The systems and methods disclosed herein relate generally to the automated execution of nucleic acid amplification assays, such as Polymerase Chain Reaction (PCR), and in some instances real-time PCR, in a plurality of micro-fluidic reaction chambers in a microfluidic cartridge. The system may subsequently detect target nucleic acids, e.g., target amplicons, within each of the reaction chambers.
The medical diagnostics industry is a critical element of today's healthcare infrastructure. At present, however, in vitro diagnostic analyses, no matter how routine, have become a bottleneck in patient care. There are several reasons for this. First, many diagnostic analyses can only be done with highly specialized equipment that is both expensive and only operable by trained clinicians. Such equipment may be found in only a few locations—often just one in any given urban area. This requires hospitals to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and possibly even sample loss or mishandling. Second, the equipment in question is typically not available “on-demand” but instead runs in batches, thereby delaying the processing time for many samples as they must wait for a machine to reach capacity before they can be run.
Understanding that diagnostic assays on biological samples may break down into several key steps, it is often desirable to automate one or more steps. For example, a biological sample, such as those obtained from a patient, can be used in nucleic acid amplification assays, in order to amplify a target nucleic acid (e.g., DNA, RNA, or the like) of interest. Once amplified, the presence of a target nucleic acid, or amplification product of a target nucleic acid (e.g., a target amplicon) reactor can be detected, wherein the presence of a target nucleic acid and/or target amplicon is used to identify and/or quantify the presence of a target (e.g., a target microorganism or the like). Often, nucleic acid amplification assays involve multiple steps, which can include nucleic acid extraction, nucleic acid amplification, and detection. It is desirable to automate certain steps of these processes.
There is a need for a method and apparatus for carrying out molecular diagnostic assays on multiple samples in parallel, with or without amplification of target nucleic acids, and detection on a prepared biological samples. The system may be configured for high throughput, and operation in a commercial reference laboratory or at the point of care, thereby eliminating the need to send the sample out to a specialized facility.
The embodiments disclosed herein relate to methods and devices for the simultaneous testing of multiple samples. Certain embodiments contemplate an apparatus for performing real-time nucleic acid amplification and detection. The apparatus can include a detector head comprising a plurality of photodetector and light source pairs. The detector head can be mounted on a rail, wherein the detector and light source pairs are aligned in a first row and a second row. The apparatus can include a receptacle for a microfluidic cartridge that has a plurality of independent reaction chambers aligned in adjacent columns of a first row and a second row. The apparatus can also include an aperture plate that is configured to be positioned over the microfluidic cartridge when the cartridge is present in the receptacle. The aperture plate can include a plurality of apertures that are each aligned over each of the plurality of reaction chambers when the receptacle is holding the microfluidic cartridge. The detector head can be located over the aperture plate, and be moveable along the rail, such that each of the plurality of photodetector and light source pairs in the first row can be positioned over each aperture in the first row of the aperture plate, and each of the plurality of photodetector and light source pairs in the second row can be positioned over each aperture in the second row of the aperture plate.
In some embodiments, the apparatus also includes a second detector head that has a plurality of photodetector and light source pairs aligned into a first row and a second row. The second detector head can be mounted on the rail. The apparatus can also include a second receptacle for a microfluidic cartridge including a plurality of independent reaction chambers aligned in adjacent columns of a first row and a second row. The apparatus can also include a second aperture plate configured to be positioned over the second microfluidic cartridge when the second cartridge is present in the second receptacle, and which can include a plurality of apertures that are each aligned over each of the plurality of reaction chambers of the second microfluidic cartridge when the second receptacle is holding the second microfluidic cartridge. The second detector head can be located over the aperture plate, and can be moveable along the rail such that each of the plurality of photodetector and light source pairs in the first row of the second detector head can be positioned over each aperture in the first row of the second aperture plate, and each of the plurality of photodetector and light source pairs in the second row of the second detector head can be positioned over each aperture in the second row of the second aperture plate.
In some embodiments, the photodetector and light source pairs can include at least six different photodetector and light source pairs operating in six different wavelengths. In some embodiments, the six different wavelengths comprise a light source emitting a green colored light, a light source emitting a yellow colored light, a light source emitting an orange colored light, a light source emitting a red colored light, and a light source emitting a crimson colored light. In some embodiments, the detector head includes at least N rows of photodetector and light source pairs, and the detector is configured to move to at least M+N−1 positions over an aperture plate comprising M rows of apertures.
In some embodiments, the aperture plate comprises steel, aluminum, nickel, or a combination thereof. In some embodiments, the aperture plate can have a thickness of approximately 0.25 inches. In some embodiments, at least part of the aperture plate is electrochemically oxidized to be darker than when the aperture plate is not electrochemically oxidized. In some embodiments, the aperture plate provides substantially uniform pressure across the area of the microfluidic cartridge, when the cartridge is present within the receptacle. In some embodiments, the aperture plate comprises at least one of aluminum, zinc or nickel, the aperture plate further comprising a colorant.
In some embodiments, the apparatus further comprises a heater plate, wherein the heater plate is positioned underneath the microfluidic cartridge when a cartridge is present in the receptacle. In some embodiments the heater plate comprises at least one of glass or quartz. In some embodiments, the aperture plate provides substantially uniform pressure across the area of the microfluidic cartridge when a cartridge is present within the receptacle. The substantially uniform pressure can facilitate substantially uniform thermal contact between the microfluidic reaction chambers and the heater plate. As such, in some embodiments, the aperture plate provide uniform pressure that can ensure that each of the plurality of reaction chambers or reactors in the microfluidic cartridge are in uniformly thermal contact or communication with a respective a plurality of heating elements located within the heater plate.
In some embodiments, the apparatus further comprises a photodetector, the photodetector located over the aperture plate, wherein the micro-fluidic chamber is configured to receive light at a glancing angle from a light source relative to the photodetector. In some embodiments, the heater plate comprises a plurality of heating elements, wherein each of the plurality of heating elements is positioned such that when the microfluidic cartridge is present in the receptacle, the plurality of heating elements are in thermal connection with each of the plurality of reaction chambers, respectively.
Certain embodiments contemplate a method implemented on one or more computer processors for optimizing protocols, such as polymerase chain reaction (PCR) protocols or the like, for simultaneously performing a plurality of thermal cycling reactions, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the thermal cycling reactions are performed in a plurality of reactors. The method can include the steps of determining or providing or accessing a detection cycle time for each of the plurality of reactors; receiving or accessing a protocol step, the step associated with a step duration, the step comprising a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.
In some embodiments the method further comprises determining a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments the method further comprises determining a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time comprises the amount of time required for a detector head to perform a predetermined plurality of detections for a reactor. In some embodiments, the detection cycle time includes a time required for movement of the detector head to each of a plurality of reactors and movement of the detector head to the start position. In some embodiments, the method further comprises initiating the protocol.
