A
5338671 Ice et al. Aug 1994 A
5339486 Persic, Jr. Aug 1994 A
D351475 Gerber Oct 1994 S
D351913 Hieb et al. Oct 1994 S
5364591 Green et al. Nov 1994 A
5372946 Cusak et al. Dec 1994 A
5374395 Robinson Dec 1994 A
5384499 Pedersen et al. Jan 1995 A
5389339 Petschek et al. Feb 1995 A
D356232 Armstrong et al. Mar 1995 S
5397709 Berndt Mar 1995 A
5401465 Smethers et al. Mar 1995 A
5411708 Moscetta et al. May 1995 A
5414245 Hackleman May 1995 A
5415839 Zaun et al. May 1995 A
5416000 Allen et al. May 1995 A
5422271 Chen et al. Jun 1995 A
5422284 Lau Jun 1995 A
5427946 Kricka et al. Jun 1995 A
5443791 Cathcart et al. Aug 1995 A
5466574 Liberti et al. Nov 1995 A
5474796 Brennan Dec 1995 A
5475487 Mariella, Jr. et al. Dec 1995 A
D366116 Biskupski Jan 1996 S
5486335 Wilding et al. Jan 1996 A
5494639 Grzegorzewski Feb 1996 A
5498392 Wilding et al. Mar 1996 A
5503803 Brown Apr 1996 A
5516410 Schneider et al. May 1996 A
5519635 Miyake et al. May 1996 A
5529677 Schneider et al. Jun 1996 A
5559432 Logue Sep 1996 A
5565171 Dovichi et al. Oct 1996 A
5569364 Hooper et al. Oct 1996 A
5576218 Zurek et al. Nov 1996 A
5578270 Reichler et al. Nov 1996 A
5578818 Kain et al. Nov 1996 A
5579928 Anukwuem Dec 1996 A
5580523 Bard Dec 1996 A
5582884 Ball et al. Dec 1996 A
5582988 Backus et al. Dec 1996 A
5585069 Zanucchi et al. Dec 1996 A
5585089 Queen et al. Dec 1996 A
5585242 Bouma et al. Dec 1996 A
5587128 Wilding et al. Dec 1996 A
5589136 Northrup et al. Dec 1996 A
5593838 Zanzucchi et al. Jan 1997 A
5595708 Berndt Jan 1997 A
5599432 Manz et al. Feb 1997 A
5599503 Manz et al. Feb 1997 A
5599667 Arnold, Jr. et al. Feb 1997 A
5601727 Bormann et al. Feb 1997 A
5603351 Cherukuri et al. Feb 1997 A
5605662 Heller et al. Feb 1997 A
5609910 Hackleman Mar 1997 A
D378782 LaBarbera et al. Apr 1997 S
5628890 Carter et al. May 1997 A
5630920 Friese et al. May 1997 A
5631337 Sassi et al. May 1997 A
5632876 Zanzucchi et al. May 1997 A
5632957 Heller et al. May 1997 A
5635358 Wilding et al. Jun 1997 A
5637469 Wilding et al. Jun 1997 A
5639423 Northrup et al. Jun 1997 A
5639428 Cottingham Jun 1997 A
5643738 Zanzucchi et al. Jul 1997 A
5645801 Bouma et al. Jul 1997 A
5646039 Northrup et al. Jul 1997 A
5646049 Tayi Jul 1997 A
5647994 Tuunanen et al. Jul 1997 A
5651839 Rauf Jul 1997 A
5652141 Henco et al. Jul 1997 A
5652149 Mileaf et al. Jul 1997 A
D382346 Buhler et al. Aug 1997 S
D382647 Staples et al. Aug 1997 S
5654141 Mariani et al. Aug 1997 A
5658515 Lee et al. Aug 1997 A
5667976 Van Ness et al. Sep 1997 A
5671303 Shieh et al. Sep 1997 A
5674394 Whitmore Oct 1997 A
5674742 Northrup et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5681529 Taguchi et al. Oct 1997 A
5683657 Mian Nov 1997 A
5683659 Hovatter Nov 1997 A
5699157 Parce et al. Dec 1997 A
5700429 Bühler et al. Dec 1997 A
5700637 Southern Dec 1997 A
5705610 Zuckermann et al. Jan 1998 A
5705813 Apffel et al. Jan 1998 A
5720923 Haff et al. Feb 1998 A
5721136 Finney et al. Feb 1998 A
5725831 Reichler et al. Mar 1998 A
5726026 Wilding et al. Mar 1998 A
5726404 Brody Mar 1998 A
5726944 Pelley et al. Mar 1998 A
5731212 Gavin et al. Mar 1998 A
5744366 Kricka et al. Apr 1998 A
5746978 Bienhaus et al. May 1998 A
5747666 Willis May 1998 A
5750015 Soane et al. May 1998 A
5755942 Zanzucchi et al. May 1998 A
5762874 Seaton et al. Jun 1998 A
5763262 Wong et al. Jun 1998 A
5770029 Nelson et al. Jun 1998 A
5770388 Vorpahl Jun 1998 A
5772966 Maracas et al. Jun 1998 A
5779868 Parce et al. Jul 1998 A
5783148 Cottingham et al. Jul 1998 A
5787032 Heller et al. Jul 1998 A
5788814 Sun et al. Aug 1998 A
5800600 Lima-Marques et al. Sep 1998 A
5800690 Chow et al. Sep 1998 A
5804436 Okun et al. Sep 1998 A
D399959 Prokop et al. Oct 1998 S
5819749 Lee et al. Oct 1998 A
5827481 Bente et al. Oct 1998 A
5842106 Thaler et al. Nov 1998 A
5842787 Kopf-Sill et al. Dec 1998 A
5846396 Zanzucchi et al. Dec 1998 A
5846493 Bankier et al. Dec 1998 A
5849208 Hayes et al. Dec 1998 A
5849486 Heller et al. Dec 1998 A
5849489 Heller Dec 1998 A
5849598 Wilson et al. Dec 1998 A
5851492 Blattner Dec 1998 A
5852495 Parce Dec 1998 A
5856174 Lipshutz et al. Jan 1999 A
5858187 Ramsey et al. Jan 1999 A
5858188 Soane et al. Jan 1999 A
5863502 Southgate et al. Jan 1999 A
5863708 Zanzucchi et al. Jan 1999 A
5863801 Southgate et al. Jan 1999 A
5866345 Wilding et al. Feb 1999 A
5869004 Parce et al. Feb 1999 A
5869244 Martin et al. Feb 1999 A
5872010 Karger et al. Feb 1999 A
5872623 Stabile et al. Feb 1999 A
5874046 Megerle Feb 1999 A
5876675 Kennedy Mar 1999 A
5880071 Parce et al. Mar 1999 A
5882465 McReynolds Mar 1999 A
5883211 Sassi et al. Mar 1999 A
5885432 Hooper et al. Mar 1999 A
5885470 Parce et al. Mar 1999 A
5895762 Greenfield et al. Apr 1999 A
5900130 Benvegnu et al. May 1999 A
5911737 Lee et al. Jun 1999 A
5912124 Kumar Jun 1999 A
5912134 Shartle Jun 1999 A
5914229 Loewy Jun 1999 A
5916522 Boyd et al. Jun 1999 A
5916776 Kumar Jun 1999 A
5919646 Okun et al. Jul 1999 A
5919711 Boyd et al. Jul 1999 A
5922289 Wong Jul 1999 A
5922591 Anderson et al. Jul 1999 A
5927547 Papen et al. Jul 1999 A
5928161 Krulevitch et al. Jul 1999 A
5928880 Wilding et al. Jul 1999 A
5929208 Heller et al. Jul 1999 A
D413391 Lapeus et al. Aug 1999 S
5932799 Moles Aug 1999 A
5935401 Amigo Aug 1999 A
5939291 Loewy et al. Aug 1999 A
5939312 Baier et al. Aug 1999 A
5942443 Parce et al. Aug 1999 A
5944717 Lee et al. Aug 1999 A
D413677 Dumitrescu et al. Sep 1999 S
D414271 Mendoza Sep 1999 S
5948227 Dubrow Sep 1999 A
5948363 Gaillard Sep 1999 A
5948673 Cottingham Sep 1999 A
5955028 Chow Sep 1999 A
5955029 Wilding et al. Sep 1999 A
5957579 Kopf-Sill et al. Sep 1999 A
5958203 Parce et al. Sep 1999 A
5958349 Petersen et al. Sep 1999 A
5958694 Nikiforov Sep 1999 A
5959221 Boyd et al. Sep 1999 A
5959291 Jensen Sep 1999 A
5935522 Swerdlow et al. Oct 1999 A
5964995 Nikiforov et al. Oct 1999 A
5964997 McBride Oct 1999 A
5965001 Chow et al. Oct 1999 A
5965410 Chow et al. Oct 1999 A
5965886 Sauer et al. Oct 1999 A
5968745 Thorp et al. Oct 1999 A
5972187 Parce et al. Oct 1999 A
5973138 Collis Oct 1999 A
D417009 Boyd Nov 1999 S
5976336 Dubrow et al. Nov 1999 A
5980704 Cherukuri et al. Nov 1999 A
5980719 Cherukuri et al. Nov 1999 A
5981735 Thatcher et al. Nov 1999 A
5985651 Hunicke-Smith Nov 1999 A
5989402 Chow et al. Nov 1999 A
5992820 Fare et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5993750 Ghosh et al. Nov 1999 A
5997708 Craig Dec 1999 A
6001229 Ramsey Dec 1999 A
6001231 Kopf-Sill Dec 1999 A
6001307 Naka et al. Dec 1999 A
6004450 Northrup et al. Dec 1999 A
6004515 Parce et al. Dec 1999 A
6007690 Nelson et al. Dec 1999 A
6010607 Ramsey Jan 2000 A
6010608 Ramsey Jan 2000 A
6010627 Hood, III Jan 2000 A
6012902 Parce Jan 2000 A
D420747 Dumitrescu et al. Feb 2000 S
D421130 Cohen et al. Feb 2000 S
6024920 Cunanan Feb 2000 A
D421653 Purcell Mar 2000 S
6033546 Ramsey Mar 2000 A
6033880 Haff et al. Mar 2000 A
6043080 Lipshutz et al. Mar 2000 A
6043880 Andrews et al. Mar 2000 A
6046056 Parce et al. Apr 2000 A
6048734 Burns et al. Apr 2000 A
6054034 Soane et al. Apr 2000 A
6054277 Furcht et al. Apr 2000 A
6056860 Amigo et al. May 2000 A
6057149 Burns et al. May 2000 A
6062261 Jacobson et al. May 2000 A
6063341 Fassbind et al. May 2000 A
6063589 Kellogg et al. May 2000 A
6066300 Carey et al. May 2000 A
6068751 Neukermans May 2000 A
6068752 Dubrow et al. May 2000 A
6071478 Chow Jun 2000 A
6074725 Kennedy Jun 2000 A
6074827 Nelson et al. Jun 2000 A
D428497 Lapeus et al. Jul 2000 S
6086740 Kennedy Jul 2000 A
6096509 Okun et al. Aug 2000 A
6100541 Nagle et al. Aug 2000 A
6102897 Lang Aug 2000 A
6103537 Ullman et al. Aug 2000 A
6106685 McBride et al. Aug 2000 A
6110343 Ramsey et al. Aug 2000 A
6117398 Bienhaus et al. Sep 2000 A
6123205 Dumitrescu et al. Sep 2000 A
6123798 Gandhi et al. Sep 2000 A
6130098 Handique et al. Oct 2000 A
6132580 Mathies et al. Oct 2000 A
6132684 Marino Oct 2000 A
6133436 Koster et al. Oct 2000 A
D433759 Mathis et al. Nov 2000 S
6143250 Tajima Nov 2000 A
6143547 Hsu Nov 2000 A
6149787 Chow et al. Nov 2000 A
6149872 Mack et al. Nov 2000 A
6156199 Zuk, Jr. Dec 2000 A
6158269 Dorenkott et al. Dec 2000 A
6167910 Chow Jan 2001 B1
6168948 Anderson et al. Jan 2001 B1
6171850 Nagle et al. Jan 2001 B1
6174675 Chow et al. Jan 2001 B1
6180950 Olsen Jan 2001 B1
D438311 Yamanishi et al. Feb 2001 S
6190619 Kilcoin et al. Feb 2001 B1
6194563 Cruickshank Feb 2001 B1
D438632 Miller Mar 2001 S
D438633 Miller Mar 2001 S
D439673 Brophy et al. Mar 2001 S
6197595 Anderson et al. Mar 2001 B1
6203759 Pelc et al. Mar 2001 B1
6211989 Wulf et al. Apr 2001 B1
6213151 Jacobson et al. Apr 2001 B1
6221600 MacLeod et al. Apr 2001 B1
6228635 Armstrong et al. May 2001 B1
6232072 Fisher May 2001 B1
6235175 Dubrow et al. May 2001 B1
6235313 Mathiowitz et al. May 2001 B1
6235471 Knapp et al. May 2001 B1
6236456 Giebeler et al. May 2001 B1
6236581 Foss et al. May 2001 B1
6238626 Higuchi et al. May 2001 B1
6251343 Dubrow et al. Jun 2001 B1
6254826 Acosta et al. Jul 2001 B1
6259635 Khouri et al. Jul 2001 B1
6261431 Mathies et al. Jul 2001 B1
6267858 Parce et al. Jul 2001 B1
D446306 Ochi et al. Aug 2001 S
6271021 Burns et al. Aug 2001 B1
6274089 Chow et al. Aug 2001 B1
6280967 Ransom et al. Aug 2001 B1
6281008 Komai et al. Aug 2001 B1
6284113 Bjornson et al. Sep 2001 B1
6284470 Bitner et al. Sep 2001 B1
6287254 Dodds Sep 2001 B1
6287774 Nikiforov Sep 2001 B1
6291248 Haj-Ahmad Sep 2001 B1
6294063 Becker et al. Sep 2001 B1
6300124 Blumenfeld et al. Oct 2001 B1
6302134 Kellogg et al. Oct 2001 B1
6302304 Spencer Oct 2001 B1
6303343 Kopf-sill Oct 2001 B1
6306273 Wainright et al. Oct 2001 B1
6306590 Mehta et al. Oct 2001 B1
6310199 Smith et al. Oct 2001 B1
6316774 Giebeler et al. Nov 2001 B1
6319469 Mian et al. Nov 2001 B1
6319474 Krulevitch et al. Nov 2001 B1
6322683 Wolk et al. Nov 2001 B1
6326083 Yang et al. Dec 2001 B1
6326147 Oldham et al. Dec 2001 B1
6326211 Anderson et al. Dec 2001 B1
6334980 Hayes et al. Jan 2002 B1
6337435 Chu et al. Jan 2002 B1
6352673 Rainin et al. Mar 2002 B1
6353475 Jensen et al. Mar 2002 B1
6358387 Kopf-sill et al. Mar 2002 B1
6366924 Parce Apr 2002 B1
6368561 Rutishauser et al. Apr 2002 B1
6368871 Christel et al. Apr 2002 B1
6370206 Schenk Apr 2002 B1
6375185 Lin Apr 2002 B1
6375901 Robotti et al. Apr 2002 B1
6379884 Wada et al. Apr 2002 B2
6379929 Burns et al. Apr 2002 B1
6379974 Parce et al. Apr 2002 B1
6382254 Yang et al. May 2002 B1