Certain embodiments contemplate a non-transitory computer-readable medium comprising instructions, the instructions configured to cause one or more processors to perform the following steps: determining or providing or accessing a detection cycle time; receiving or accessing a protocol step, wherein the step is associated with a step duration, and the wherein step includes a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.
In some embodiments, the protocol step is associated with a protocol from a plurality of protocols. Each of the plurality of protocols can be associated with at least one of a plurality of thermal cycling reactions, such as polymerase chain reaction (PCR) protocols, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the determining a first adjustment is based at least in part on a timing of one or more detection steps associated with the thermal cycling reactions of at least two or more of the plurality of protocols when the two or more of the plurality of protocols are simultaneously run. In some embodiments, the method also includes the step of determining a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments, the method also includes the step of determining a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time includes the amount of time required for a detector head to perform a predetermined plurality of detections for a reaction chamber. In some embodiments, the detection cycle time also includes a time required for movement of the detector head to each of a plurality of reaction chamber detection positions and movement of the detector head to a start position. In some embodiments, the method further comprises initiating the protocol.
Certain embodiments contemplate a system for optimizing protocols for a plurality of reaction chambers. The system can include a processor configured to perform the following: determining or providing or accessing a detection cycle time; receiving or accessing a protocol step, wherein the step can be associated with a step duration, and wherein the step includes a time for detection; and determining a first adjustment to the step such that the step duration is a multiple of the detection cycle time.
In some embodiments, the protocol step is associated with a protocol from a plurality of protocols. Each of the plurality of protocols can be associated with at least one of a plurality of thermal cycling reactions, such as a polymerase chain reaction (PCR) protocol, wherein each thermal cycling reaction comprises one or more detection steps, and wherein the determining a first adjustment is based at least in part on a timing of one or more detection steps associated with the thermal cycling reactions of at least two or more of the plurality of protocols when the two or more of the plurality of protocols are simultaneously run. In some embodiments, the processor is also configured to determine a second adjustment to the step, wherein the time for detection is a multiple of the detection cycle time when the step is adjusted by the first adjustment and by the second adjustment. In some embodiments, the processor is also configured to determine a starting offset adjustment based on a position of a reaction chamber associated with the protocol. In some embodiments, the detection cycle time includes the amount of time required for a detector head to perform a predetermined plurality of detections for a reaction chamber. In some embodiments, the detection cycle time also includes a time required for movement of the detector head to each of a plurality of reaction chamber detection positions and movement of the detector head to the start position. In some embodiments, the processor is further configured to initiate the protocol.
Certain embodiments contemplate a method for simultaneously performing real-time PCR in a plurality of PCR reaction chambers, comprising: (a) providing a scan time sufficient for a detector assembly to perform a scan cycle during which it can scan each of the plurality of PCR reaction chambers for at least one detectable signal and become ready to repeat the scan; (b) providing a reaction protocol for each of the PCR reaction chambers that includes multiple cycles, each cycle comprising a cycle time that includes at least one heating step, at least one cooling step, and at least one temperature plateau that includes a reading cycle period during which the detector assembly is to scan the reaction chamber for at least one detectable signal; (c) determining, using a processor, whether the cycle time for that reaction chamber is the same as or an integer multiple of the scan time, and if not, adjusting the scan time or the cycle time so that the cycle time is the same as or an integer multiple of the scan time; (d) performing at least steps (b) and (c) for the reaction protocol for each of the plurality of PCR reaction chambers so that the cycle time for each reaction protocol is the same as or an integer multiple of the scan time; and (e) under direction of a processor, performing real time PCR on each of the reaction chambers using the reaction protocol for each of the reaction chambers, including performing multiple scan cycles with the detector assembly, wherein each PCR reaction chamber is scanned by the detector assembly during each reading cycle period for that reaction chamber.
In some embodiments the method further comprises phase adjusting the cycle time of the reaction protocol for at least one of the reaction chambers. In some embodiments, at least one said reaction protocol is different from another said reaction protocol. In some embodiments, at least one cycle time in one reaction protocol is different from the cycle time in another reaction protocol.
Certain of the present embodiments contemplate an apparatus, referred to herein as a thermocycler, which may consistently heat and analyze microfluidic chambers. Polynucleotide amplification, such as by real-time PCR, can be performed within the microfluidic chambers. In some embodiments, the thermocycler can be configured to perform individual thermocycling and detection protocols in a plurality of microfluidic reaction chambers within a microfluidic cartridge. The thermocycling can be used to amplify nucleic acids, e.g., DNA, RNA or the like, e.g., by real-time PCR or other nucleic acid amplification protocols described herein, within the microfluidic reaction chambers. The thermocycler may comprise a detector head, comprising a plurality of detector pairs, e.g., six or more detector head pairs, wherein each detector pair comprises a light-emitting source, e.g., an LED or the like, and a cognate photodiode. In some embodiments, each individual detector pair is configured to generate and detect light emitted from a fluorescent moiety, e.g., a fluorescent probe, to indicate the presence of a target polynucleotide.
As used herein, the term “microfluidic” refers to volumes of less than 1 ml, preferably less than 0.9 ml, e.g., 0.8 ml, 0.7 ml, 0.6 ml, 0.5 ml, 0.4 ml, 0.3 ml, 0.2 ml, 0.1 ml, 90 μl, 80 μl, 70 μl, 60 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, 5 μl, 4 μl, 3 μl, 2 μl, 1 μl, or less, or any amount in between. It is to be understood that, unless specifically made clear to the contrary, where the term PCR is used herein, any variant of PCR including but not limited to real-time and quantitative PCR, and any other form of polynucleotide amplification is intended to be encompassed.
The detection process used in the assay may also be multiplexed to permit multiple concurrent measurements on multiple reactions concurrently. In some embodiments, these measurements may be taken from separate reaction chambers. Certain of these embodiments perform a plurality of PCR reactions simultaneously in a single PCR reaction chamber, e.g., multiplex PCR. A PCR protocol may comprise guidelines for performing the successive annealing and denaturing of the polynucleotides in the reaction chamber prior to detection. Such guidelines, comprising a time profile for heating the chamber, may be referred to as a “protocol”. Certain of the disclosed embodiments facilitate consistent heating and/or cooling across a plurality of reaction chambers performing PCR, while facilitating detection using a sensor array. In certain embodiments, the apparatus may comprise an aperture plate which facilitates consistent heating and cooling of the reaction chambers by applying pressure to a cartridge containing a plurality of PCR reaction chambers. Certain details and methods for processing polynucleotides may be found in e.g., U.S. Patent Application Publication 2009-0131650 and U.S. Patent Application Publication 2010-0009351, incorporated herein by reference.
The skilled artisan will appreciate that the embodiments disclosed herein are useful for various types of nucleic acid amplification reactions. For example, methods of nucleic acid amplification in connection with the embodiments disclosed herein can include, but are not limited to: polymerase chain reaction (PCR), strand displacement amplification (SDA), for example multiple displacement amplification (MDA), loop-mediated isothermal amplification (LAMP), ligase chain reaction (LCR), immuno-amplification, and a variety of transcription-based amplification procedures, including transcription-mediated amplification (TMA), nucleic acid sequence based amplification (NASBA), self-sustained sequence replication (3SR), and rolling circle amplification. See, e.g., Mullis, “Process for Amplifying, Detecting, and/or Cloning Nucleic Acid Sequences,” U.S. Pat. No. 4,683,195; Walker, “Strand Displacement Amplification,” U.S. Pat. No. 5,455,166; Dean et al, “Multiple displacement amplification,” U.S. Pat. No. 6,977,148; Notomi et al., “Process for Synthesizing Nucleic Acid,” U.S. Pat. No. 6,410,278; Landegren et al. U.S. Pat. No. 4,988,617 “Method of detecting a nucleotide change in nucleic acids”; Birkenmeyer, “Amplification of Target Nucleic Acids Using Gap Filling Ligase Chain Reaction,” U.S. Pat. No. 5,427,930; Cashman, “Blocked-Polymerase Polynucleotide Immunoassay Method and Kit,” U.S. Pat. No. 5,849,478; Kacian et al., “Nucleic Acid Sequence Amplification Methods,” U.S. Pat. No. 5,399,491; Malek et al., “Enhanced Nucleic Acid Amplification Process,” U.S. Pat. No. 5,130,238; Lizardi et al., BioTechnology, 6:1197 (1988); Lizardi et al., U.S. Pat. No. 5,854,033 “Rolling circle replication reporter systems.”
In some embodiments disclosed herein, the target nucleic acid, e.g., target amplicon, can be detected using an oligonucleotide probe. Preferably, the probes include one or more detectable moieties that can be detected by the systems disclosed herein. The skilled artisan will appreciate that several probe technologies are useful in the embodiments described herein. By way of example, the embodiments disclosed herein can be used with TAQMAN® probes, molecular beacon probes, SCORPION™ probes, and the like.
TaqMan® assays are homogenous assays for detecting polynucleotides (see U.S. Pat. No. 5,723,591). In TAQMAN® assays, two PCR primers flank a central TAQMAN® probe oligonucleotide. The probe oligonucleotide contains a fluorophore and quencher. During the polymerization step of the PCR process, the 5′ nuclease activity of the polymerase cleaves the probe oligonucleotide, causing the fluorophore moiety to become physically separated from the quencher, which increases fluorescence emission. As more PCR product is created, the intensity of emission at the novel wavelength increases.
Molecular beacons are an alternative to TAQMAN® probes for the detection of polynucleotides, and are described in, e.g., U.S. Pat. Nos. 6,277,607; 6,150,097; and 6,037,130. Molecular beacons are oligonucleotide hairpins which undergo a conformational change upon binding to a perfectly matched template. The conformational change of the oligonucleotide increases the physical distance between a fluorophore moiety and a quencher moiety present on the oligonucleotide. This increase in physical distance causes the effect of the quencher to be diminished, thus increasing the signal derived from the fluorophore.
The adjacent probes method amplifies the target sequence by polymerase chain reaction in the presence of two nucleic acid probes that hybridize to adjacent regions of the target sequence, one of the probes being labeled with an acceptor fluorophore and the other probe labeled with a donor fluorophore of a fluorescence energy transfer pair. Upon hybridization of the two probes with the target sequence, the donor fluorophore interacts with the acceptor fluorophore to generate a detectable signal. The sample is then excited with light at a wavelength absorbed by the donor fluorophore and the fluorescent emission from the fluorescence energy transfer pair is detected for the determination of that target amount. U.S. Pat. No. 6,174,670 discloses such methods.
Sunrise primers utilize a hairpin structure similar to molecular beacons, but attached to a target binding sequence which serves as a primer. When the primer's complementary strand is synthesized, the hairpin structure is disrupted, thereby eliminating quenching. These primers detect amplified product and do not require the use of a polymerase with a 5′ exonuclease activity. Sunrise primers are described by Nazarenko et al. (Nucleic Acids Res. 25:2516-21 (1997) and in U.S. Pat. No. 5,866,336.
SCORPION™ probes combine a primer with an added hairpin structure, similar to Sunrise primers. However, the hairpin structure of SCORPION™ probes is not opened by synthesis of the complementary strand, but by hybridization of part of the hairpin structure with a portion of the target which is downstream from the portion which hybridizes to the primer.
DzyNA-PCR involves a primer containing the antisense sequence of a DNAzyme, an oligonucleotide capable of cleaving specific RNA phosphodiester bonds. The primer binds to a target sequence and drives an amplification reaction producing an amplicon which contains the active DNAzyme. The active DNAzyme then cleaves a generic reporter substrate in the reaction mixture. The reporter substrate contains a fluorophore-quencher pair, and cleavage of the substrate produces a fluorescence signal which increases with the amplification of the target sequence. DNAzy-PCR is described in Todd et al., Clin. Chem. 46:625-30 (2000), and in U.S. Pat. No. 6,140,055.
Fiandaca et al. describes a fluorogenic method for PCR analysis utilizing a quencher-labeled peptide nucleic acid (Q-PNA) probe and a fluorophore-labeled oligonucleotide primer. Fiandaca et al. Genome Research. 11:609-613 (2001). The Q-PNA hybridizes to a tag sequence at the 5′ end of the primer.
Li et al. describes a double stranded probe having a quencher and fluorophore on opposite oligonucleotide strands. Li et al. Nucleic Acids Research. 30(2): e5, 1-9 (2002). When not bound to the target, the strands hybridize to each other and the probe is quenched. However, when a target is present at least one strand hybridizes to the target resulting in a fluorescent signal.
Fluorophore labels and moieties useful in the embodiments disclosed herein include, but are not limited to, dyes of the fluorescein family, the carboxyrhodamine family, the cyanine family, and the rhodamine family. Other families of dyes that can be used in the invention include, e.g., polyhalofluorescein-family dyes, hexachlorofluorescein-family dyes, coumarin-family dyes, oxazine-family dyes, thiazine-family dyes, squaraine-family dyes, chelated lanthanide-family dyes, the family of dyes available under the trade designation Alexa Fluor J, from Molecular Probes, and the family of dyes available under the trade designation Bodipy J, from Invitrogen (Carlsbad, Calif.). Dyes of the fluorescein family include, e.g., 6-carboxyfluorescein (FAM), 2′,4′,1,4,-tetrachlorofluorescein (TET), 2′,4′,5′,7′,1,4-hexachlorofluorescein (HEX), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyrhodamine (JOE), 2′-chloro-5′-fluoro-7′,8′-fused phenyl-1,4-dichloro-6-carboxyfluorescein (NED), 2′-chloro-7′-phenyl-1,4-dichloro-6-carboxyfluorescein (VIC), 6-carboxy-X-rhodamine (ROX), and 2′,4′,5′,7′-tetrachloro-5-carboxy-fluorescein (ZOE). Dyes of the carboxyrhodamine family include tetramethyl-6-carboxyrhodamine (TAMRA), tetrapropano-6-carboxyrhodamine (ROX), Texas Red, R110, and R6G. Dyes of the cyanine family include Cy2, Cy3, Cy3.5, Cy5, Cy5.5, and Cy7. Fluorophores are readily available commercially from, for instance, Perkin-Elmer (Foster City, Calif.), Molecular Probes, Inc. (Eugene, Oreg.), and Amersham GE Healthcare (Piscataway, N.J.).