6391541 Petersen et al. May 2002 B1
6391623 Besemer et al. May 2002 B1
6395161 Schneider et al. May 2002 B1
6398956 Coville et al. Jun 2002 B1
6399025 Chow Jun 2002 B1
6399389 Parce et al. Jun 2002 B1
6399952 Maher et al. Jun 2002 B1
6401552 Elkins Jun 2002 B1
6403338 Knapp et al. Jun 2002 B1
6408878 Unger et al. Jun 2002 B2
6413401 Chow et al. Jul 2002 B1
6416642 Alajoki et al. Jul 2002 B1
6420143 Kopf-sill Jul 2002 B1
6425972 McReynolds Jul 2002 B1
D461906 Pham Aug 2002 S
6428987 Franzen Aug 2002 B2
6430512 Gallagher Aug 2002 B1
6432366 Ruediger et al. Aug 2002 B2
6440725 Pourahmadi et al. Aug 2002 B1
D463031 Slomski et al. Sep 2002 S
6444461 Knapp et al. Sep 2002 B1
6447661 Chow et al. Sep 2002 B1
6447727 Parce et al. Sep 2002 B1
6448047 Dattagupta et al. Sep 2002 B2
6448064 Vo-Dinh et al. Sep 2002 B1
6453928 Kaplan et al. Sep 2002 B1
6458259 Parce et al. Oct 2002 B1
6461570 Ishihara et al. Oct 2002 B2
6465257 Parce et al. Oct 2002 B1
6468761 Yang et al. Oct 2002 B2
6472141 Nikiforov Oct 2002 B2
D466219 Wynschenk et al. Nov 2002 S
6475364 Dubrow et al. Nov 2002 B1
D467348 McMichael et al. Dec 2002 S
D467349 Niedbala et al. Dec 2002 S
6488897 Dubrow et al. Dec 2002 B2
6495104 Unno et al. Dec 2002 B1
6498497 Chow et al. Dec 2002 B1
6500323 Chow et al. Dec 2002 B1
6500390 Boulton et al. Dec 2002 B1
D468437 McMenamy et al. Jan 2003 S
6506609 Wada et al. Jan 2003 B1
6509186 Zou et al. Jan 2003 B1
6509193 Tajima Jan 2003 B1
6511853 Kopf-sill et al. Jan 2003 B1
D470595 Crisanti et al. Feb 2003 S
6515753 Maher Feb 2003 B2
6517783 Horner et al. Feb 2003 B2
6520197 Deshmukh et al. Feb 2003 B2
6521181 Northrup et al. Feb 2003 B1
6521188 Webster Feb 2003 B1
6524456 Ramsey et al. Feb 2003 B1
6524532 Northrup Feb 2003 B1
6524790 Kopf-sill et al. Feb 2003 B1
D472324 Rumore et al. Mar 2003 S
6534295 Tai et al. Mar 2003 B2
6537432 Schneider et al. Mar 2003 B1
6537771 Farinas et al. Mar 2003 B1
6540896 Manz et al. Apr 2003 B1
6544734 Briscoe et al. Apr 2003 B1
6547942 Parce et al. Apr 2003 B1
6555389 Ullman et al. Apr 2003 B1
6556923 Gallagher et al. Apr 2003 B2
D474279 Mayer et al. May 2003 S
D474280 Niedbala et al. May 2003 S
6558916 Veerapandian et al. May 2003 B2
6558945 Kao May 2003 B1
6565815 Chang et al. May 2003 B1
6569607 McReynolds May 2003 B2
6572830 Burdon et al. Jun 2003 B1
6575188 Parunak Jun 2003 B2
6576459 Miles et al. Jun 2003 B2
6579453 Bächler et al. Jun 2003 B1
6589729 Chan et al. Jul 2003 B2
6592821 Wada et al. Jul 2003 B1
6597450 Andrews et al. Jul 2003 B1
6602474 Tajima Aug 2003 B1
6605475 Taylor et al. Aug 2003 B1
6613211 Mccormick et al. Sep 2003 B1
6613512 Kopf-sill et al. Sep 2003 B1
6613580 Chow et al. Sep 2003 B1
6613581 Wada et al. Sep 2003 B1
6614030 Maher et al. Sep 2003 B2
6620625 Wolk et al. Sep 2003 B2
6623860 Hu et al. Sep 2003 B2
6627406 Singh et al. Sep 2003 B1
D480814 Lafferty et al. Oct 2003 S
6632655 Mehta et al. Oct 2003 B1
6633785 Kasahara et al. Oct 2003 B1
D482796 Oyama et al. Nov 2003 S
6640981 Lafond et al. Nov 2003 B2
6649358 Parce et al. Nov 2003 B1
6664104 Pourahmadi et al. Dec 2003 B2
6669831 Chow et al. Dec 2003 B2
6670133 Knapp et al. Dec 2003 B2
6670153 Stern Dec 2003 B2
D484989 Gebrian Jan 2004 S
6672458 Hansen et al. Jan 2004 B2
6681616 Spaid et al. Jan 2004 B2
6681788 Parce et al. Jan 2004 B2
6685813 Williams et al. Feb 2004 B2
6692700 Handique Feb 2004 B2
6695009 Chien et al. Feb 2004 B2
6699713 Benett et al. Mar 2004 B2
6706519 Kellogg et al. Mar 2004 B1
6720148 Nikiforov Apr 2004 B1
6730206 Ricco et al. May 2004 B2
6733645 Chow May 2004 B1
6734401 Bedingham et al. May 2004 B2
6737026 Bergh et al. May 2004 B1
6740518 Duong et al. May 2004 B1
D491272 Alden et al. Jun 2004 S
D491273 Biegler et al. Jun 2004 S
D491276 Langille Jun 2004 S
6750661 Brooks et al. Jun 2004 B2
6752966 Chazan Jun 2004 B1
6756019 Dubrow et al. Jun 2004 B1
6762049 Zou et al. Jul 2004 B2
6764859 Kreuwel et al. Jul 2004 B1
6766817 Dias da Silva Jul 2004 B2
6773567 Wolk Aug 2004 B1
6777184 Nikiforov et al. Aug 2004 B2
6783962 Olander et al. Aug 2004 B1
D495805 Lea et al. Sep 2004 S
6787015 Lackritz et al. Sep 2004 B2
6787016 Tan et al. Sep 2004 B2
6787111 Roach et al. Sep 2004 B2
6790328 Jacobson et al. Sep 2004 B2
6790330 Gascoyne et al. Sep 2004 B2
6811668 Berndt et al. Nov 2004 B1
6818113 Williams et al. Nov 2004 B2
6819027 Saraf Nov 2004 B2
6824663 Boone Nov 2004 B1
D499813 Wu Dec 2004 S
D500142 Crisanti et al. Dec 2004 S
D500363 Fanning et al. Dec 2004 S
6827831 Chow et al. Dec 2004 B1
6827906 Björnson et al. Dec 2004 B1
6838156 Neyer et al. Jan 2005 B1
6838680 Maher et al. Jan 2005 B2
6852287 Ganesan Feb 2005 B2
6858185 Kopf-sill et al. Feb 2005 B1
6859698 Schmeisser Feb 2005 B2
6861035 Pham et al. Mar 2005 B2
6878540 Pourahmadi et al. Apr 2005 B2
6878755 Singh et al. Apr 2005 B2
6884628 Hubbell et al. Apr 2005 B2
6887693 McMillan et al. May 2005 B2
6893879 Petersen et al. May 2005 B2
6900889 Bjornson et al. May 2005 B2
6905583 Wainright et al. Jun 2005 B2
6905612 Dorian et al. Jun 2005 B2
6906797 Kao et al. Jun 2005 B1
6908594 Schaevitz et al. Jun 2005 B1
6911183 Handique et al. Jun 2005 B1
6914137 Baker Jul 2005 B2
6915679 Chien et al. Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
D508999 Fanning et al. Aug 2005 S
6939451 Zhao et al. Sep 2005 B2
6940598 Christel et al. Sep 2005 B2
6942771 Kayyem Sep 2005 B1
6951632 Unger et al. Oct 2005 B2
6958392 Fomovskaia et al. Oct 2005 B2
D512155 Matsumoto Nov 2005 S
6964747 Banerjee et al. Nov 2005 B2
6969835 Rushbrooke et al. Nov 2005 B1
6977163 Mehta Dec 2005 B1
6979424 Northrup et al. Dec 2005 B2
6984516 Briscoe et al. Jan 2006 B2
D515707 Sinohara et al. Feb 2006 S
D516221 Wohlstadter et al. Feb 2006 S
7001853 Brown et al. Feb 2006 B1
7004184 Handique et al. Feb 2006 B2
D517554 Yanagisawa et al. Mar 2006 S
7010391 Handique et al. Mar 2006 B2
7023007 Gallagher Apr 2006 B2
7024281 Unno Apr 2006 B1
7036667 Greenstein et al. May 2006 B2
7037416 Parce et al. May 2006 B2
7038472 Chien May 2006 B1
7039527 Tripathi et al. May 2006 B2
7040144 Spaid et al. May 2006 B2
7041258 Desmond et al. May 2006 B2
7049558 Baer et al. May 2006 B2
D523153 Akashi et al. Jun 2006 S
7055695 Greenstein et al. Jun 2006 B2
7060171 Nikiforov et al. Jun 2006 B1
7066586 Dias da Silva Jun 2006 B2
7069952 McReynolds et al. Jul 2006 B1
7072036 Jones et al. Jul 2006 B2
7099778 Chien Aug 2006 B2
D528215 Malmsater Sep 2006 S
7101467 Spaid Sep 2006 B2
7105304 Nikiforov et al. Sep 2006 B1
D531321 Godfrey et al. Oct 2006 S
7118892 Ammann et al. Oct 2006 B2
7118910 Unger et al. Oct 2006 B2
7122799 Hsieh et al. Oct 2006 B2
7135144 Christel et al. Nov 2006 B2
7138032 Gandhi et al. Nov 2006 B2
D534280 Gomm et al. Dec 2006 S
7150814 Parce et al. Dec 2006 B1
7150999 Shuck Dec 2006 B1
D535403 Isozaki et al. Jan 2007 S
7160423 Chien et al. Jan 2007 B2
7161356 Chien Jan 2007 B1
7169277 Ausserer et al. Jan 2007 B2
7169601 Northrup et al. Jan 2007 B1
7169618 Skold Jan 2007 B2
D537951 Okamoto et al. Mar 2007 S
D538436 Patadia et al. Mar 2007 S
7188001 Young et al. Mar 2007 B2
7192557 Wu et al. Mar 2007 B2
7195986 Bousse et al. Mar 2007 B1
7205154 Corson Apr 2007 B2
7208125 Dong Apr 2007 B1
7235406 Woudenberg et al. Jun 2007 B1
7247274 Chow Jul 2007 B1
D548841 Brownell et al. Aug 2007 S
D549827 Maeno et al. Aug 2007 S
7252928 Hafeman et al. Aug 2007 B1
7255833 Chang et al. Aug 2007 B2
7270786 Parunak et al. Sep 2007 B2
D554069 Bolotin et al. Oct 2007 S
D554070 Bolotin et al. Oct 2007 S
7276208 Sevigny et al. Oct 2007 B2
7276330 Chow et al. Oct 2007 B2
7288228 Lefebvre Oct 2007 B2
7297313 Northrup et al. Nov 2007 B1
D556914 Okamoto et al. Dec 2007 S
7303727 Dubrow et al. Dec 2007 B1
D559995 Handique et al. Jan 2008 S
7315376 Bickmore et al. Jan 2008 B2
7323140 Handique et al. Jan 2008 B2
7332130 Handique Feb 2008 B2
7338760 Gong et al. Mar 2008 B2
D566291 Parunak et al. Apr 2008 S
7351377 Chazan et al. Apr 2008 B2
D569526 Duffy et al. May 2008 S
7374949 Kuriger May 2008 B2
7390460 Osawa et al. Jun 2008 B2
7419784 Dubrow et al. Sep 2008 B2
7422669 Jacobson et al. Sep 2008 B2
7440684 Spaid et al. Oct 2008 B2
7476313 Siddiqi Jan 2009 B2
7480042 Phillips et al. Jan 2009 B1
7494577 Williams et al. Feb 2009 B2
7494770 Wilding et al. Feb 2009 B2
7514046 Kechagia et al. Apr 2009 B2
7518726 Rulison et al. Apr 2009 B2
7521186 Burd Mehta Apr 2009 B2
7527769 Bunch et al. May 2009 B2
D595423 Johansson et al. Jun 2009 S
7553671 Sinclair et al. Jun 2009 B2
D596312 Giraud et al. Jul 2009 S
D598566 Allaer Aug 2009 S
7578976 Northrup et al. Aug 2009 B1
D599234 Ito Sep 2009 S
7595197 Brasseur Sep 2009 B2
7604938 Takahashi et al. Oct 2009 B2
7622296 Joseph et al. Nov 2009 B2
7628902 Knowlton et al. Dec 2009 B2
7633606 Northrup et al. Dec 2009 B2
7635588 King et al. Dec 2009 B2
7645581 Knapp et al. Jan 2010 B2
7670559 Chien et al. Mar 2010 B2
7674431 Ganesan Mar 2010 B2
7689022 Weiner et al. Mar 2010 B2
7704735 Facer et al. Apr 2010 B2
7705739 Northrup et al. Apr 2010 B2
7723123 Murphy et al. May 2010 B1
D618820 Wilson et al. Jun 2010 S
7727371 Kennedy et al. Jun 2010 B2
7727477 Boronkay et al. Jun 2010 B2
7744817 Bui Jun 2010 B2
D621060 Handique Aug 2010 S
7785868 Yuan et al. Aug 2010 B2
D628305 Gorrec et al. Nov 2010 S
7829025 Ganesan et al. Nov 2010 B2
7858366 Northrup et al. Dec 2010 B2
7867776 Kennedy et al. Jan 2011 B2
7892819 Wilding et al. Feb 2011 B2
D637737 Wilson et al. May 2011 S
7955864 Cox et al. Jun 2011 B2
7987022 Handique et al. Jul 2011 B2
7998708 Handique et al. Aug 2011 B2
8053214 Northrup Nov 2011 B2
8071056 Burns et al. Dec 2011 B2
8088616 Handique Jan 2012 B2
8105783 Handique Jan 2012 B2
8110158 Handique Feb 2012 B2
8133671 Williams et al. Mar 2012 B2
8182763 Duffy et al. May 2012 B2
8232900 Takeda Jul 2012 B2
8246919 Herchenbach et al. Aug 2012 B2
8273308 Handique et al. Sep 2012 B2
D669597 Cavada et al. Oct 2012 S
8287820 Williams et al. Oct 2012 B2
8323584 Ganesan Dec 2012 B2
8323900 Handique et al. Dec 2012 B2
8324372 Brahmasandra et al. Dec 2012 B2
8415103 Handique Apr 2013 B2
8420015 Ganesan et al. Apr 2013 B2
8440149 Handique May 2013 B2
8470586 Wu et al. Jun 2013 B2
8473104 Handique et al. Jun 2013 B2
D686749 Trump Jul 2013 S
D687567 Jungheim et al. Aug 2013 S
D692162 Lentz et al. Oct 2013 S
8592157 Petersen et al. Nov 2013 B2
8679831 Handique et al. Mar 2014 B2
D702854 Nakahana et al. Apr 2014 S
8685341 Ganesan Apr 2014 B2
8703069 Handique et al. Apr 2014 B2
8709787 Handique Apr 2014 B2
8710211 Brahmasandra et al. Apr 2014 B2
8734733 Handique May 2014 B2
D710024 Guo Jul 2014 S
8765076 Handique et al. Jul 2014 B2
8765454 Zhou et al. Jul 2014 B2
8768517 Handique et al. Jul 2014 B2
8852862 Wu et al. Oct 2014 B2
8883490 Handique et al. Nov 2014 B2
8894947 Ganesan et al. Nov 2014 B2
8895311 Handique et al. Nov 2014 B1
D729404 Teich et al. May 2015 S
9028773 Ganesan May 2015 B2
9040288 Handique et al. May 2015 B2
9051604 Handique Jun 2015 B2
9080207 Handique et al. Jul 2015 B2
D742027 Lentz et al. Oct 2015 S
9186677 Williams et al. Nov 2015 B2
9217143 Brahmasandra et al. Dec 2015 B2
9222954 Lentz et al. Dec 2015 B2
9234236 Thomas et al. Jan 2016 B2
9238223 Handique Jan 2016 B2
9259734 Williams et al. Feb 2016 B2
9259735 Handique et al. Feb 2016 B2
9347586 Williams et al. May 2016 B2
9480983 Lentz et al. Nov 2016 B2
9528142 Handique Dec 2016 B2
9618139 Handique Apr 2017 B2
D787087 Duffy et al. Jun 2017 S
9670528 Handique et al. Jun 2017 B2
9677121 Ganesan et al. Jun 2017 B2
9701957 Wilson et al. Jul 2017 B2
9745623 Steel Aug 2017 B2
9765389 Gubatayao et al. Sep 2017 B2
9789481 Petersen et al. Oct 2017 B2
9802199 Handique et al. Oct 2017 B2
9815057 Handique Nov 2017 B2
9958466 Dalbert et al. May 2018 B2
10065185 Handique Sep 2018 B2
10071376 Williams et al. Sep 2018 B2
10076754 Lentz et al. Sep 2018 B2
10100302 Brahmasandra et al. Oct 2018 B2
10139012 Handique Nov 2018 B2
10179910 Duffy et al. Jan 2019 B2
10234474 Williams et al. Mar 2019 B2
10351901 Ganesan et al. Jul 2019 B2
10364456 Wu et al. Jul 2019 B2
10443088 Wu et al. Oct 2019 B1
10494663 Wu et al. Dec 2019 B1
10571935 Handique et al. Feb 2020 B2
10590410 Brahmasandra et al. Mar 2020 B2
10604788 Wu et al. Mar 2020 B2
10619191 Ganesan et al. Apr 2020 B2
10625261 Williams et al. Apr 2020 B2
10625262 Williams et al. Apr 2020 B2
10632466 Williams et al. Apr 2020 B1
10695764 Handique et al. Jun 2020 B2
10710069 Handique et al. Jul 2020 B2
10717085 Williams et al. Jul 2020 B2
10731201 Handique et al. Aug 2020 B2
10781482 Gubatayao et al. Sep 2020 B2
10799862 Handique et al. Oct 2020 B2
10821436 Handique et al. Nov 2020 B2
10821446 Handique et al. Nov 2020 B1
10822644 Steel et al. Nov 2020 B2
10843188 Handique et al. Nov 2020 B2
10844368 Duffy et al. Nov 2020 B2
10857535 Handique et al. Dec 2020 B2
10865437 Handique et al. Dec 2020 B2
10875022 Williams et al. Dec 2020 B2
10900066 Handique et al. Jan 2021 B2
10913061 Handique et al. Feb 2021 B2
11060082 Brahmasandra et al. Jul 2021 B2
11078523 Handique et al. Aug 2021 B2
11085069 Handique et al. Aug 2021 B2
11141734 Handique et al. Oct 2021 B2
11142785 Handique et al. Oct 2021 B2
11254927 Brahmasandra et al. Feb 2022 B2
11266987 Handique Mar 2022 B2
11441171 Wu et al. Sep 2022 B2
11453906 Handique Sep 2022 B2
11466263 Duffy et al. Sep 2022 B2
11549959 Williams et al. Jan 2023 B2
20010005489 Roach et al. Jun 2001 A1
20010012492 Acosta et al. Aug 2001 A1
20010016358 Osawa et al. Aug 2001 A1
20010018513 Baker Aug 2001 A1
20010021355 Baugh et al. Sep 2001 A1
20010023848 Gjerde et al. Sep 2001 A1
20010038450 McCaffrey et al. Nov 2001 A1
20010045358 Kopf-Sill et al. Nov 2001 A1
20010046702 Schembri Nov 2001 A1
20010048899 Marouiss et al. Dec 2001 A1
20010051340 Singh et al. Dec 2001 A1
20010055765 O'Keefe et al. Dec 2001 A1
20020001848 Bedingham et al. Jan 2002 A1
20020008053 Hansen et al. Jan 2002 A1
20020009015 Laugharn, Jr. et al. Jan 2002 A1
20020014443 Hansen et al. Feb 2002 A1
20020015667 Chow Feb 2002 A1
20020021983 Comte et al. Feb 2002 A1
20020022261 Anderson et al. Feb 2002 A1
20020037499 Quake et al. Mar 2002 A1
20020039783 McMillan et al. Apr 2002 A1
20020047003 Bedingham et al. Apr 2002 A1
20020053399 Soane et al. May 2002 A1
20020054835 Robotti et al. May 2002 A1
20020055167 Pourahmadi et al. May 2002 A1
20020058332 Quake et al. May 2002 A1
20020060156 Mathies et al. May 2002 A1
20020068357 Mathies et al. Jun 2002 A1
20020068821 Gundling Jun 2002 A1
20020086443 Bamdad Jul 2002 A1
20020090320 Burow et al. Jul 2002 A1
20020092767 Bjornson et al. Jul 2002 A1
20020094303 Yamamoto et al. Jul 2002 A1
20020131903 Ingenhoven et al. Sep 2002 A1
20020141903 Parunak et al. Oct 2002 A1
20020143297 Francavilla et al. Oct 2002 A1
20020155010 Karp et al. Oct 2002 A1
20020155477 Ito Oct 2002 A1
20020169518 Luoma et al. Nov 2002 A1
20020173032 Zou et al. Nov 2002 A1
20020176804 Strand et al. Nov 2002 A1
20020187557 Hobbs et al. Dec 2002 A1
20020192808 Gambini et al. Dec 2002 A1
20030008308 Enzelberger et al. Jan 2003 A1
20030008320 Baker Jan 2003 A1
20030019522 Parunak Jan 2003 A1
20030022392 Hudak Jan 2003 A1
20030036067 Schwartz Feb 2003 A1
20030049833 Chen et al. Mar 2003 A1
20030059823 Matsunaga et al. Mar 2003 A1
20030064507 Gallagher et al. Apr 2003 A1
20030072683 Stewart et al. Apr 2003 A1
20030073106 Johansen et al. Apr 2003 A1
20030073110 Aritomi et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030087300 Knapp et al. May 2003 A1
20030088657 Eggers May 2003 A1
20030096310 Hansen et al. May 2003 A1
20030099954 Miltenyi et al. May 2003 A1
20030124611 Schwartz Jul 2003 A1
20030127327 Kurnik Jul 2003 A1
20030129094 Schubert et al. Jul 2003 A1
20030134333 Dehlinger et al. Jul 2003 A1
20030136679 Bohn et al. Jul 2003 A1
20030156991 Halas et al. Aug 2003 A1
20030180192 Seippel Sep 2003 A1
20030186295 Colin et al. Oct 2003 A1
20030190608 Blackburn et al. Oct 2003 A1
20030199081 Wilding et al. Oct 2003 A1
20030211517 Carulli et al. Nov 2003 A1
20040014202 King et al. Jan 2004 A1
20040014238 Krug et al. Jan 2004 A1
20040018116 Desmond et al. Jan 2004 A1
20040018119 Massaro Jan 2004 A1
20040022689 Wulf et al. Feb 2004 A1
20040029258 Heaney et al. Feb 2004 A1
20040029260 Hansen et al. Feb 2004 A1
20040037739 McNeely et al. Feb 2004 A1
20040043479 Briscoe et al. Mar 2004 A1
20040053290 Terbrueggen et al. Mar 2004 A1
20040063217 Webster et al. Apr 2004 A1
20040065655 Brown Apr 2004 A1
20040072278 Chou et al. Apr 2004 A1
20040072375 Gjerde et al. Apr 2004 A1
20040076996 Kondo et al. Apr 2004 A1
20040086427 Childers et al. May 2004 A1
20040086956 Bachur May 2004 A1
20040132059 Scurati et al. Jul 2004 A1
20040141887 Mainquist et al. Jul 2004 A1
20040151629 Pease et al. Aug 2004 A1
20040157220 Kurnool et al. Aug 2004 A1
20040161788 Chen et al. Aug 2004 A1
20040171515 Hamers et al. Sep 2004 A1
20040189311 Glezer et al. Sep 2004 A1
20040197810 Takenaka et al. Oct 2004 A1
20040200909 McMillan et al. Oct 2004 A1
20040203173 Peck et al. Oct 2004 A1
20040209331 Ririe Oct 2004 A1
20040209354 Mathies et al. Oct 2004 A1
20040224317 Kordunsky et al. Nov 2004 A1
20040235154 Oh et al. Nov 2004 A1
20040240097 Evans Dec 2004 A1
20050009174 Nikiforov et al. Jan 2005 A1
20050013737 Chow et al. Jan 2005 A1
20050019902 Mathies et al. Jan 2005 A1
20050037471 Liu et al. Feb 2005 A1
20050041525 Pugia et al. Feb 2005 A1
20050042639 Knapp et al. Feb 2005 A1
20050048540 Inami et al. Mar 2005 A1
20050058574 Bysouth et al. Mar 2005 A1
20050058577 Micklash et al. Mar 2005 A1
20050064535 Favuzzi et al. Mar 2005 A1
20050069898 Moon et al. Mar 2005 A1
20050084424 Ganesan et al. Apr 2005 A1
20050106066 Saltsman et al. May 2005 A1
20050112754 Yoon et al. May 2005 A1
20050121324 Park et al. Jun 2005 A1
20050129580 Swinehart et al. Jun 2005 A1
20050130198 Ammann et al. Jun 2005 A1
20050133370 Park et al. Jun 2005 A1
20050135655 Kopf-sill et al. Jun 2005 A1
20050142036 Kim et al. Jun 2005 A1
20050158781 Woudenberg et al. Jul 2005 A1
20050170362 Wada et al. Aug 2005 A1
20050186585 Juncosa et al. Aug 2005 A1
20050196321 Huang Sep 2005 A1
20050202470 Sundberg et al. Sep 2005 A1
20050202489 Cho et al. Sep 2005 A1
20050202504 Anderson et al. Sep 2005 A1
20050205788 Itoh Sep 2005 A1
20050208676 Kahatt Sep 2005 A1
20050214172 Burgisser Sep 2005 A1
20050220675 Reed et al. Oct 2005 A1
20050227269 Lloyd et al. Oct 2005 A1
20050233370 Ammann et al. Oct 2005 A1
20050238545 Parce et al. Oct 2005 A1
20050239127 Ammann et al. Oct 2005 A1
20050266489 Ammann et al. Dec 2005 A1
20050276728 Muller-Cohn et al. Dec 2005 A1
20060002817 Bohm et al. Jan 2006 A1
20060003373 Ammann et al. Jan 2006 A1
20060041058 Yin et al. Feb 2006 A1
20060057039 Morse et al. Mar 2006 A1
20060057629 Kim Mar 2006 A1
20060058519 Deggerdal et al. Mar 2006 A1
20060062696 Chow et al. Mar 2006 A1
20060081539 Safar et al. Apr 2006 A1
20060094004 Nakajima et al. May 2006 A1
20060094108 Yoder et al. May 2006 A1
20060113190 Kurnik Jun 2006 A1
20060133965 Tajima et al. Jun 2006 A1
20060134790 Tanaka et al. Jun 2006 A1
20060148063 Fauzzi et al. Jul 2006 A1
20060154341 Chen Jul 2006 A1
20060165558 Witty et al. Jul 2006 A1
20060165559 Greenstein et al. Jul 2006 A1
20060177376 Tomalia et al. Aug 2006 A1
20060177855 Utermohlen et al. Aug 2006 A1
20060183216 Handique Aug 2006 A1
20060201887 Siddiqi Sep 2006 A1
20060205085 Handique Sep 2006 A1
20060207944 Siddiqi Sep 2006 A1
20060210435 Alavie et al. Sep 2006 A1
20060223169 Bedingham et al. Oct 2006 A1
20060228268 Heimberg et al. Oct 2006 A1
20060228734 Vann et al. Oct 2006 A1
20060246493 Jensen et al. Nov 2006 A1
20060246533 Fathollahi et al. Nov 2006 A1
20060269641 Atwood et al. Nov 2006 A1
20060269961 Fukushima et al. Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070009386 Padmanabhan et al. Jan 2007 A1
20070014695 Yue et al. Jan 2007 A1
20070020699 Carpenter et al. Jan 2007 A1
20070020764 Miller Jan 2007 A1
20070026421 Sundberg et al. Feb 2007 A1
20070042441 Masters et al. Feb 2007 A1
20070048188 Bigus Mar 2007 A1
20070054413 Aviles et al. Mar 2007 A1
20070077643 Nakamura et al. Apr 2007 A1
20070077648 Okamoto et al. Apr 2007 A1
20070092901 Ligler et al. Apr 2007 A1
20070098600 Kayyem et al. May 2007 A1
20070099200 Chow et al. May 2007 A1
20070104617 Coulling et al. May 2007 A1
20070116613 Elsener May 2007 A1
20070134808 Sullivan Jun 2007 A1
20070154895 Spaid et al. Jul 2007 A1
20070177147 Parce Aug 2007 A1
20070178603 Takii et al. Aug 2007 A1
20070178607 Prober et al. Aug 2007 A1
20070184463 Molho et al. Aug 2007 A1
20070184547 Handique et al. Aug 2007 A1
20070196237 Neuzil et al. Aug 2007 A1
20070196238 Kennedy et al. Aug 2007 A1
20070199821 Chow Aug 2007 A1
20070215554 Kreuwel et al. Sep 2007 A1
20070218459 Miller et al. Sep 2007 A1
20070231213 Prabhu et al. Oct 2007 A1
20070238161 Cerrone Oct 2007 A1
20070243626 Windeyer et al. Oct 2007 A1