As discussed above, in some embodiments, the probes useful in the embodiments disclosed herein can comprise a quencher. Quenchers may be fluorescent quenchers or non-fluorescent quenchers. Fluorescent quenchers include, but are not limited to, TAMRA, ROX, DABCYL, DABSYL, cyanine dyes including nitrothiazole blue (NTB), anthraquinone, malachite green, nitrothiazole, and nitroimidazole compounds. Exemplary non-fluorescent quenchers that dissipate energy absorbed from a fluorophore include those available under the trade designation Black Hole™ from Biosearch Technologies, Inc. (Novato, Calif.), those available under the trade designation Eclipse™. Dark, from Epoch Biosciences (Bothell, Wash.), those available under the trade designation Qx1J, from Anaspec, Inc. (San Jose, Calif.), and those available under the trade designation Iowa Black™ from Integrated DNA Technologies (Coralville, Iowa).
In some embodiments discussed above, a fluorophore and a quencher are used together, and may be on the same or different oligonucleotides. When paired together, a fluorophore and fluorescent quencher can be referred to as a donor fluorophore and acceptor fluorophore, respectively. A number of convenient fluorophore/quencher pairs are known in the art (see, for example, Glazer et al, Current Opinion in Biotechnology, 1997; 8:94-102; Tyagi et al., 1998, Nat. Biotechnol., 16:49-53) and are readily available commercially from, for instance, Molecular Probes (Junction City, Oreg.), and Applied Biosystems (Foster City, Calif.). Examples of donor fluorophores that can be used with various acceptor fluorophores include, but are not limited to, fluorescein, Lucifer Yellow, B-phycoerythrin, 9-acridineisothiocyanate, Lucifer Yellow VS, 4-acetamido-4′-isothio-cyanatostilbene-2,2′-disulfonic acid, 7-diethylamino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin, succinimdyl 1-pyrenebutyrate, and 4-acetamido-4′-isothiocyanatostilbene-2-,2′-disulfonic acid derivatives. Acceptor fluorophores typically depend upon the donor fluorophore used. Examples of acceptor fluorophores include, but are not limited to, LC-Red 640, LC-Red 705, Cy5, Cy5.5, Lissamine rhodamine B sulfonyl chloride, tetramethyl rhodamine isothiocyanate, rhodamine×isothiocyanate, erythrosine isothiocyanate, fluorescein, diethylenetriamine pentaacetate or other chelates of Lanthanide ions (e.g., Europium, or Terbium). Donor and acceptor fluorophores are readily available commercially from, for instance, Molecular Probes or Sigma Chemical Co. (St. Louis, Mo.). Flourophore/quencher pairs useful in the compositions and methods disclosed herein are well-known in the art, and can be found, e.g., described in S. Marras, “Selection of Fluorophore and Quencher Pairs for Fluorescent Nucleic Acid Hybridization Probes” available at the world wide web site molecular-beacons.org/download/marras.mmb06%28335%293.pdf (as of Apr. 11, 2012).
The detection process used in the assays disclosed herein advantageously permits multiple concurrent measurements of multiple detectable moieties, e.g., a plurality of probes containing different detectable moieties, etc. In some embodiments, these measurements may be taken from separate reaction chambers within a microfluidic cartridge, e.g., comprising a chamber layer (the chamber layer referring herein to that portion of the microfluidic cartridge containing the reaction chambers). Certain of these embodiments perform a plurality of amplification reactions simultaneously in a single reaction chamber, e.g., multiplex PCR. A PCR protocol may comprise guidelines for performing the successive annealing and denaturing of the polynucleotides in the reaction chamber prior to detection. In certain embodiments, the apparatus is configured to facilitate consistent heating and/or cooling across a plurality of reaction chambers to perform nucleic acid amplification, and to facilitate detection of target amplicons in individual reaction chambers, e.g., by detecting fluorescent emissions, using a sensor array.
In certain embodiments, the apparatus may comprise an aperture plate which facilitates consistent heating and cooling of the reaction chambers by applying pressure to a cartridge containing a plurality of reaction chambers via multiple, independent optical pairs. The aperture plate is preferably configured to enable and facilitate the generation and detection of fluorescent signals from probes within multiple, independent reaction chambers. In some embodiments, the aperture plate is configured such that there is an individual aperture (or windows), positioned over each of the individual reaction chambers in the microfluidic cartridge.
Diagnostic Apparatus
As seen in the embodiments of
In some embodiments, each specimen rack 24a, 24b may include multiple holders 26. The holders 26 may include receptacles for holding diagnostic reagents, such as reagents for nucleic acid amplification, e.g., PCR reagents or the like. The racks 24 may also include specimen tubes (not shown) and mixing tubes (not shown) for preparing diagnostic-ready samples, such as amplification-ready samples. The apparatus may prepare the desired reagents in the racks 24a, 24b using the dispenser 400. Further description of various fluid dispensers may be found in e.g., U.S. Patent Application Publication 2009-0130719 and U.S. Patent Application Publication 2009-0155123, incorporated herein by reference.
In some embodiments, the reaction chambers within the microfluidic cartridge(s) includes one or more reagents, buffers, etc., used in the nucleic amplification assay. For example, in some embodiments, the reaction chambers of the microfluidic cartridge can include, e.g., amplification primers, probes, nucleotides, enzymes such as polymerase, buffering agents, or the like. By way of example, in some embodiments, the reaction chambers can include lyophilized reagents, to which processed biological sample (e.g., a solution of extracted nucleic acids) is added. The prepared fluids may then be transferred to a microfluidic cartridge and be inserted into heater/optical modules 500a, 500b for processing and analysis.
Also shown in
As will be described in more detail below, the diagnostic apparatus 10 may be capable of conducting real-time diagnostics on one or more samples. The sample to be tested may first be placed in a specimen tube (not shown) on the rack 24a or 24b. Diagnostic reagents may be located in the holders 26 on the rack 24a inside the diagnostic apparatus 10. The fluid dispenser 400 may mix and prepare the sample for diagnostic testing and may then deliver the prepared sample to the microfluidic cartridge 200 for thermal cycling and analyte detection in the heater/optical modules 500a, 500b. Alternatively, the fluid dispenser 400 may deliver nucleic acid samples to the reaction chambers of the microfluidic cartridge, wherein the reaction chambers of the microfluidic cartridge already contain reagents for an amplification reaction.