20070248958 Jovanovich et al. Oct 2007 A1
20070261479 Spaid et al. Nov 2007 A1
20070269861 Williams et al. Nov 2007 A1
20070292941 Handique et al. Dec 2007 A1
20080000774 Park et al. Jan 2008 A1
20080003649 Maltezos et al. Jan 2008 A1
20080017306 Liu et al. Jan 2008 A1
20080056948 Dale et al. Mar 2008 A1
20080069729 McNeely Mar 2008 A1
20080090244 Knapp et al. Apr 2008 A1
20080095673 Xu Apr 2008 A1
20080118987 Eastwood et al. May 2008 A1
20080124723 Dale et al. May 2008 A1
20080149840 Handique et al. Jun 2008 A1
20080176230 Owen et al. Jul 2008 A1
20080192254 Kim et al. Aug 2008 A1
20080226502 Jonsmann et al. Sep 2008 A1
20080240898 Manz et al. Oct 2008 A1
20080247914 Edens et al. Oct 2008 A1
20080257882 Turner Oct 2008 A1
20080280285 Chen et al. Nov 2008 A1
20080308500 Brassard Dec 2008 A1
20090047180 Kawahara Feb 2009 A1
20090066339 Glezer et al. Mar 2009 A1
20090130719 Handique May 2009 A1
20090130745 Williams et al. May 2009 A1
20090136385 Handique et al. May 2009 A1
20090148933 Battrell et al. Jun 2009 A1
20090189089 Bedingham et al. Jul 2009 A1
20090223925 Morse et al. Sep 2009 A1
20090325164 Vossenaar et al. Dec 2009 A1
20090325276 Battrell et al. Dec 2009 A1
20100009343 Fischer et al. Jan 2010 A1
20100009351 Brahmasandra et al. Jan 2010 A1
20100120129 Amshey et al. May 2010 A1
20100233763 Shigeura et al. Sep 2010 A1
20100284864 Holenstein et al. Nov 2010 A1
20110008825 Ingber et al. Jan 2011 A1
20110027151 Handique et al. Feb 2011 A1
20110060136 Matsunaga et al. Mar 2011 A1
20110097493 Kerr et al. Apr 2011 A1
20110127292 Sarofim et al. Jun 2011 A1
20110158865 Miller et al. Jun 2011 A1
20110287447 Norderhaug Nov 2011 A1
20110300033 Battisti Dec 2011 A1
20120122231 Tajima May 2012 A1
20120160826 Handique Jun 2012 A1
20120171678 Maltezos et al. Jul 2012 A1
20120258463 Duffy et al. Oct 2012 A1
20130183769 Tajima Jul 2013 A1
20130210127 Williams et al. Aug 2013 A1
20130315800 Yin et al. Nov 2013 A1
20140030798 Wu et al. Jan 2014 A1
20140120544 Brahmasandra et al. May 2014 A1
20140227710 Handique et al. Aug 2014 A1
20140329301 Handique et al. Nov 2014 A1
20150045234 Stone et al. Feb 2015 A1
20150174579 Iten et al. Jun 2015 A1
20150315631 Handique et al. Nov 2015 A1
20160038942 Roberts Feb 2016 A1
20170275702 Dahiya et al. Sep 2017 A1
20180333722 Handique Nov 2018 A1
20190054467 Handique Feb 2019 A1
20190054471 Williams et al. Feb 2019 A1
20190144849 Duffy et al. May 2019 A1
20190145546 Handique May 2019 A1
20190151854 Baum et al. May 2019 A1
20190154719 LaChance et al. May 2019 A1
20190284606 Wu et al. Sep 2019 A1
20190324050 Williams et al. Oct 2019 A1
20200139363 Handique et al. May 2020 A1
20200156059 Handique et al. May 2020 A1
20200156060 Handique et al. May 2020 A1
20200164363 Handique et al. May 2020 A1
20200215536 Handique et al. Jul 2020 A1
20200216831 Brahmasandra et al. Jul 2020 A1
20200291388 Brahmasandra et al. Sep 2020 A1
20200324293 Handique et al. Oct 2020 A1
20200325523 Brahmasandra et al. Oct 2020 A1
20200325524 Handique et al. Oct 2020 A1
20210001334 Handique et al. Jan 2021 A1
20210010059 Handique et al. Jan 2021 A1
20210047676 Wu et al. Feb 2021 A1
20210060565 Handique et al. Mar 2021 A1
20210087609 Handique et al. Mar 2021 A1
20210121887 Handique et al. Apr 2021 A1
20210123090 Handique et al. Apr 2021 A1
20210147923 Steel et al. May 2021 A1
20210276008 Handique et al. Sep 2021 A1
20210299663 Handique Sep 2021 A1
20210317437 Duffy et al. Oct 2021 A1
20210362155 Williams et al. Nov 2021 A1
20220010364 Handique et al. Jan 2022 A1
20220136034 Handique et al. May 2022 A1
20220170008 Brahmasandra et al. Jun 2022 A1
20220203371 Handique et al. Jun 2022 A1
20220241782 Handique et al. Aug 2022 A1
20230023741 Handique Jan 2023 A1
20230041595 Wu et al. Feb 2023 A1
Foreign Referenced Citations (253)
Number Date Country
1357102 Mar 2002 AU
3557502 Jul 2002 AU
4437602 Jul 2002 AU
4437702 Jul 2002 AU
764319 Aug 2003 AU
2574107 Sep 1998 CA
2294819 Jan 1999 CA
1934451 Mar 2007 CN
1312287 Apr 2007 CN
1942590 Apr 2007 CN
1968754 May 2007 CN
101466848 Jun 2009 CN
101522909 Sep 2009 CN
103540518 Jan 2014 CN
19755479 Jun 1999 DE
19929734 Dec 1999 DE
19833293 Jan 2000 DE
0136126 Apr 1985 EP
0365828 May 1990 EP
0483620 May 1992 EP
0402994 Nov 1994 EP
0393744 Jan 1995 EP
0688602 Dec 1995 EP
0707077 Apr 1996 EP
0698046 Mar 1997 EP
0766256 Apr 1997 EP
0772494 May 1997 EP
0810030 Dec 1997 EP
1059458 Dec 2000 EP
1064090 Jan 2001 EP
1077086 Feb 2001 EP
1346772 Sep 2003 EP
1541237 Jun 2005 EP
1574586 Sep 2005 EP
1621890 Feb 2006 EP
1745153 Jan 2007 EP
1780290 May 2007 EP
1792656 Jun 2007 EP
2372367 Oct 2011 EP
2672301 Aug 1992 FR
2795426 Dec 2000 FR
2453432 Apr 2009 GB
S50-100881 Aug 1975 JP
58212921 Dec 1983 JP
S62-119460 May 1987 JP
H01-502319 Aug 1989 JP
H03181853 Aug 1991 JP
04-053555 May 1992 JP
06-064156 Sep 1994 JP
07-020010 Jan 1995 JP
H07-290706 Nov 1995 JP
H08-122336 May 1996 JP
H08-173194 Jul 1996 JP
H08-211071 Aug 1996 JP
H08-285859 Nov 1996 JP
H08-337116 Dec 1996 JP
H09-304385 Nov 1997 JP
H09-325151 Dec 1997 JP
2001-502790 Jan 1998 JP
H01-219669 Sep 1998 JP
H10-327515 Dec 1998 JP
H11-009258 Jan 1999 JP
H11-501504 Feb 1999 JP
H11-503315 Mar 1999 JP
2000-514928 Apr 1999 JP
H11-156231 Jun 1999 JP
H11-316226 Nov 1999 JP
H11-515106 Dec 1999 JP
2000-180455 Jun 2000 JP
2000-266760 Sep 2000 JP
2000-275255 Oct 2000 JP
2001-502319 Feb 2001 JP
2001-204462 Jul 2001 JP
2001-509437 Jul 2001 JP
3191150 Jul 2001 JP
2001-515216 Sep 2001 JP
2001-523812 Nov 2001 JP
2001-527220 Dec 2001 JP
2002-503331 Jan 2002 JP
2002-085961 Mar 2002 JP
2002-517735 Jun 2002 JP
2002-215241 Jul 2002 JP
2002-540382 Nov 2002 JP
2002-544476 Dec 2002 JP
2003-500169 Jan 2003 JP
2003-500674 Jan 2003 JP
2003-047839 Feb 2003 JP
2003-047840 Feb 2003 JP
2003-516125 May 2003 JP
2003-164279 Jun 2003 JP
2003-185584 Jul 2003 JP
2003-299485 Oct 2003 JP
2003-329693 Nov 2003 JP
2003-329696 Nov 2003 JP
2003-532382 Nov 2003 JP
2004-003989 Jan 2004 JP
2004-506179 Feb 2004 JP
2004-150797 May 2004 JP
2004-283728 Oct 2004 JP
2004-531360 Oct 2004 JP
2004-533838 Nov 2004 JP
2004-534157 Nov 2004 JP
2004-361421 Dec 2004 JP
2004-536291 Dec 2004 JP
2004-536689 Dec 2004 JP
2005-009870 Jan 2005 JP
2005-010179 Jan 2005 JP
2005-511264 Apr 2005 JP
2005-514718 May 2005 JP
2005-518825 Jun 2005 JP
2005-176613 Jul 2005 JP
2005-192439 Jul 2005 JP
2005-192554 Jul 2005 JP
2005-519751 Jul 2005 JP
2005-204661 Aug 2005 JP
2005-525816 Sep 2005 JP
2005-291954 Oct 2005 JP
2005-532043 Oct 2005 JP
2005-323519 Nov 2005 JP
2005-533652 Nov 2005 JP
2005-535904 Nov 2005 JP
2006-021156 Jan 2006 JP
2006-055837 Mar 2006 JP
2006-094866 Apr 2006 JP
2006-145458 Jun 2006 JP
2006-167569 Jun 2006 JP
2006-284409 Oct 2006 JP
2007-024742 Feb 2007 JP
2007-074960 Mar 2007 JP
2007-097477 Apr 2007 JP
2007-101364 Apr 2007 JP
2007-510518 Apr 2007 JP
2007-514405 Jun 2007 JP
2007-178328 Jul 2007 JP
2007-535933 Dec 2007 JP
2009-515140 Apr 2009 JP
2009-542207 Dec 2009 JP
3193848 Oct 2014 JP
1020060044489 May 2006 KR
2418633 May 2011 RU
WO 1988006633 Sep 1988 WO
WO 1990012350 Oct 1990 WO
WO 1992005443 Apr 1992 WO
WO 1994005414 Mar 1994 WO
WO 1994011103 May 1994 WO
WO 1995033846 Dec 1995 WO
WO 1996000228 Jan 1996 WO
WO 1996004547 Feb 1996 WO
WO 1996018731 Jun 1996 WO
WO 1996039547 Dec 1996 WO
WO 1997005492 Feb 1997 WO
WO 1997016835 May 1997 WO
WO 1997021090 Jun 1997 WO
WO 1997022825 Jun 1997 WO
WO 1997027324 Jul 1997 WO
WO 1998000231 Jan 1998 WO
WO 1998007019 Feb 1998 WO
WO 1998022625 May 1998 WO
WO 1998035013 Aug 1998 WO
WO 1998038487 Sep 1998 WO
WO 1998049548 Nov 1998 WO
WO 1998050147 Nov 1998 WO
WO 1998053311 Nov 1998 WO
WO 1999001688 Jan 1999 WO
WO 1999009042 Feb 1999 WO
WO 1999012016 Mar 1999 WO
WO 1999016549 Apr 1999 WO
WO 1999017093 Apr 1999 WO
WO 1999029703 Jun 1999 WO
WO 1999033559 Jul 1999 WO
WO 1999060397 Nov 1999 WO
WO 2000022436 Apr 2000 WO
WO 2000066783 Nov 2000 WO
WO 2000073412 Dec 2000 WO
WO 2000075623 Dec 2000 WO
WO 2000078455 Dec 2000 WO
WO 2001005510 Jan 2001 WO
WO 2001014931 Mar 2001 WO
WO 2001027614 Apr 2001 WO
WO 2001028684 Apr 2001 WO
WO 2001030995 May 2001 WO
WO 2001041931 Jun 2001 WO
WO 2001046474 Jun 2001 WO
WO 2001054813 Aug 2001 WO
WO 2001089681 Nov 2001 WO
WO 2001089705 Nov 2001 WO
WO 2001092569 Dec 2001 WO
WO 2002043864 Jun 2002 WO
WO 2002048164 Jun 2002 WO
WO 2002052002 Jul 2002 WO
WO 2002072264 Sep 2002 WO
WO 2002078845 Oct 2002 WO
WO 2002086454 Oct 2002 WO
WO 2002094185 Nov 2002 WO
WO 2003007677 Jan 2003 WO
WO 2003012325 Feb 2003 WO
WO 2003012406 Feb 2003 WO
WO 2003048295 Jun 2003 WO
WO 2003055605 Jul 2003 WO
WO 2003076661 Sep 2003 WO
WO 2003078065 Sep 2003 WO
WO 2003080868 Oct 2003 WO
WO 2003087410 Oct 2003 WO
WO 2004007081 Jan 2004 WO
WO 2004010760 Feb 2004 WO
WO 2004048545 Jun 2004 WO
WO 2004055522 Jul 2004 WO
WO 2004056485 Jul 2004 WO
WO 2004074848 Sep 2004 WO
WO 2004094986 Nov 2004 WO
WO 2005008255 Jan 2005 WO
WO 2005011867 Feb 2005 WO
WO 2005030984 Apr 2005 WO
WO 2005072353 Aug 2005 WO
WO 2005094981 Oct 2005 WO
WO 2005100538 Oct 2005 WO
WO 2005107947 Nov 2005 WO
WO 2005108571 Nov 2005 WO
WO 2005108620 Nov 2005 WO
WO 2005116202 Dec 2005 WO
WO 2005118867 Dec 2005 WO
WO 2005120710 Dec 2005 WO
WO 2006010584 Feb 2006 WO
WO 2006032044 Mar 2006 WO
WO 2006035800 Apr 2006 WO
WO 2006043642 Apr 2006 WO
WO 2006066001 Jun 2006 WO
WO 2006079082 Jul 2006 WO
WO 2006081995 Aug 2006 WO
WO 2006113198 Oct 2006 WO
WO 2006118420 Nov 2006 WO
WO 2006119280 Nov 2006 WO
WO 2007044917 Apr 2007 WO
WO 2007050327 May 2007 WO
WO 2007064117 Jun 2007 WO
WO 2007075919 Jul 2007 WO
WO 2007091530 Aug 2007 WO
WO 2007112114 Oct 2007 WO
WO 2007120240 Oct 2007 WO
WO 2007120241 Oct 2007 WO
WO 2008005321 Jan 2008 WO
WO 2008030914 Mar 2008 WO
WO 2008060604 May 2008 WO
WO 2008134470 Nov 2008 WO
WO 2008149282 Dec 2008 WO
WO 2009012185 Jan 2009 WO
WO 2009054870 Apr 2009 WO
WO 2010118541 Oct 2010 WO
WO 2010130310 Nov 2010 WO
WO 2010140680 Dec 2010 WO
WO 2011009073 Jan 2011 WO
WO-2011009073 Jan 2011 WO
WO 2011101467 Aug 2011 WO
Non-Patent Literature Citations (447)
Entry
BDProbeTec™ ET Neisseria gonorrhoeae Amplified DNA Assay Package Insert, Jul. 2010 (13 pages).
BDProbeTec™ ET System Brochure, Aug. 2010 (9 pages).
Gill et al., “Nucleic Acid Isothermal Amplification Technologies—A Review”, Nucleosides Nucleotides Nucleic Acids, (2008) 27(3): 224-243.
Rush et al., “Dispersion by Pressure-Driven Flow in Serpentine Microfluidic Channels”, Ind Eng Chem Res., (2002) 41: 4652-4662.