Receiving Tray
As illustrated in
The receiving tray 520 may be aligned so that various components of the apparatus that can operate on the microfluidic cartridge 200 (such as, heat sources, detectors, force members, and the like) are positioned to properly operate on the microfluidic cartridge 200 while the cartridge 200 is received in the recessed bay 524 of the receiving tray 520. For example, contact heat sources on the heater substrate 600 may be positioned in the recessed bay 524 such that the heat sources can be thermally coupled to distinct locations on the microfluidic cartridge 200 that is received in the receiving tray 520.
Microfluidic Cartridge
Certain embodiments contemplate a microfluidic cartridge configured to carry out amplification, such as by PCR, of one or more polynucleotides from one or more samples. By cartridge is meant a unit that may be disposable, or reusable in whole or in part, and that may be configured to be used in conjunction with some other apparatus that has been suitably and complementarily configured to receive and operate on (such as deliver energy to) the cartridge.
By microfluidic, as used herein, is meant that volumes of sample, and/or reagent, and/or amplified polynucleotide are from about 0.1 μl to about 999 μl, such as from 1-100 μl, or from 2-25 μl, as defined above. Similarly, as applied to a cartridge, the term microfluidic means that various components and channels of the cartridge, as further described herein, are configured to accept, and/or retain, and/or facilitate passage of microfluidic volumes of sample, reagent, or amplified polynucleotide. Certain embodiments herein can also function with nanoliter volumes (in the range of 10-500 nanoliters, such as 100 nanoliters).
The microfluidic cartridge 200 may include a registration member 202, for example, a cutout, which corresponds to a complementary edge in the recessed bay 524 of the receiving tray 520a,b of the heater/optical modules 500a, 500b. The registration member 202 and the complementary edge 526 may allow for secure and correct placement of the microfluidic cartridge 200 in the receiving tray 520a, b.
In various embodiments, the components of a microfluidic networks in the sample lanes 1706 of the cartridge 200 may be heated by thermally coupling them with the heaters in a heater substrate 600. The heater substrate 600 may be configured to heat a sample mixture comprising amplification reagents and an amplification-ready polynucleotide sample and cause it to undergo thermal cycling conditions suitable for creating amplicons from the amplification-ready sample. The heater substrate 600 may be located on the cartridge 200 in some embodiments or in the recessed bay 524.
The microfluidic network in each lane may be configured to carry out nucleic acid amplification, such as by PCR, on an amplification-ready sample, such as one containing nucleic acid extracted from a sample. An amplification-ready sample may comprise a mixture of amplification reagents and the extracted polynucleotide sample. The mixture may be suitable for subjecting to thermal cycling conditions to create amplicons from the extracted polynucleotide sample. For example, an amplification-ready sample, such as a PCR-ready sample, may include a PCR reagent mixture comprising a polymerase enzyme, a positive control nucleic acid, a fluorogenic hybridization probe selective for at least a portion of the positive control nucleic acid and a plurality of nucleotides, and at least one probe that is selective for a target polynucleotide sequence. The microfluidic network may be configured to couple heat from an external heat source with the mixture comprising the PCR reagent and the extracted polynucleotide sample under thermal cycling conditions suitable for creating PCR amplicons from the extracted polynucleotide sample.
In various embodiments, the reagent mixture may comprise fluorescent or other optically-detectable labels for the detection of the generation of a desired amplicon. In some embodiments, multiple sets of primers and multiple labels can be used in a multiplex assay format, e.g., multiplexed PCR, where each of a plurality of different amplicons can be detected in a single reaction chamber, if present. For example, one assay chamber could include template nucleic acids from a test sample, positive control template nucleic acids, one or more primer pairs for the amplification of specific target sequences, one or more probes for the detection of target amplicons, and one or more primer pairs and a probe for the detection of positive control amplicons. Additionally, the skilled artisan will appreciate that in some embodiments, the microfluidic cartridge accommodates a negative control polynucleotide that will not produce an amplicon with primer pairs used to amplify target or positive control sequences.
In certain of the illustrated embodiments, the chambers 1703a-c respectively associated with each lane 1706a-c of a multi-lane cartridge 200 may perform independent amplification reactions. The results of the reactions for the first column of chambers (1703a, 1703b) for the first two lanes (1706a,1706b) may then be simultaneously and independently measured using a detector head which comprises a “left” and a “right” light source-photodetector pair. That is each chamber 1703a-b of each lane 1706a-b may receive light from a separate light source and be observed by a separate photodetector simultaneously. In this manner, a variety of combinations of reactions may be performed in the cartridge efficiently. For example, in some embodiments, a plurality of amplification assays for the detection of a plurality target nucleic acids can be performed in one lane, a positive control and a negative control in two other lanes; or one or more amplification assays for the detection of one or more target nucleic acids, respectively, in combination with an internal positive control in one lane, with a negative control in a separate lane. In one particular embodiment, 2, 3, 4, 5, 6, or more assays are multiplexed in a single lane, with at least that number of fluorescently distinct fluorophores in the reaction chamber.
A microfluidic cartridge 200 may be constructed from a number of layers. Accordingly, one aspect of the present technology relates to a micro fluidic cartridge that comprises a first, second, third, fourth, and fifth layers wherein one or more layers define a plurality of microfluidic networks, each network having various components configured to carry out PCR on a sample in which the presence or absence of one or more polynucleotides is to be determined. In another embodiment, the microfluidic cartridge 200 can comprise a plurality of lanes, each including a reaction chamber, etched or molded in a single plane, such as in a molded plastic substrate, with each lane being closed by a cover layer, such as an adhesive plastic film layer. Embodiments with 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, or more lanes per cartridge are contemplated. For example, one suitable design is a single cartridge 200 having 24 reaction chambers, arranged in two rows of 12 reaction chambers, optionally having relatively aligned inlet ports. Further description of various cartridges and their components may be found in e.g., U.S. Patent Application Publication 2008-0182301 and U.S. Patent Application Publication 2009-0130719, incorporated herein by reference.
Heater Substrate
Shown in
The heater substrate 600 may be organized into “lanes” 1605a, b paralleling the structure of the lanes 1706a-c of the cartridge 200. In some embodiments, the heater substrate 600 may include 24 heater lanes 1605a, 1605b corresponding to the sample lanes 1706 of cartridge 200. When the microfluidic cartridge 200 is placed in the recessed bay 524 of the receiving tray 520a,b, the components of the cartridge 200 may be aligned adjacent to, and above, the corresponding heaters in the heater substrate 600. When the microfluidic cartridge 200 is placed in the recessed bay 524, the heaters may be in physical contact with the respective components. In some embodiments the heaters remain thermally coupled to their respective components, e.g., through one or more intermediate layers or materials, though not in direct physical contact. Further description of lanes may be found e.g., in U.S. Patent Application Publication 2009-0130719, herein incorporated by reference.