Walker et al., “Strand displacement amplification—an isothermal, in vitro DNA amplification technique”, Nucleic Acids Res. (1992) 20(7): 1691-1696.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 14 in IPR2020-01083) dated Jan. 7, 2021 (24 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 20 in IPR2020-01133) dated Jan. 20, 2021 (67 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 19 in IPR2020-01132) dated Jan. 20, 2021 (78 pages).
Declaration of M. Allen Northrup, Ph.D. in support of Patent Owner Preliminary Responses in IPR2020-01132 and IPR2020-01133 (Exhibit H2016) dated Jan. 20, 2021 (154 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 19 in IPR2020-01136) dated Jan. 20, 2021 (77 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 19 in IPR2020-01137) dated Jan. 20, 2021 (69 pages).
Declaration of M. Allen Northrup, Ph.D. in support of Patent Owner Preliminary Responses in IPR2020-01136 and IPR2020-01137 (Exhibit H2016) dated Jan. 20, 2021 (111 pages).
Opening Brief [Corrected] of Appellants Qiagen North American Holdings, Inc. and NeuMoDx Molecular Inc. in Appeals to IPR2019-00488, IPR2019-00490, IPR2019-01493 and IPR2019-01494 filed Jan. 22, 2021 in U.S. Court of Appeals for the Federal Circuit Case Nos. 20-2249, 20-2250, 20-2273 and 20-2276 (82 pages).
Decision Granting Institution of Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 20 in IPR2020-01132) dated Apr. 19, 2021 (33 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 21 in IPR2020-01133) dated Apr. 19, 2021 (24 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 20 in IPR2020-01136) dated Apr. 19, 2021 (19 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 20 in IPR2020-01137) dated Apr. 19, 2021 (14 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 10,625,262 (Paper 6 in IPR2021-00250) dated Apr. 19, 2021 (71 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 10,625,261 (Paper 6 in IPR2021-00251) dated Apr. 19, 2021 (82 pages).
Patent Owner's Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 10,632,466 (Paper 6 in IPR2021-00253) dated Apr. 19, 2021 (66 pages).
Declaration of James P. Landers, Ph.D. in support of Patent Owner Preliminary Responses in IPR2021-00250, IPR2021-00251, and IPR2021-00253 (Exhibit H2003) dated Apr. 19, 2021 (189 pages).
Second Amended and Supplemental Complaint filed by Becton, Dickinson and Company et al. on Feb. 25, 2021 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (75 pages).
Defendant NeuMoDx's First Supplemental Invalidity Contentions filed Mar. 17, 2021 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (55 pages).
Defendant NeuModx's Answer, Affirmative Defenses, and Counterclaims to Plaintiffs' Second and Supplemental Complaint filed Mar. 18, 2021 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (67 pages).
Plaintiffs' Answer and/or Reply to Defendants' Counterclaims and Counterclaims-In-Reply filed Apr. 22, 2021 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (127 pages).
Claim Construction (Markman) Order dated May 10, 2021 in in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (30 pages).
Allemand et al., “pH-Dependent Specific Binding and Combing of DNA”, Biophys J. (1997) 73(4): 2064-2070.
Altet et al., [Eds.] “Thermal Transfer and Thermal Coupling in IC's”, Thermal Testing of Integrated Circuits; Chapter 2 (2002) Springer Science pp. 23-51.
Ateya et al., “The good, the bad, and the tiny: a review of microflow cytometry”, Anal Bioanal Chem. (2008) 391 (5):1485-1498.
Auroux et al., “Miniaturised nucleic acid analysis”, Lab Chip. (2004) 4(6):534-546.
Baechi et al., “High-density microvalve arrays for sample processing in PCR chips”, Biomed Microdevices. (2001) 3(3):183-190.
Baker M., “Clever PCR: more genotyping, smaller volumes.” Nature Methods (May 2010) 70(5):351-356.
Becker H. “Fabrication of Polymer Microfluidic Devices”, in Biochip Technology (2001), Chapter 4, pp. 63-96.
Becker H., “Microfluidic Devices Fabricated by Polymer Hot Embossing,” in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002), Chapter 13, 32 pages.
Becker H., “Microfluidics: A Technology Coming of Age”, Med Device Technol. (2008) 19(3):21-24.
Becker et al., “Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis”, SPIE Proceedings MOEMS-MEMS 2008 Micro and Nanofabrication (2008) vol. 6886 in 8 pages.
Becker H., “Hype, hope and hubris: the quest for the killer application in microfluidics”, Lab on a Chip, The Royal Society of Chemistry (2009) 9:2119-2122.
Becker H., “Collective Wisdom”, Lab on a Chip, The Royal Society of Chemistry (2010) 10:1351-1354.
Belgrader et al., “Rapid PCR for Identity Testing Using a Battery-Powered Miniature Thermal Cycler”, J Forensic Sci. (1998) 43(2):315-319.
Belgrader et al., “A minisonicator to rapidly disrupt bacterial spores for DNA analysis.”, Anal Chem. (1999) 71 (19):4232-4236.
Belgrader et al., “Real-time PCR Analysis on Nucleic Acids Purified from Plasma Using a Silicon Chip”, Micro Total Analysis Systems 2000 (pp. 525-528). Springer, Dordrecht.
Belgrader et al., “A microfluidic cartridge to prepare spores for PCR analysis”, Biosens Bioelectron. (2000) 14(10-11):849-852.
Belgrader et al., “A Battery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis”, Anal Chem. (2001) 73(2):286-289.
Belgrader et al., “Rapid and Automated Cartridge-based Extraction of Leukocytes from Whole Blood for Microsatellite DNA Analysis by Capillary Electrophoresis”, Clin Chem. (2001) 47(10):1917-1933.
Belgrader et al., “A Rapid, Flow-through, DNA Extraction Module for Integration into Microfluidic Systems”, Micro Total Analysis Systems (2002) pp. 697-699). Springer, Dordrecht.
Belgrader et al., “Development of a Battery-Powered Portable Instrumentation for Rapid PCR Analysis”, in Integrated Microfabricated Devices, (2002) Ch. 8, pp. 183-206, CRC Press.
Bell M., “Integrated Microsystems in Clinical Chemistry”, in Integrated Microfabricated Devices, (2002) Ch. 16, pp. 415-435, CRC Press.
Berthier et al., “Managing evaporation for more robust microscale assays Part 1. Volume loss in high throughput assays”, Lab Chip (2008) 8(6):852-859.
Berthier et al., “Managing evaporation for more robust microscale assays Part 2. Characterization of convection and diffusion for cell biology”, Lab Chip (2008) 8(6):860-864.
Berthier et al., “Microdrops,” in Microfluidics for Biotechnology (2006), Chapter 2, pp. 51-88.
Biomerieux Press Release: “bioMerieux—2018 Financial Results,” dated Feb. 27, 2019, accessed atwww.biomerieux.com, pp. 13.
Blanchard et al., “Micro structure mechanical failure characterization using rotating Couette flow in a small gap”, J Micromech Microengin. (2005) 15(4):792-801.
Blanchard et al., “Single-disk and double-disk viscous micropumps”, Sensors and Actuators A (2005) 122:149-158.
Blanchard et al., “Performance and Development of a Miniature Rotary Shaft Pump”, J Fluids Eng. (2005) 127(4):752-760.
Blanchard et al., “Single-disk and double-disk viscous micropump”, ASME 2004 Inter'l Mechanical Engineering Congress & Exposition, Nov. 13-20, 2004, Anaheim, CA, IMECE2004-61705:411-417.
Blanchard et al., “Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization”, J Fluids Eng. (2006) 128(3):602-610.
Bollet, C. et al., “A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria”, Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.
Brahmasandra et al., On-chip DNA detection in microfabricated separation systems, SPIE Conference on Microfluidic Devices and Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, CA.
Brahmasandra et al., “Microfabricated Devices for Integrated DNA Analysis”, in Biochip Technology by Cheng et al., [Eds.] (2001) pp. 229-250.
Breadmore, M.C. et al., “Microchip-Based Purification of DNA from Biological Samples”, Anal. Chem., vol. 75 (2003), pp. 1880-1886.
Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18.
Broyles et al., “Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices” Analytical Chemistry (American Chemical Society), (2003) 75(11):2761-2767.
Bu et al., “Design and theoretical evaluation of a novel microfluidic device to be used for PCR”, J Micromech Microengin. (2003) 13(4):S125-S130.
Burns et al., “An Integrated Nanoliter DNA Analysis Device”, Science 282:484-487 (1998).
Cady et al., “Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform”, Sensors Actuat B. (2005) 107:332-341.
Carlen et al., “Paraffin Actuated Surface Micromachined Valve,” in IEEE MEMS 2000 Conference, Miyazaki, Japan, (Jan. 2000) pp. 381-385.
Carles et al., “Polymerase Chain Reaction on Microchips” in Methods in Molecular Biology—Microfluidic Techniques, Reviews & Protocols by Minteer S.D. [Ed.] Humana Press (2006), vol. 321; Chapter 11, pp. 131-140.
Chang-Yen et al., “A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems”, IEEE Technical Digest MEMS International Conference Jan. 24, 2002, 4 pages.
Chang-Yen et al., “A PDMS microfluidic spotter for fabrication of lipid microarrays”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.
Chang-Yen et al., “Design and fabrication of a multianalyte-capable optical biosensor using a multiphysics approach”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.
Chang-Yen et al., “A Novel PDMS Microfluidic Spotter for Fabrication of Protein Chips and Microarrays”, IEEE J of Microelectromech Sys. (2006) 15(5): 1145-1151.
Chang-Yen et al., “Design, fabrication, and packaging of a practical multianalyte-capable optical biosensor,” J Microlith Microfab Microsyst. (2006) 5(2):021105 in 8 pages.
Chang-Yen et al., “Spin-assembled nanofilms for gaseous oxygen sensing.” Sens Actuators B: Chemical (2007), 120(2):426-433.
Chaudhari et al., “Transient Liquid Crystal Thermometry of Microfabricated PCR Vessel Arrays”, J Microelectro Sys., (1998) 7(4):345-355.
Chen P-C., “Accelerating micro-scale PCR (polymerase chain reactor) for modular lab-on-a-chip system”, LSU Master's Theses—Digital Commons, (2006) 111 pages.
Chen et al., “Total nucleic acid analysis integrated on microfluidic devices,” Lab on a Chip. (2007) 7:1413-1423.
Cheng et al., “Biochip-Based Portable Laboratory”, Biochip Tech. (2001):269-289.
Cho et al., “A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches”, Rev Sci Instrum. (2008) 79(3):034901-1 to -8.
Chong et al., “Disposable Polydimethylsiloxane Package for ‘Bio-Microfluidic System’”, IEEE Proceedings Electronic Components and Technology (2005); 5 pages.
Chou et al., “A miniaturized cyclic PCR device—modeling and experiments”, Microelec Eng. (2002) 61-62:921-925.
Christel et al., “Nucleic Acid Concentration and PCR for Diagnostic Applications”, in Micro Total Analysis Systems. (1998) D.J. Harrison et al. [Eds.] pp. 277-280.
Christel et al., “Rapid, Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration”, J Biomech Eng. (1999) 121(1):22-27.
Christensen et al., “Characterization of interconnects used in PDMS microfluidic systems”, J Micromech Microeng. (2005) 15:928 in 8 pages.
Chung, Y. et al., “Microfluidic chip for high efficiency DNA extraction”, Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Proceedings, SPIE Conference on Microfluids and BioMEMS, (2001/10), 12 pages.
Crews et al., “Rapid Prototyping of a Continuous-Flow PCR Microchip”, Proceedings of the AiChE Annual Meeting(Nov. 15, 2006) (335a) 3 pages.
Crews et al., Thermal gradient PCR in a continuous-flow microchip. In Microfluidics, BioMEMS, and Medical Microsystems V; Jan. 2007; vol. 6465, p. 646504; 12 pages.
Crews et al., “Continuous-flow thermal gradient PCR”, Biomed Microdevices. (2008) 10(2):187-195.
Cui et al., “Electrothermal modeling of silicon PCR chips”, In MEMS Design, Fabrication, Characterization, and Packaging, (Apr. 2001) (vol. 4407, pp. 275-280.
Cui et al., “Design and Experiment of Silicon PCR Chips,” Proc. SPIE 4755, Design, Test, Integration, and Packaging of MEMS/MOEMS 2002, (Apr. 19, 2002) pp. 71-76.
Danaher Press Release: “Danaher to Acquire Cepheid for $53.00 per share, or approximately $4 Billion,” dated Sep. 6, 2016, accessed at www.danaher.com, pp. 3.
Demchenko A.P., “The problem of self-calibration of fluorescence signal in microscale sensor systems”, Lab Chip. (2005) 5(11):1210-1223.
Dineva et al., “Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings”, Analyst. (2007) 132(12):1193-1199.
Dishinger et al., “Multiplexed Detection and Applications for Separations on Parallel Microchips”, Electrophoresis. (2008) 29(16):3296-3305.
Dittrich et al., “Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in muTAS?”, Anal Bioanal Chem. (2005) 382(8):1771-1782.
Dittrich et al., “Lab-on-a-chip: microfluidics in drug discovery”, Nat Rev Drug Discov. (2006) 5(3):210-218.
Dunnington et al., “Approaches to Miniaturized High-Throughput Screening of Chemical Libraries”, in Integrated Microfabricated Devices, (2002) Ch. 15, pp. 371-414, CRC Press.
Eddings et al., “A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices”, J Micromech Microengin. (2006) 16(11):2396-2402.
Edwards, “Silicon (Si),” in “Handbook of Optical Constants of Solids” (Ghosh & Palik eds., 1997) in 24 pages.
Edwards et al., “Micro Scale Purification Systems for Biological Sample Preparation”, Biomed Microdevices (2001) 3(3):211-218.
Edwards et al., “A microfabricated thermal field-flow fractionation system”, Anal Chem. (2002) 74(6):1211-1216.
Ehrlich et al., “Microfluidic devices for DNA analysis”, Trends Biotechnol. (1999) 17(8):315-319.
El-Ali et al., “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor”, Sens Actuators A: Physical (2004) 110(1-3):3-10.
Erickson et al., “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems”, Lab Chip (2003) 3(3):141-149.
Erickson et al., “Integrated Microfluidic Devices”, Analytica Chim Acta. (2004) 507:11-26.
Erill et al., “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, J Micromech Microengin. (2004) 14(11):1-11.
Fair R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics Nanofluid. (2007) 3:245-281.
Fan et al., “Integrated Plastic Microfluidic Devices for Bacterial Detection”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 6, pp. 78-89.
Fiorini et al., “Disposable microfluidic devices: fabrication, function, and application”, Biotechniques (2005) 38(3):429-446.
Frazier et al., “Integrated micromachined components for biological analysis systems”, J Micromech. (2000) 1(1):67-83.
Gale et al., “Micromachined electrical field-flow fractionation (mu-EFFF) system”, IEEE Trans Biomed Eng. (1998) 45(12):1459-1469.
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 1. Theoretical analysis”, Anal Chem. (2001) 73(10):2345-2352.
Gale et al., “BioMEMS Education at Louisiana Tech University”, Biomed Microdevices, (2002) 4:223-230.
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 2. Experimental results”, Anal Chem. (2002) 74(5):1024-1030.
Gale et al., “Cyclical electrical field flow fractionation”, Electrophoresis. (2005) 26(9):1623-1632.
Gale et al., “Low-Cost MEMS Technologies”, Elsevier B.V. (2008), Chapter 1.12; pp. 342-372.
Garst et al., “Fabrication of Multilayered Microfluidic 3D Polymer Packages”, IEEE Proceedings Electronic Components & Tech, Conference May/Jun. 2005, pp. 603-610.
Gärtner et al., “Methods and instruments for continuous-flow PCR on a chip”, Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, (2007) 646502; 8 pages.
Giordano et al., “Toward an Integrated Electrophoretic Microdevice for Clinical Diagnostics”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 1; pp. 1-34.
Goldmeyer et al., “Identification of Staphylococcus aureus and Determination of Methicillin Resistance Directly from Positive Blood Cultures by Isothermal Amplification and a Disposable Detection Device”, J Clin Microbiol. (Apr. 2008) 46(4): 1534-1536.
Graff et al., “Nanoparticle Separations Using Miniaturized Field-flow Fractionation Systems”, Proc. Nanotechnology Conference and Trade Show (NSTI) (2005); pp. 8-12.
Greer et al., “Comparison of glass etching to xurography prototyping of microfluidic channels for DNA melting analysis”, J Micromech Microengin. (2007) 17(12):2407-2413.
Grunenwald H., “Optimization of Polymerase Chain Reactions,” in Methods in Molecular Biology, PCR Protocols., Second Edition by Bartlett et al. [Eds.] Humana Press (2003) vol. 226, pp. 89-99.
Guijt et al., “Chemical and physical processes for integrated temperature control in microfluidic devices”, Lab Chip. (2003) 3(1):1 -4.
Gulliksen A., “Microchips for Isothermal Amplification of RNA”, Doctoral Thesis (2007); Department of Mol. Biosciences-University of Oslo; 94 pages.
Guttenberg et al., “Planar chip device for PCR and hybridization with surface acoustic wave pump”, Lab Chip. (2005) 5(3):308-317.
Haeberle et al., “Microfluidic platforms for lab-on-a-chip applications”, Lab Chip. (2007) 7(9):1094-1110.
Hale et al., “Optical constants of Water in the 200-nm to 200-μm Wavelength Region”, Applied Optics, 12(3): 555-563 (1973).
Handal et al., “DNA mutation detection and analysis using miniaturized microfluidic systems”, Expert Rev Mol Diagn. (2006) 6(1):29-38.
Handique et al, “Microfluidic flow control using selective hydrophobic patterning”, SPIE, (1997) 3224: 185-194.
Handique et al., “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping”, Anal. Chem., (2001) 73(8):1831-1838.
Handique et al., “Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems”, Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349.
Handique et al., “Mathematical Modeling of Drop Mixing in a Slit-Type Microchannel”, J. Micromech. Microeng., 11:548-554 (2001).
Handique et al., “Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns”, Anal. Chem., 72(17):4100-4109 (2000).
Hansen et al., “Microfluidics in structural biology: smaller, faster . . . better”, Curr Opin Struct Biol. (2003) 13(5):538-544.
Harding et al., “DNA isolation using Methidium-Spermine-Sepharose”, Meth Enzymol. (1992) 216: 29-39.
Harding et al., “Rapid isolation of DNA from complex biological samples using a novel capture reagent—methidium-spermine-sepharose”, Nucl Acids Res. (1989) 17(17): 6947-6958.
He et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.
Heid et al., “Genome Methods—Real Time Quantitative PCR”, Genome Res. (1996) 6(10):986-994.
Henry C.S. [Ed], “Microchip Capillary electrophoresis”, Methods in Molecular Biology, Humana Press 339 (2006) Parts I-IV in 250 pages.
Herr et al., “Investigation of a miniaturized capillary isoelectric focusing (cIEF) system using a full-field detection approach”, Solid State Sensor and Actuator Workshop, Hilton Head Island (2000), pp. 4-8.
Herr et al., “Miniaturized Isoelectric Focusing (μIEF) As a Component of a Multi-Dimensional Microfluidic System”, Micro Total Analysis Systems (2001) pp. 51-53.
Herr et al., Miniaturized Capillary Isoelectric Focusing (cIEF): Towards a Portable High-Speed Separation Method. In Micro Total Analysis Systems (2000) Springer, Dordrecht; pp. 367-370.
Holland et al., “Point-of-care molecular diagnostic systems—past, present and future”, Curr Opin Microbiol. (2005) 8(5):504-509.
Hong et al., “Integrated nanoliter systems”, Nat Biotechnol. (2003) 21(10):1179-1183.
Hong et al., “Molecular biology on a microfluidic chip”, J Phys.: Condensed Matter (2006) 18(18):S691-S701.
Hong et al., “Integrated Nucleic Acid Analysis in Parallel Matrix Architecture”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 8, pp. 107-116.
Horsman et al., “Forensic DNA Analysis on Microfluidic Devices: A Review”, J Forensic Sci. (2007) 52(4):784-799.
Hsieh et al., “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction”, Sens Actuators B: Chemical. (2008) 130(2):848-856.
Huang et al., “Temperature Uniformity and DNA Amplification Efficiency in Micromachined Glass PCR Chip”, TechConnect Briefs; Tech Proc. of the 2005 NSTI Nanotechnology Conference and Trade Show. (2005) vol. 1:452-455.
Huebner et al., “Microdroplets: A sea of applications?”, Lab Chip. (2008) 8(8):1244-1254.
Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, 70(9):2013-2017.
International Search Report dated Jun. 17, 2009 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.
International Preliminary Report on Patentability and Written Opinion dated Jan. 19, 2010 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.
International Search Report and Written Opinion dated Jul. 12, 2013 for Application No. PCT/US2012/033667, filed Apr. 13, 2012.
Iordanov et al., “PCR Array on Chip—Thermal Characterization”, IEEE Sensors (2003) Conference Oct. 22-24, 2003; pp. 1045-1048.
Irawan et al., “Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System,” Biomed Micro. (2005) 7(3):205-211.
Ji et al., “DNA Purification Silicon Chip”, Sensors and Actuators A: Physical (2007) 139(1-2):139-144.
Jia et al., “A low-cost, disposable card for rapid polymerase chain reaction”, Colloids Surfaces B: Biointerfaces (2007) 58:52-60.
Kaigala et al., “An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis”, The Analyst (2008) 133(3):331-338.
Kajiyama et al., “Genotyping on a Thermal Gradient DNA Chip”, Genome Res. (2003) 13(3):467-475.
Kang et al., “Simulation and Optimization of a Flow-Through Micro PCR Chip”, NSTI-Nanotech (2006) vol. 2, pp. 585-588.
Kantak et al..“Microfluidic platelet function analyzer for shear-induced platelet activation studies”, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. (May 2002) 5 pages.
Kantak et al., “Microfabricated cyclical electrical field flow fractionation”, 7th International Conference on Miniaturized Chomical and Biochem Analysis Sys. (2003) pp. 1199-1202.
Kantak et al., “Platelet function analyzer: Shear activation of platelets in microchannels”, Biomedical Microdevices (2003) 5(3):207-215.
Kantak et al., “Characterization of a microscale cyclical electrical field flow fractionation system”, Lab Chip. (2006) 6(5):645-654.
Kantak et al., “Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation”, Anal Chem. (2006) 78(8):2557-2564.
Kantak et al., “Improved theory of cyclical electrical field flow fractions”, Electrophoresis (2006) 27(14):2833-2843.
Karunasiri et al.,“Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement”, SPIE's Inter'l Symposium on Optical Science, Engineering, and Instrumentation; Proceedings (1998) vol. 3436, Infrared Technology and Applications XXIV; (1998) 8 pages.
Kelly et al., “Microfluidic Systems for Integrated, High-Throughput DNA Analysis,” Analytical Chemistry, (2005), 97A-102A, Mar. 1, 2005, in 7 pages.
Khandurina et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, 71(9): 1815-1819.
Khandurina et al., “Bioanalysis in microfluidic devices,” J Chromatography A, (2002) 943:159-183.
Kim et al., “Reduction of Microfluidic End Effects in Micro-Field Flow Fractionation Channels”, Proc. MicroTAS 2003, pp. 5-9.
Kim et al., “Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure”, 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Med and Biol. (May 2005).
Kim et al., “Electrohydrodynamic Generation and Delivery of Monodisperse Picoliter Droplets Using a Poly(dimethylsiloxane) Microchip”, Anal Chem. (2006) 78: 8011-8019.
Kim et al., “Geometric optimization of a thin film ITO heater to generate a uniform temperature distribution”, (2006), Tokyo, Japan; pp. 293-295; Abstract.
Kim et al., “Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip”, J Micromech Microeng. (2006) 16(3):526-530.
Kim et al., “Patterning of a Nanoporous Membrane for Multi-sample DNA Extraction”, J Micromech Microeng. (2006) 16:33-39.
Kim et al., “Performance evaluation of thermal cyclers for PCR in a rapid cycling condition”, Biotechniques. (2008) 44(4):495-505.
Kim et al., “Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane”, Lab Chip. (2008) 8(9):1516-1523.
Kogi et al., “Microinjection-microspectroscopy of single oil droplets in water: an application to liquid/liquid extraction under solution-flow conditions”, Anal Chim Acta. (2000) 418(2):129-135.
Kopf-Sill et al., “Creating a Lab-on-a-Chip with Microfluidic Technologies”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 2; pp. 35-54.
Kopp et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.
Kricka L.J., “Microchips, Bioelectronic Chips, and Gene Chips—Microanalyzers for the Next Century”, in Biochip Technology by Cheng et al. [Eds]; (2006) Chapter 1, pp. 1-16.
Krishnan et al., “Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures”, Anal Chem. (2004) 76(22):6588-6593.
Kuo et al., “Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis”, J Biotech. (2007) 129: 383-390.
Kuswandi et al., “Optical sensing systems for microfluidic devices: a review”, Anal Chim Acta. (2007) 601(2):141-155.
Kutter et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, 12(2): 93-97.
Labchem; Sodium Hydroxide, 0,5N (0.5M); Safety Data Sheet, 2015; 8 pages.
Lagally et al., “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system” Sensors and Actuators B (2000) 63:138-146.
Lagally et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, 73(3): 565-570.
Lagally et al., “Genetic Analysis Using Portable PCR-CE Microsystem”, Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (2003) pp. 1283-1286.
Lagally et al., “Integrated portable genetic analysis microsystem for pathogen/infectious disease detection”, Anal Chem. (2004) 76(11):3152-3170.
Lauerman L.H., “Advances in PCR technology”, Anim Health Res Rev. (2004) 5(2):247-248.
Lawyer et al., “High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquaticus DNA Polymerase and a Truncated Form Deficient in 5′to3′Exonuclease Activity.” Genome research (1993) 2(4):275-287.
Lee et al., “Submicroliter-volume PCR chip with fast thermal response and very power consumption”, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, (2003) pp. 187-190.
Lee et al., “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption”, Lab Chip. (2004) 4(4):401-407.
Lewin et al., “Use of Real-Time PCR and Molecular Beacons to Detect Virus Replication in Human Immunodeficiency Virus Type 1-infected Individuals on Prolonged Effective Antiretroviral Therapy”. J Virol. (1999) 73(7), 6099-6103.
Li et al., “Effect of high-aspect-ratio microstructures on cell growth and attachment”, 1st Annual Inter'l IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. Proceedings Cat. No. 00EX451; (Oct. 2000) Poster 66, pp. 531-536.
Li Pch., “Micromachining Methods et al.” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 2-3 to 2-5; pp. 10-49.
Li Pch., “Microfluidic Flow” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 3, pp. 55-99.
Li Pch., “Detection Methods” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 7, pp. 187-249.
Li Pch., “Applications to Nucleic Acids Analysis” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 9; pp. 293-325.
Li et al., “A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control”, J Microelectromech Syst. (2006) 15(1):223-236.
Liao et al., “Miniature RT-PCR system for diagnosis of RNA-based viruses,” Nucl Acids Res. (2005) 33(18):e156 in 7 pages.
Lien et al., “Integrated reverse transcription polymerase chain reaction systems for virus detection”, Biosens Bioelectron. (2007) 22(8):1739-1748.
Lien et al., “Microfluidic Systems Integrated with a Sample Pretreatment Device for Fast Nucleic-Acid Amplification”, J Microelectro Sys. (2008) 17(2):288-301.
Lifesciences et al., “Microfluidics in commercial applications; an industry perspective.” Lab Chip (2006) 6:1118-1121.
Lin et al., “Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method,” IEEE Transactions on Semiconductor Manufacturing, (2000) 13(4):448-456.
Lin et al., “Simulation and experimental validation of micro polymerase chain reaction chips”, Sens Actuators B: Chemical. (2000) 71(1-2):127-133.
Linder et al., “Microfluidics at the Crossroad with Point-of-care Diagnostics”, Analyst (2007) 132:1186-1192.
Liu et al., “Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing”, Anal Chem. (2007) 79(5):1881-1889.
Liu et al. [Eds], Integrated Biochips for DNA Analysis—Biotechnology Intelligence Unit; Springer/Landes Bioscience (2007) ISBN:978-0-387-76758-1; 216 pages.
Livache et al., “Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping”, Analytical Biochemistry, (1998) 255: 188-194.
Locascio et al., “ANYL 67 Award Address—Microfluidics as a tool to enable research and discovery in the life sciences”, Abstract; The 236th ACS National Meeting (Aug. 2008); 2 pages.
Mahjoob et al., “Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification”, Inter'l J Heat Mass Transfer. (2008) 51(9-10):2109-2122.
Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J Optical Society of America, 55:1205-1209 (1965).
Manz et al., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,” Sensors and Actuators B1, (1990) 244-248.
Marcus et al., “Parallel picoliter rt-PCR assays using microfluidics”, Anal Chem. (2006) 78(3):956-958.
Mariella R.P. Jr., “Microtechnology”, Thrust Area Report FY 96 UCRL-ID-125472; Lawrence Livermore National Lab., CA (Feb. 1997) Chapter 3 in 44 pages.
Mariella R., “Sample preparation: the weak link in microfluidics-based biodetection”, Biomed Microdevices. (2008) 10(6):777-784.
Mastrangelo et al., Microfabricated Devices for Genetic Diagnostics. Proceedings of the IEEE (1998) 86(8):1769-1787.
Mascini et al., “DNA electrochemical biosensors”, Fresenius J. Anal. Chem., 369: 15-22, (2001).
McMillan et al., “Application of advanced microfluidics and rapid PCR to analysis of microbial targets”, In Proceedings of the 8th international symposium on microbial ecology (1999), in 13 pages.
Melin et al., “Microfluidic large-scale integration: the evolution of design rules for biological automation”, Annu Rev Biophys Biomol Struct. (2007) 36:213-231.
Merugu et al., “High Throughput Separations Using a Microfabricated Serial Electric Split System” (2003), Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; 1191-1194, in 3 pages.
Meyers, R.A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference; VCH Publishers, Inc. New York, NY; (1995) pp. 418-419.
Miao et al., “Low cost micro-PCR array and micro-fluidic integration on single silicon chip”, Int'l J Comput Eng Science (2003) 4(2):231-234.
Miao et al., “Flip-Chip packaged micro-plate for low cost thermal multiplexing”, Int'l J Comput Eng Science. (2003) 4(2):235-238.
Micheletti et al., “Microscale Bioprocess Optimisation”, Curr Opin Biotech. (2006) 17:611-618.