In some embodiments, multiple heaters may be configured to simultaneously and uniformly activate to heat their respective adjacent cartridge components of the microfluidic network in the microfluidic cartridge 200. Each heater may be independently controlled by a processor and/or control circuitry used in conjunction with the apparatus described herein. Generally, the heating of microfluidic components (gates, valves, chambers, etc.) in the microfluidic cartridge 200, is controlled by passing currents through suitably configured micro-fabricated heaters. Under control of suitable circuitry, the lanes 1706 of a multi-lane cartridge can then be heated independently, and thereby controlled independently, of one another. Furthermore, as is described in more detail below, the individual heaters 1601-1604 can be heated independently, and thereby controlled independently, of one another. This can lead to a greater energy efficiency and control of the apparatus, because not all heaters are heating at the same time, and a given heater is receiving current for only that fraction of the time when it is required to heat.
The heater substrate 600 may also include one or more heat sensors. In order to reduce the number of sensor or heaters required to control the heaters in a heater lanes 1605a, 1605b, the heaters may be used to sense temperature as well as heat, and thereby obviate the need to have a separate dedicated sensor for each heater. For example, the impedance and/or resistance of some materials change with the surrounding temperature. Accordingly, the resistance of heater/sensors 1601-1604 may be used as an indication of temperature when the sensors are not being actively heated.
In some embodiments, the heaters in the heater substrate 600 may be designed to have sufficient wattage to allow the heaters to be grouped in series or in parallel to reduce the number of electronically-controllable elements, thereby reducing the burden on the associated electronic circuitry. Heaters that are grouped together in this manner would be operated under synchronized and substantially simultaneous control.
In some embodiments, the reaction chamber heaters on opposite sides of the second stage heaters can be grouped and configured to operate under synchronized control. For example, in some embodiments, the PCR/amplification heaters 1601-1602 can be grouped and configured to operate under synchronized control. Alternative groupings and configurations can be applied to other heater groups of the PCR/amplification heaters 1601-1604. The PCR/amplification heaters 1601-1604 may be configured to operate individually and independently or they can be configured to operate in groups of two (pairs), three (thirds), four, five or six.
In some embodiments, the heating may be controlled by periodically turning the current on and off to a respective heater with varying pulse width modulation (PWM), wherein pulse width modulation refers to the on-time/off-time ratio for the current. The current can be supplied by connecting a micro fabricated heater to a high voltage source (for example, 30V), which can be gated by the PWM signal. In some embodiments, the device may include 48 PWM signal generators. In some embodiments there will be two PWM signal generators associated with each reaction chamber. Operation of a PWM generator may include generating a signal with a chosen, programmable period (the end count) and granularity. For instance, the signal can be 4000 us (micro-seconds) with a granularity of 1 us, in which case the PWM generator can maintain a counter beginning at zero and advancing in increments of 1 us until it reaches 4000 us, when it returns to zero. Thus, the amount of heat produced can be adjusted by adjusting the end count. A high end count corresponds to a greater length of time during which the micro fabricated heater receives current and therefore a greater amount of heat produced.
In various embodiments, the operation of a PWM generator may also include a programmable start count in addition to the aforementioned end count and granularity. In such embodiments, multiple PWM generators can produce signals that can be selectively non-overlapping (e.g., by multiplexing the on-time of the various heaters) such that the current capacity of the high voltage power is not exceeded.
Multiple heaters can be controlled by different PWM signal generators with varying start and end counts. The heaters can be divided into banks, whereby a bank defines a group of heaters of the same start count. Control of heating elements, and cooling elements, if present, in certain embodiments is discussed in further detail below.
Optical Module
As shown in
Detector Head
In some embodiments, each one of the plurality of detector pairs may be arranged along the length of the detector head 700 in rows. That is, behind the pairs 726 and 727 illustrated in
Each light source, such as for example light source 726a, may be configured to produce light of a wavelength specific to a specific fluorescent moiety associated with, e.g., a probe, contained in the reaction chambers. Each light detector, such as for example 726b, may be configured to detect the light emitted from the fluorescent probes associated with the light produced by the light emitter in the detector pair. The detector pairs may be configured to independently detect a plurality of fluorescent moieties, e.g., different fluorescent probes, having different fluorescent emission spectra, wherein in each reaction chamber, emission from each fluorescent probe is indicative of the presence or absence of one particular target polynucleotide or a fragment thereof. Although folded light paths can be used, one embodiment utilizes a detector and emitter pair where each is in direct optical contact with the reaction chamber, preferably simultaneously in such contact. Optionally, the detector and emitter of a pair are aligned with the reaction chamber along lines that substantially intersect at an acute angle at the reaction chamber. The angle can be, for example, between about 5 and 70 degrees, preferably between about 8 and 60 degrees, more preferably between about 10 and 50 degrees.
In some embodiments, the detector head includes two rows of photodetector and light source pairs that correspond to two rows of reaction chambers of microfluidic cartridges, when present in the apparatus. For example, the detector head can include a first or top row of six photodetector and light source pairs, and a second, or bottom row of photodetector and light source pairs, that are configured to query first and second rows of reaction chambers within a microfluidic cartridge, respectively.
The exemplary arrangement of photodetectors and light sources depicted in
The light-emitter and photodetector pairs of each column may be calibrated using the normalizer plate. After calibration, the detector head may be moved to a position such that a first column of light-emitter and photodetector pairs is located over a first group of lanes such that each light-emitter and photodetector pair has access to a reaction chamber of the lanes. Detection of the reaction chambers in the first group of lanes will then be performed using the first column of emitters/detectors. Then, the detector head may be moved to a second position such that the first column is over a second group of lanes and the second column is over the first group of lanes. Detection of the reaction chambers in the second group of lanes will then be performed using the first column of emitters/detectors and detection of the reaction chambers in the first group of lanes will then be performed using the second column of emitters/detectors. The process may continue until each column has passed over each lane. Thus, for N columns of detectors and M columns of chambers, the detector will perform detections at least M+N−1 positions. For example, in the embodiments of
Chamber Plate
Certain of the present embodiments relate to the plating surrounding and including the chamber layer. Particularly, certain embodiments contemplate the manufacture of an aperture layer comprising characteristics that advantageously facilitate consistent results across trials of the heating/detection module, as discussed in further detail below.
In this manner, each thermal unit may be associated with one or more reaction chambers 1703a-d, separately from the remaining reaction chambers. In agreement with the protocol specified for each reaction chamber, the thermal units may successively heat and/or cool their corresponding chamber appropriately. For example, thermal unit 1605c may cool and/or heat chamber 1703a such that the temperature of chamber 1703a is substantially independent of the cooling and thermal state of the chamber 1703a. While heating may be accomplished by running current through a microfluidic or electronic circuit, cooling may be “passive” in that only convection between the microfluidic chamber and is used to reduce the chamber's temperature. The thermal units 1605a, 1605b, 1605c may be controlled using a closed loop control system.