MicroTAS 2005., “Micro Total Analysis Systems”, Proceedings 9th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Boston, MA in Oct. 10-12, 2005 in 1667 pages.
MicroTAS 2007., “Micro Total Analysis Systems”, Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 1948 pages.
MicroTAS 2007., “Micro Total Analysis Systems”, Advance Program for the Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 42 pages.
Minco, “Conductive Heating Technologies for Medical Diagnostic Equipment,” (2006) in 13 pages.
Mitchell et al., “Modeling and validation of a molded polycarbonate continuous-flow polymerase chain reaction device,” Microfluidics, BioMEMS, and Medical Microsystems, Proc. SPIE (2003) 4982:83-98.
Myers et al., “Innovations in optical microfluidic technologies for point-of-care diagnostics”, Lab Chip (2008) 8:2015-2031.
Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, 116: 105-111.
Namasivayam et al., “Advances in on-chip photodetection for applications in miniaturized genetic analysis systems”, J Micromech Microeng. (2004) 14:81-90.
Narayanan et al., “A microfabricated electrical SPLITT system,” Lab Chip, (2006) 6:105-114.
Neuzil et al., “Disposable real-time microPCR device: lab-on-a-chip at a low cost,” Mol. Biosyst., (2006) 2:292-298.
Neuzil et al., “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Research, (2006) 34(11)e77, in 9 pages.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microfluidics” in Fundamentals and Applications of Microfluidics; 2nd Edition (2006) Introduction Chapter 1, pp. 1-9.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microvalves” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 6, pp. 211-254.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Micropumps” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 7, pp. 255-309.
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microdispensers” in Fundamentals and Applications of Microfluidics; (2006) , Chapter 11, pp. 395-418.
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microreactors” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 13, pp. 443-477.
Ning et al., “Microfabrication Processes for Silicon and Glass Chips”, in Biochip Technology, CRC-Press (2006) Chapter 2, pp. 17-38.
Northrup et al., “A MEMS-based Miniature DNA Analysis System,” Lawrence Livermore National Laboratory, (1995), submitted to Transducers '95, Stockholm, Sweden, Jun. 25-29, 1995, in 7 pages (Prepublication).
Northrup et al., “Advantages Afforded by Miniaturization and Integration of DNA Analysis Instrumentation,” Microreaction Technology, (1998) 278-288.
Northrup et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, 70(5): 918-922.
Northrup et al., “A New Generation of PCR Instruments and Nucleic Acid Concentration Systems,” in PCR Applications: Protocols for Functional Genomics, (1999), Chapter 8, pp. 105-125.
Northrup, “Microfluidics, A few good tricks,” Nature materials (2004), 3:282-283.
Northrup et al.,“Microfluidics-based integrated airborne pathogen detection systems,” Abstract, Proceedings of the SPIE, (2006), vol. 6398, Abstract in 2 pages.
Oh et al., “World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays,” Lab Chip, (2005), 5:845-850.
Oh K.W. et al., “A Review of Microvalves”, J Micromech Microeng. (2006) 16:R13-R39.
Ohno et al., “Microfluidics: Applications for analytical purposes in chemistry and biochemistry,” Electrophoresis (2008), 29:4443-4453.
Oleschuk et al., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, 72(3): 585-590. .
Pal et al., “Phase Change Microvalve for Integrated Devices”, Anal Chem. (2004) 76: 3740-3748.
Pal et al., “An integrated microfluidic for influenza and other genetic analyses,” Lab Chip, (2005), 5:1024-1032.
Palina et al., “Laser Assisted Boron Doping of Silicon Wafer Solar Cells Using Nanosecond and Picosecond Laser Pulses,” 2011 37th IEEE Photovoltaic Specialists Conference, pp. 002193-002197, IEEE (2011).
Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip, (2007), 7:1644-1659.
Pang et al., “A novel single-chip fabrication technique for three-dimensional MEMS structures,” Institute of Microelectronics, Tsinghua University, Beijing, P.R. China, (1998), IEEE, 936-938.
Pang et al., “The Study of Single-Chip Integrated Microfluidic System,” Tsinghua University, Beijing, P.R. China, (1998), IEEE, 895-898.
Papautsky et al., “Effects of rectangular microchannel aspect ratio on laminar friction constant”, in Microfluidic Devices and Systems II (1999) 3877:147-158.
Paulson et al., “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Nature, Scientific Reports 8:9358 (2018) published at www.nature.com/scientificreports, Jun. 19, 2018.
Petersen, Kurt E., “Silicon as a Mechanical Material.” Proceedings of the IEEE, (May 1982) 70(5):420-457.
Petersen et al., “Toward Next Generation Clinical Diagnostic Instruments: Scaling and New Processing Paradigms,” Biomedical Microdevices (1998) 1(1):71-79.
Picard et al., Laboratory Detection of Group B Streptococcus for Prevention of Perinatal Disease, Eur. J. Clin. Microbiol. Infect. Dis., Jul. 16, 2004, 23: 665-671.
Plambeck et al., “Electrochemical Studies of Antitumor Antibiotics”, J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563.
Poser et al., “Chip elements for fast thermocycling,” Sensors and Actuators A, (1997), 62:672-675.
Pourahmadi et al., “Toward a Rapid, Integrated, and Fully Automated DNA Diagnostic Assay for Chlamydia trachomatis and Neisseria gonorrhea,” Clinical Chemistry, (2000), 46(9):1511-1513.
Pourahmadi et al., “Versatile, Adaptable and Programmable Microfluidic Platforms for DNA Diagnostics and Drug Discovery Assays,” Micro Total Analysis Systems, (2000), 243-248.
Raisi et al., “Microchip isoelectric focusing using a miniature scanning detection system,” Electrophoresis, (2001), 22:2291-2295.
Raja et al., “Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcription-PCR Clinical Testing,” Clinical Chemistry, (2005), 51(5):882-890.
Reyes et al., “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology”, Anal Chem (2002) 74:2623-2636.
Roche et al. “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells” Faseb J (2005) 19: 1341-1343.
Rodriguez et al., “Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis,” Electrophoresis, (2003), 24:172-178.
Rohsenow et al. [Eds.], Handbook of Heat Transfer, 3rd Edition McGraw-Hill Publishers (1998) Chapters 1 & 3; pp. 108.
Roper et al., “Advances in Polymer Chain Reaction on Microfluidic Chips,” Anal. Chem., (2005), 77:3887-3894.
Ross et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, 70(10): 2067-2073.
Ross et al., “Scanning Temperature Gradient Focusing for Simultaneous Concentration and Separation of Complex Samples,” Micro Total Analysis Systems 2005, vol. 2, (2005), Proceedings of μTAS 2005, Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 9-13, 2005, Boston, Massachusetts; 1022-1024.
Ross et al., “Simple Device for Multiplexed Electrophoretic Separations Using Gradient Elution Moving Boundary Electrophoresis with Channel Current Detection,” Anal. Chem., (2008), 80(24):9467-9474.
Sadler et al., “Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices,” IEEE Transactions on Components and Packaging Technologies, (2003) 26(2):309-316.
Sanchez et al., “Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis”, PNAS (2004) 101(7): 1933-1938.
Sant et al., “An Integrated Optical Detector for Microfabricated Electrical Field Flow Fractionation System,” Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; pp. 1259-1262.
Sant et al., “Geometric scaling effects on instrumental plate height in field flow fractionation”, J Chromatography A (2006) 1104:282-290.
Sant H.J., “Reduction of End Effect-Induced Zone Broadening in Field-Flow Fractionation Channels”, Anal Chem. (2006) 78:7978-7985.
Sant et al., “Microscale Field-Flow Fractionation: Theory and Practice”, in Microfluidic Technologies for Miniaturized Analysis Systems. (2007) Chapter 12, pp. 4710521.
Schäferling et al., “Optical technologies for the read out and quality control of DNA and protein microarrays,” Anal Bioanal Chem, (2006), 385: 500-517.
Serpengüzel et al., “Microdroplet identification and size measurement in sprays with lasing images”, Optics express (2002) 10(20):1118-1132.
Shackman et al., “Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices,” Anal. Chem. (2007), 79(2), 565-571.
Shackman et al., “Temperature gradient focusing for microchannel separations,” Anal Bioanal Chem, (2007), 387:155-158.
Shadpour et al., “Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array,” Anal Chem., (2007), 79(3), 870-878.
Shen et al., “A microchip-based PCR device using flexible printed circuit technology,” Sensors and Actuators B (2005), 105:251-258.
Shoffner et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, (1996) 24(2): 375-379.
Sia et al., “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, (2003), 24:3563-3576.
Sigurdson M., “AC Electrokinetic Enhancement for Assay Enhancement”, ProQuest LLC (2008) Doctoral Thesis UMI Microform 3319791 in 24 pages.
Singh et al., “PCR thermal management in an integrated Lab on Chip,” Journal of Physics: Conference Series, (2006), 34:222-227.
Situma et al., “Merging microfluidics with microarray-based bioassays”, Biomol Engin. (2006) 23:213-231.
Smith, K et al., “Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples”, Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.
Smith et al., “(576d) Micropatterned fluid lipid bilayers created using a continuous flow microspotter for multi-analyte assays,” (2007), Biosensors II, 2007 AlChE Annual Meeting, Nov. 8, 2007, Abstract in 2 pages.
Sommer et al., “Introduction to Microfluidics”, in Microfluidics for Biological Applications by Tian et al. [Eds] (2008) Chapter 1, pp. 1-34.
Spitzack et al., “Polymerase Chain Reaction in Miniaturized Systems: Big Progress in Little Devices”, in Methods in Molecular Biology—Microfluidic Techniques, Minteer S.D. [Ed.] Humana Press (2006), Chapter 10, pp. 97-129.
Squires et al., “Microfluidics: Fluid physics at the nanoliter scale”, Rev Modern Phys. (2005) 77(3):977-1026.
Sundberg et al., “Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis,” Biomed Microdevices, (2007), 9:159-166, in 8 pages.
Tabeling, P. [Ed.], “Physics at the micrometric scale,” in Introduction to Microfluidics (2005) Chapter 1, pp. 24-69.
Tabeling, P. [Ed.], “Hydrodynamics of Microfluidic Systems”, in Introduction to Microfluidics; (2005) Chapter 2, pp. 70-129.
Tabeling, P. [Ed.], Introduction to Microfluidics; (2005) Chapters 5-7, pp. 216-297.
Tanaka et al., “Improved Method of DNA Extraction from Seeds Using Amine-Dendrimer Modified Magnetic Particles”, Proceedings of the 74th Annual Meeting of the Electrochemical Society of Japan; Abstract #2E09 on p. 149, Mar. 29, 2007; Faculty of Engineering, Science University of Tokyo; 4 pages.
Taylor et al., Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette, in Micro Total Analysis Systems, Springer (2001), pp. 670-672.
Taylor et al., “Lysing Bacterial Spores by Sonication through a Flexible Interface in a Microfluidic System,” Anal. Chem., (2001), 73(3):492-496.
Taylor et al., “Microfluidic Bioanalysis Cartridge with Interchangeable Microchannel Separation Components,” (2001), The 11th International Conference on Solid-State Sensors and Actuators, Jun. 10-14, 2001, Munich, Germany; 1214-1247.
Taylor et al., “Disrupting Bacterial Spores and Cells using Ultrasound Applied through a Solid Interface,” (2002), 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, Madison, Wisconsin; 551-555.
Thorsen et al., “Microfluidic Large-scale integration,” Science, (2002), 298:580-584.
Toriello et al., “Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis,” Anal. Chem., (2006) 78(23):7997-8003.
Ugaz et al., “Microfabricated electrophoresis systems for DNA sequencing and genotyping applications,” Phil. Trans. R. Soc. Lond. A, (2004), 362:1105-1129.
Ugaz et al., “PCR in Integrated Microfluidic Systems”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 7, pp. 90-106.
Ullman et al., “Luminescent oxygen channeling assay (LOCI™): sensitive, broadly applicable homogeneous immunoassay method”. Clin Chem. (1996) 42(9), 1518-1526.
Velten et al., “Packaging of Bio-MEMS: Strategies, Technologies, and Applications,” IEEE Transactions on Advanced Packaging, (2005) 28(4):533-546.
Vinet et al., “Microarrays and microfluidic devices: miniaturized systems for biological analysis,” Microelectronic Engineering, (2002), 61-62:41-47.
Wang, “Survey and Summary, from DNA Biosensors to Gene Chips”, Nucleic Acids Research, 28(16):3011-3016, (2000).
Wang et al., “From biochips to laboratory-on-a-chip system”, in Genomic Signal Processing and Statistics by Dougherty et al. [Eds]; (2005) Chapter 5, pp. 163-200.
Wang et al., “A disposable microfluidic cassette for DNA amplification and detection”, Lab on a Chip (2006) 6(1):46-53.
Wang et al., “Micromachined Flow-through Polymerase Chain Reaction Chip Utilizing Multiple Membrane-activated Micropumps,” (2006), MEMS 2006, Jan. 22-26, 2006, Istanbul, Turkey; 374-377.
Waters et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, 70(1): 158-162.
Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.
Woolley et al., “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device” Anal. Chem. (1996) vol. 68, pp. 4081-4086.
Wu et al., “Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes”, Chem Common. (2005) 3: 313-315.
Xiang et al., “Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler,” Biomedical Microdevices, (2005), 7(4):273-279.
Xuan, “Joule heating in electrokinetic flow,” Electrophoresis, (2008), 298:33-43.
Yang et al., “High sensitivity PCR assay in plastic micro reactors,” Lab Chip, (2002), 2:179-187.
Yang et al., “An independent, temperature controllable-microelectrode array,” Anal. Chem., (2004), 76(5):1537-1543.
Yang et al., “Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices,” J Micromech Microeng, (2005), 15:221-230.
Yobas et al., Microfluidic Chips for Viral RNA Extraction & Detection, (2005), 2005 IEEE, 49-52.
Yobas et al., “Nucleic Acid Extraction, Amplification, and Detection on Si-Based Microfluidic Platforms,” IEEE Journal of Solid-State Circuits, (2007), 42(8):1803-1813.
Yoon et al., “Precise temperature control and rapid thermal cycling in a micromachined DNA polymer chain reaction chip,” J. Micromech. Microeng., (2002), 12:813-823.
Yoza et al., “Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidoamine Dendrimer”, J Biosci Bioeng, 2003, 95(1): 21-26.
Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, J Biotechnol., Mar. 20, 2003, 101(3): 219-228.
Zhang et al, “Temperature analysis of continuous-flow micro-PCR based on FEA,” Sensors and Actuators B, (2002), 82:75-81.
Zhang et al., “PCR Microfluidic Devices for DNA Amplification,” Biotechnology Advances, 24:243-284 (2006).
Zhang et al., “Continuous-flow PCR Microfluidics for Rapid DNA Amplification Using Thin Film Heater with Low Thermal Mass,” Analytical Letters, (2007), 40:1672-1685, in 15 pages.
Zhang et al., “Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays,” J Am Chem Soc., (2007), 129:9252-9253.
Zhang et al., “Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends,” Biotechnology Advances, (2007), 25:483-514.
Zhang et al., “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends,” Nucl Acids Res., (2007) 35(13):4223-4237.
Zhao et al., “Heat properties of an integrated micro PCR vessel,” Proceedings of SPIE, (2001), International Conference on Sensor Technology, 4414:31-34.
Zhou et al., “Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules”, Org Biomol Chem. (2006) 4(3): 581-585.