In some embodiments, aperture plate 540 may be located over the chamber layer 200 and can provide pressure to chamber layer 200 to facilitate heating and cooling of the microfluidic cartridge, e.g., the chamber layer, by thermal layer 600. The aperture plate can include a plurality of apertures 557a-d to facilitate each photodetector's 726b observation of an individual reaction chambers 1703a-d. In the absence of aperture plate 540, and depending on the configuration of the thermal layer 600 and chamber layer 200, chamber layer 200 may “warp” and/or be sufficiently flexible that the thermal communication between chambers and the respective thermal units is inconsistent. Inconsistent heating and cooling can lead to less accurate execution of the protocols and less precise and accurate results. As described above, significant warping may restrict the optical head from lateral movement. Thus, the thickness of the aperture plate must be appropriately selected to facilitate a proper light path between each reaction chamber and the light sources and photodetectors while still ensuring proper heating and cooling of the chamber layer. If the aperture layer is too thick, the distance from the photodetector 726b to the chamber may be too great, undesirably attenuating the fluorescence reading from the reaction chamber. In addition to increasing the distance to the reaction chamber, an aperture layer 540 which is too thick or too heavy will place too much pressure on the reaction chamber, causing convection to be too great. Conversely, if the aperture layer 540 is too thin it may not prevent the chamber layer 200 from bending and warping, and the aperture layer 540 may bend and warp itself. Warping of apertures 557a-d or the chambers 1703a-d may deflect light from the light source 726a and prevent accurate readings by photodetector 726b.
Accordingly, the embodiments described herein provide aperture layers that advantageously avoid the drawbacks described above. In certain embodiments, the aperture layer 540 is made, at least in part, of steel. In these embodiments, steel provides the appropriate strength, density and resistance to deflection desired for operation. Furthermore, the steel may provide low self-fluorescence and is therefore less likely to adversely affect the reading of photodetector 726b. The steel may also be electrochemically treated to diminish its self-fluorescence and thereby be less likely to adversely affect the reading of the photodetector. In certain embodiments, the aperture layer may instead comprise black nickel (Ni), i.e. Ni with a colorant added to it to reduce self-fluorescence. Certain embodiments contemplate combinations of these different materials and electrochemical treatments. In certain embodiments, the aperture layer 540 is made of aluminum and when secured by the adjoining support panels 500, 506, and 546, provide the appropriate strength. The aluminum may be electrochemically plated with an anodic oxide finish, e.g., with a black colorant added to reduce self-fluorescence.
The illumination optics may be designed so that the excitation light falling on the reaction chamber, or reactor, is incident along an area that is similar to the shape of the reactor. As the reactor may be long and narrow, the illumination spot may also be long and narrow, i.e., extended, as well. Thus the shape of apertures 557a-d may be designed with consideration both to the dimensions of the reaction chamber underneath, as well as to the relative positions of the corresponding light emitter and photodetector. The length of the spot may be adjusted by altering a number of factors, including: the diameter of the bore where the photodetector 726b is placed (the tube that holds the filter and lens may have an aperturing effect); the distance of the photodetector 726b from the PCR reactor; and the use of proper lens in photodetector 726b.
Force Member
In certain embodiments, the receiving tray 520 places the chamber layer 200 in proximity to the thermal layer 600 or aperture layer 540, but does not mechanically couple and/or thereby place the layers in contact with one another. In this manner, the chamber layer 200 may be thermally, but not mechanically, coupled to the thermal layer 600. In other embodiments, the receiving tray places the thermal layer 600 in both mechanical and thermal contact with the chamber layer 200 and the chamber layer in mechanical contact with the aperture layer 540. In various embodiments, the apparatus may include one or more force members (not shown) that are configured to apply pressure to the receiving tray 520 in order to thermally couple the heat sources to the microfluidic cartridge 200 positioned in the receiving tray 520. The application of pressure may be important to ensure consistent thermal contact between the heater substrate and the reaction chambers, gates, and valves, etc., in the microfluidic cartridge 200. When the receiving tray 520 is in a closed position, thereby being positioned under the aperture plate 540 of the optical module 502, the force member, such as a motor assembly, below the receiving tray 520 may begin traveling upwards towards the optical module 502, thereby bringing the receiving tray 520 closer to the optical module 502. As the receiving tray 520 travels upwards towards the optical module 502, the cartridge 200 may begin to come in contact with a bottom surface of the aperture plate 540. The cartridge 200 may continue traveling upward until sufficient pressure is received on the cartridge 200. As discussed above, the aperture plate 540 may apply an equal pressure across all points of the top of the cartridge 200 and thus, presses the cartridge 200 against the heater substrate 600 with uniform pressure. As discussed, the aperture layer may be selected to possess properties which facilitate this operation. For example, the material selection of the aperture plate 540 may provide very little deflection of the cartridge 200, when pressed against it.
The application of uniform pressure of the cartridge 200 against the heater substrate 600 may allow for uniform heating for each of the components of the cartridge when desirable. Although uniform pressure and contact may be obtained between the heaters in the heater substrate 600 and the components (valves, gates, chambers, etc.) of the microfluidic networks in the cartridge 200, the heaters are not necessarily activated simultaneously, as discussed above. In certain embodiments, application of even pressure does not necessarily result in equal heating of different components of the cartridge 200. In some embodiments, both the activation of a specific heater in the heater substrate 600 along with the pressure applied by the aperture plate 540 to the cartridge 200 activate a particular component of cartridge 200.
In the embodiment shown in
In general the dimensions of the aperture plate 540 are selected such that in combination with the properties of the materials constituting the aperture plate 540, the plate 540 provides sufficient pressure to the underlying chamber plate to facilitate proper heating and cooling as well as sufficient rigidity to prevent warping or deformation of the chamber plate. Such deformation may result in obstructions to the light source and photodetector optical path to the reaction chamber. Simultaneously, the dimensions of the plate should not impose an unfavorable distance from the reaction chamber of the chamber layer to the light-source and photodetector pair through the apertures 557. Neither should the aperture plate's dimensions 540 obstruct the optical path from the light-source and photodetector pair to the contents of the chamber reactor.
In some embodiments the normalizer plate 546 may be attached to the aperture plate by inserting screws at positions 9001 or other fixation means through an aperture. In other embodiments, these positions may facilitate broader calibration techniques via the apertures over the normalizer plates than with regard to the remaining apertures.
Diagnostic Analysis Consistency
Certain of the present embodiments contemplate methods for ensuring consistent diagnostic analyses across trials within the same heater/detector and across different heater/detectors. Particularly, embodiments of a system and process for determining the duration and offsets for a plurality of PCR protocols so as to synchronize detection therebetween are disclosed. Additionally, methods for adjusting the reactor cooling time to ensure more consistent results are discussed.