Zhou et al., “PAMAM dendrimers for efficient siRNA delivery and potent gene silencing”, Chem Comm.(Camb.) (2006) 22: 2362-2364.
Zou et al., “A Micromachined Integratable Thermal Reactor,” technical digest from International Electron Devices Meeting, IEEE, Washington, D.C., Dec. 2-5, 2001 (6 pages).
Zou et al., “Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing,” Sensors and Actuators A, (2002), 102:114-121.
Zou et al., “Miniaturized Independently Controllable Multichamber Thermal Cycler,” IEEE Sensors Journal, (2003), 3(6):774-780.
Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 1 in IPR2019-00488) dated Dec. 20, 2018 (94 pages).
Declaration of Bruce K. Gale, Ph.D. (Exhibit 1001 in IPR2019-00488 and IPR2019-00490) dated Dec. 20, 2018 (235 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Papers 5 and 6 in IPR2019-00488) dated Apr. 18, 2019 (79 pages).
Decision instituting Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 8 in IPR2019-00488) dated Jul. 16, 2019 (20 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 1 in IPR2019-00490) dated Dec. 20, 2018 (85 pages).
Declaration of Michael G. Mauk, Ph.D. in Support of Patent Owner Preliminary Responses in IPR2019-00488 and IPR2019-00490 dated Apr. 18, 2019 (43 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Papers 5 and 6 in IPR2019-00490) dated Apr. 18, 2019 (73 pages).
Decision instituting Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 8 in IPR2019-00490) dated Jul. 16, 2019 (23 pages).
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 25 in IPR2019-00490) dated Oct. 16, 2019 (80 pages).
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 25 in IPR 2019-00488) dated Oct. 16, 2019 (93 pages).
Transcript of Deposition of Bruce K. Gale, Ph.D., in Support of Patent Owner's Responses (Exhibit 2012 in IPR2019-00488 and IPR2019-00490), taken Sep. 24, 2019 (124 pages).
Declaration of M. Allen Northrup, Ph.D. in Support of Patent Owner's Responses (Exhibit 2036 in IPR2019-00488 and IPR2019-00490) dated Oct. 16, 2019 (365 pages).
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 32 in IPR 2019-00488) dated Jan. 31, 2020 (34 pages).
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 32 in IPR 2019-00490) dated Jan. 31, 2020 (35 pages).
Second Declaration of Bruce K. Gale, Ph.D. (Exhibit 1026 in IPR2019-00488 and IPR2019-00490) dated Jan. 31, 2020 (91 pages).
Transcript of Deposition of M. Allen Northrup, Ph.D., (Exhibit 1027 in IPR2019-00488 and IPR2019-00490), taken Dec. 19, 2019 (109 pages).
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 42 in IPR2019-00490) dated Mar. 12, 2020 (39 pages).
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 43 in IPR 2019-00488) dated Mar. 12, 2020 (41 pages).
Transcript of Second Deposition of Bruce K. Gale, Ph.D., (Exhibit 2068 in IPR2019-00488 and IPR2019-00490), taken Feb. 19, 2020 (352 pages).
Declaration of Mark A. Burns, Ph.D. (Exhibit N1001 in IPR2020-01083, IPR2020-01091, IPR2020-01095 and IPR2020-01100) dated Jun. 12, 2020 (378 pages).
Complaint filed by Becton, Dickinson et al., v. NeuModx Molecular, Inc. on Jun. 18, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Patent Nos. 7,998,708; 8,273,308; 8,323,900; 8,415,103; 8,703,069; and 8,709,787 (29 pages).
Answer to Complaint filed by NeuModx Molecular, Inc. on Aug. 9, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (24 pages).
Amended Answer to Complaint filed by NeuModx Molecular, Inc. on Oct. 4, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (31 pages).
Anderson et al., “Microfluidic biochemical analysis system” Proc. 1997 IEEE Int. Conf. Solid-State Sens. Actuat. (1997) pp. 477-480.
Anderson et al., “Advances in Integrated Genetic Analysis” Micro Total Analysis Systems '98 Conference Proceedings, D. Kluwer Academic Publishers (1998) in 6 pages.
Anderson et al., “A Miniature Integrated Device for Automated Multistep Genetic Assays” Nucleic Acids Research (2000) 28(12), i-vi.
Burns et al., “Microfabricated Structures for Integrated DNA Analysis” Proc. Natl. Acad. Sci. USA (May 1996) 93: 5556-5561.
Harrison et al., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip”, Anal. Chem., (1992) 64: 1926-1932.
Hsueh et al., “A microfabricated, electrochemiluminescence cell for the detection of amplified DNA” Proc. 1995 IEEE Int. Conf. Solid-State Sens. Actuators (1995) pp. 768-771.
Hsueh et al., “DNA quantification with an electrochemiluminescence microcell” Proc. 1997 IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 175-178.
Jiang et al., “Directing cell migration with asymmetric micropatterns” Proc. Natl. Acad. Sci. USA (2005) 102, 975-978.
Manz et al., “Design of an open-tubular col. liquid chromatograph using silicon chip technology” Sensors and Actuators B (1990) 1:249-255.
Manz et al., “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip” Journal of Chromatography A (1992) 593:253-258.
Northrup et al., “A MEMS-based Miniature DNA Analysis System.” Transducers '95—Eurosensors in Proc. 1995 (8th) IEEE Int. Conf. Solid-State Sens. Actuators, pp. 764-767.
Rhee et al., “Drop Mixing in a Microchannel for Lab-on-a-Chip Applications” Langmuir (2008) 24 (2): 590-601.
Sammarco et al., “Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices” AlChE Journal (1999) 45(2): 350-366.
Taylor et al., “Optimization of the performance of the polymerase chain reaction in silicon-based microstructures” Nucleic Acids Res. (1997) vol. 25, pp. 3164-3168.
Terry et al., “A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer” IEEE T Electron Dev (1979) 26:1880-1886.
U.S. Appl. No. 60/491,264, filed Jul. 31, 2003 (41 pages).
U.S. Appl. No. 60/491,269, filed Jul. 31, 2003 (52 pages).
U.S. Appl. No. 60/491,539, filed Aug. 1, 2003 (45 pages).
U.S. Appl. No. 60/553,553, filed Mar. 17, 2004 (49 pages).
U.S. Appl. No. 60/726,066, filed Oct. 11, 2005 (54 pages).
U.S. Appl. No. 60/786,007, filed Mar. 24, 2006 (223 pages).
U.S. Appl. No. 60/859,284, filed Nov. 14, 2006 (114 pages).
Whitesides G.M., “The origins and the future of microfluidics” Nature (2006) 442(7101):368-373.
Woias P., “Micropumps—past, progress and future prospects” Sensors and Actuators B (2005) 105, 28-38.
Wu et al., “Fabrication of Complex Three-dimensional Microchannel Systems in PDMS” J. Am. Chem. Soc. (2003) 125, 554-559.
Zhang et al., “Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device,” Analytical Biochemistry, (2009) 387:102-112.
Record of Oral Hearing in IPR2019-00488 and IPR2019-00490 held Apr. 21, 2020 in 80 pages; Petitioner's Demonstratives for Oral Hearing in IPR2019-00488 and IPR2019-00490 held Apr. 21, 2020 in 72 pages; Patent Owner's Demonstratives for Oral Hearing in IPR2019-0488 and IPR2019-00490 held Apr. 21, 2020 in 88 pages; Patent Owner's Objections to Petitioner's Oral Hearing Demonstratives in IPR2019-00488 and IPR2019-00490 dated Apr. 16, 2020 (4 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 2 in IPR2020-01083) dated Jun. 12, 2020 (104 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 2 in IPR2020-01091) dated Jun. 12, 2020 (105 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,803,069 (Paper 2 in IPR2020-01095) dated Jun. 12, 2020 (84 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,803,069 (Paper 3 in IPR2020-01100) dated Jun. 12, 2020 (83 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 2 in IPR2020-01132) dated Jun. 18, 2020 (96 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 2 in IPR2020-01133) dated Jun. 18, 2020 (96 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 2 in IPR2020-01137) dated Jun. 19, 2020 (86 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 2 in IPR2020-01136) dated Jun. 19, 2020 (85 pages).
Declaration of Mark A. Burns, Ph.D. (Exhibit N1101 in IPR2020-01132 and IPR2020-01133) dated Jun. 17, 2020 (253 pages).
Declaration of Mark A. Burns, Ph.D. (Exhibit N1201 in IPR2020-01136 and IPR2020-01137) dated Jun. 19, 2020 (205 pages).
Judgment/Final Written Decision in Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper No. 52 in IPR2019-00488) dated Jul. 14, 2020 (43 pages).
Judgment/Final Written Decision in Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper No. 51 in IPR2019-00490) dated Jul. 14, 2020 (43 pages).
First Amended and Supplemental Complaint filed by Becton, Dickinson and Company et al. on Jun. 25, 2020 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Pat. Nos. 7,998,708; 8,273,308; 8,323,900; 8,415,103; 8,703,069; 8,709,787; 10,494,663; 10,364,456; 10,443,088; 10,604,788; 10,625,261; 10,625,262; and 10,632,466 (55 pages).
Answer to Amended and Supplemental Complaint filed by NeuModx Molecular, Inc. on Jul. 16, 2020 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (42 pages).
Petitioner's Notice of Appeal in Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper No. 54 in IPR2019-00488) dated Sep. 9, 2020 (48 pages).
Petitioner's Notice of Appeal in Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper No. 53 in IPR2019-00490) dated Sep. 9, 2020 (48 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,703,069 (Paper 13 in IPR2020-01095) dated Sep. 17, 2020 (77 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 13 in IPR2020-01091) dated Sep. 17, 2020 (70 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,703,069 (Paper 14 in IPR2020-01100) dated Sep. 17, 2020 (59 pages).
Declaration of M. Allen Northrup, Ph.D. in Support of Patent Owner Preliminary Responses in IPR2020-01091, IPR2020-01095 and IPR2020-01100 (Exhibit H2003) dated Sep. 16, 2020 (137 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 13 in IPR2020-01083) dated Oct. 22, 2020 (88 pages).
Declaration of M. Allen Northrup, Ph.D. in support of Patent Owner Preliminary Responses in IPR2020-01083, IPR2020-01091, IPR2020-01095 and IPR2020-01100 (Exhibit H2003) dated Oct. 21, 2020 (171 pages).
Defendant NeuModx's Initial Invalidity Contentions filed Sep. 30, 2020 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (47 pages).
Petition for Inter Partes Review of U.S. Pat. No. 10,625,262 (Paper 2 in IPR2021-00250) dated Nov. 25, 2020 (107 pages).
Petition for Inter Partes Review of U.S. Pat. No. 10,625,261 (Paper 2 in IPR2021 -00251) dated Nov. 25, 2020 (117 pages).
Petition for Inter Partes Review of U.S. Pat. No. 10,632,466 (Paper 2 in IPR2021-00253) dated Nov. 25, 2020 (121 pages).
Declaration of Mark A. Burns, Ph.D. (Exhibit N1001 in IPR2021-00250, IPR2021-00251 and IPR2021-00253) dated Nov. 24, 2020 (311 pages).
Declaration of James L. Mullins, Ph.D. (Exhibit N1029 in IPR2021-00250, IPR2021-00251, and IPR2021-00253) dated Nov. 18, 2020 (54 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,273,308 (Paper 14 in IPR2020-01091) dated Dec. 4, 2020 (21 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,703,069 (Paper 14 in IPR2020-01095) dated Dec. 4, 2020 (22 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,703,069 (Paper 15 in IPR2020-01100) dated Dec. 4, 2020 (19 pages).
Defendant NeuModx's Joint Claim Construction Chart filed Oct. 21, 2020 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (25 pages).
Defendant NeuModx's Initial Amended Answer, Affirmative Defenses, and Counterclaims to Plaintiffs' First Amended and Supplemental Complaint filed Nov. 23, 2020 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (97 pages).
Benters et al., “Dendrimer-Activated Solid Supports for Nucleic Acid and Protein Microarrays”, ChemBioChem (2001) 2(9): 686-694.
Devarakonda et al., “The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine”, Int J Pharma. 284(1-2): 133-140.
Brief for Appellee HandyLab, Inc. in Appeals from the USPTO, PTAB, in Nos. IPR2019-00488, IPR2019-00490, IPR2019-01493 and IPR2019-01494 filed May 24, 2021 in U.S. Court of Appeals for the Federal Circuit Case Nos. 20-2249, 20-2250, 20-2273 and 20-2276 (74 pages).
Reply Brief of Appellants Qiagen North American Holdings, Inc. and NeuMoDx Molecular, Inc. in Appeals from the USPTO, PTAB, in Nos. IPR2019-00488, IPR2019-00490, IPR2019-01493 and IPR2019-01494 filed Jun. 21, 2021 in U.S. Court of Appeals for the Federal Circuit Case Nos. 20-2249, 20-2250, 20-2273 and 20-2276 (44 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 10,625,262 (Paper 7 in IPR2021-00250) dated Jul. 15, 2021 (15 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 10,632,466 (Paper 7 in IPR2021-00253) dated Jul. 15, 2021 (22 pages).
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 10,625,261 (Paper 7 in IPR2021-00251) dated Jul. 15, 2021 (24 pages).
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,709,787 and Exhibit List (Paper 29 in IPR 2020-01132) dated Jul. 15, 2021 (87 pages).
Decision Granting Institution of Inter Partes Review of U.S. Pat. No. 8,415,103 on Rehearing (Paper 23 in IPR2020-01133) dated Aug. 6, 2021 (20 pages).
Decision of U.S. Court of Appeal for the Federal Circuit Affirming Inter Partes Review Final Written Decisions Determining No Challenged Claims of United States Patent Nos. 7,998,708 and 8,323,900 are Unpatentable (IPR2019-00488, IPR2019-00490, IPR2019-01493, and IPR2019-01494) dated Oct. 29, 2021 (12 pages).
Joint Motion to Terminate Inter Partes Review of U.S. Pat. No. 8,709,787 (Paper 37 in IPR 2020-01132) dated Nov. 15, 2021 (8 pages).
Joint Motion to Terminate Inter Partes Review of U.S. Pat. No. 8,415,103 (Paper 35 in IPR 2020-01133) dated Nov. 15, 2021 (8 pages).
Stipulation of Dismissal filed by Plaintiffs Becton, Dickinson and Company, Geneohm Sciences Canada, Inc. and HandyLab, Inc. and Defendants NeuMoDx Molecular, Inc., Qiagen GmbH, and Qiagen North American Holdings, Inc. on Nov. 12, 2021 in U.S. District Court, Delaware, Case #1:19-cv-01226-LPS (3 pages).
Davis et al., “Surface vibrational sum frequency and Raman studies of PAMAM G0, G1 and acylated PAMAM G0 dendrimers”. Anal Chimica Acta. Oct. 31, 2003;496(1-2): 117-131.
Related Publications (1)
Number Date Country
20210071234 A1 Mar 2021 US
Provisional Applications (2)
Number Date Country
61476175 Apr 2011 US
61476167 Apr 2011 US
Divisions (2)
Number Date Country
Parent 15706313 Sep 2017 US
Child 17026653 US
Parent 14054397 Oct 2013 US
Child 15706313 US
Continuations (1)
Number Date Country
Parent PCT/US2012/033667 Apr 2012 US
Child 14054397 US