In certain embodiments the thermal trajectory for both heating and cooling may be determined for the entirety of the reaction prior to the start of the run. In some systems, the contour of temperature versus time is monitored and adjusted throughout the reaction in order to minimize transition temperatures, and taking into account the variations in efficiencies of different heating elements. In other words, some systems utilize feedback control loops to drive to a target temperature, wherein the actual contour of the temperature time relationship can vary from cycle to cycle. Such adjustments can result in different overall reaction times, and, more importantly, different overall reaction efficiencies. Accordingly, in some embodiments, the systems and methods described herein advantageously provide systems wherein the contour of the temperature versus time relationship of the complete reaction for each independent reaction chamber (or group of chambers) is predetermined set prior to the start of the run. Not only does this advantageously allow for synchronization of the multiple detection steps across a plurality of different reactors, but it also enables for stricter control over parameters that minimize differences in reaction efficiencies that may arise as a result of different temperature/time contours. In some embodiments, the systems and methods provided herein provide for the report of errors at the end of a reaction if the measured temperature is different from the expected value when a run is completed.
At various points in the protocol temperature profile 2000, the user or recipe may specify that a detection occur. For example, for some protocols a detection may be requested at the end of segment 2000D. Were detections arbitrarily specified in each protocol, the detector head would need to travel between positions in an inefficient manner and may even find it impossible to perform detections at the requested times. That is, were each of a plurality of protocols to be initiated simultaneously and run in parallel simultaneously across each of the reaction chambers in the cartridge, it would be very inefficient for the detector to meet each protocol's detection requests. Particularly, once calibration was complete the detector would need to first travel to positions suitable to perform detections for each light source-detector pair in its array for the first profile. By the time the detector finished, however, each of the remaining protocols would be entering a period when detection is not to be performed. There will therefore be a “dead time” period when the detector cannot perform any detections and must instead simply sit idle waiting for the opportunity to perform the next detection. This “dead time” is inefficient and unnecessarily prolongs the diagnostic process. Furthermore, where successive detections are to be performed, the “dead time” may generate irregular and aperiodic detections of the same chamber, possibly introducing inconsistent readings.
Certain of the present embodiments contemplate automated adjustments to portions of the profile 2000 to facilitate efficient detection across multiple protocols. This may be accomplished by allowing the user to edit, or the system may edit automatically, the length of segment 2000B or 2000D.
It should be understood that so long as at least a minimum plateau time occurs, some minor extension of plateau times can be accommodated in most amplification protocols. This flexibility is utilized to all efficient accommodation of different assays being performed simultaneously, while performing real-time monitoring of amplification by reading the various assays using a scanning detector head.
If detection were to be performed during segment 2000B, for example, the system or the user may extend the duration of segment 2000B as necessary to accommodate detector head movement and to coordinate the reading of a plurality of assays being performed simultaneously. The duration of segments 2000A and 2000C may be calculated using a predetermined standard cooling rate from the preceding temperatures and incorporated into the analysis. Some embodiments do not allow the user to edit these segments and they are instead accounted for by the system internally.
In certain embodiments, the protocol adjustments determined by the system may comprise at least three separate forms. The first adjustment may comprise an “intra-cycle adjustment” wherein plateaus such as 2000B and 2000D of the protocol are extended such that the entire step cycle 2000A-D achieves a desired duration, in some instances an integer multiple of a detection cycle time. This adjustment is described with respect to
Protocol Adjustment Overview
In some embodiments, the process may first determine a plurality of “intra-cycle adjustments” for one or more of the protocols 4003. As discussed below with respect to
Thus, intra-cycle adjustments ensure that the cycle of the protocol is an integer multiple of the detection cycle time. However, a detection may be requested at any point within a cycle. If the detection cycle time is 10 seconds, then the very earliest that a detection may be performed is at 10 seconds after the protocol initiates. Detections may then be performed at integer multiples after that time (20, 30, 40 seconds, etc.).
Thus, a further adjustment, an “inter-cycle” adjustment 4004, may then be determined to ensure that the requested detection occurs at the appropriate time. These “inter-cycle adjustments” may be incorporated into the protocol as additional delays between protocol steps or substeps. Phrased differently, a PCR protocol once subjected to “intra-cycle” adjustments may comprise “valid” cycle steps. The PCR protocol may then be generated by chaining together each of the steps and adding transitions from step to step. The “inter-cycle adjustments” 4004 ensure that the detection times occur at the desired integer multiples of the detection cycle time after the cycles have been chained together.
For example, for a system having a detection cycle time of 10 seconds a protocol may comprise a step having its first detection at 18 seconds into a cycle. The cycle duration (the duration of the entire step) may last for 30 seconds (perhaps after an “intra-cycle” adjustment). Thus, while the cycle time as a whole is properly aligned with the 10 second detection cycle time (3×10=30 seconds) the first detection is itself not properly aligned with the detection (18 second is not a multiple of 10 seconds). The system will add 2 seconds of “inter-cycle” adjustment to the very first detection run so that the first detection occurs 20 seconds after the start of the protocol. This may be done by extending the previous step's final hold temperature for an additional 2 seconds via a “padding adjustment”. If there is no previous step, the system would insert a 2 second hold at ambient temperature to the beginning of the first run of the cycle. Thus, if the system begins operation at T0, the first detection will occur at T0+20 seconds, the second detection at T0+50 seconds, and so forth.
Because of the inter and intra-cycle adjustments, the protocol is now in a form such that detections will only be requested at times convenient for the detector head to move to the reaction chamber performing the protocol. Were all protocols performed in reaction chambers located in the first column of the cartridge (and sufficient number of detectors present in the detector head) intra and inter-cycle adjustments alone would suffice to properly modify the protocol for efficient detection (a first column here referring to a column of lanes such as lanes 1706a and 1706b with associated chambers 1703a and 1703b in
Thus “starting adjustment offsets” are added to the protocol based on the location of the chamber in which the protocol is performed. These “starting adjustment offsets” 4005 are described in greater detail with respect to
Although described in the order of steps 4003, 4005, and 4004, one will readily recognize that these steps may be arranged into any other suitable order, and neither need the system perform each step successively. In some embodiments, however, such as that described above, it may be necessary to perform inter-cycle adjustments after performing intra-cycle adjustments, as the inter-cycle adjustment depends on the intra-cycle modification. In contrast, the starting-offset adjustment 4005 may not depend on any previous determination. That is, in some embodiments the starting offset 4005 need be determined only once at run time, whereas the intra-cycle adjustments 4003 and inter-cycle adjustments 4004 may be performed for each cycle step in the protocols.
In some embodiments, once the protocol times have been properly adjusted, the process may then initiate the protocols 4006. In some embodiments a processor may simply place the offsets in a memory location for retrieval by a separate dedicated component of the system which itself initiates each protocol.
Intra-Cycle Adjustment
“Intra-cycle adjustments” comprise adjustments to step or substep intervals, as may have been specified by a user or received from a database, so that the step as a whole is an integer multiple of a predetermined duration. With reference to
In the example of
In the example illustrated in
Thus, the total duration for the step as a whole is:
4.25 (heat)+2.0 (denature)+7.05 (cool)+10.2 (anneal)+2.2 (detection)=25.7 seconds.
As 25.7 seconds is not a multiple of the 10 second detection time, adjustment will be necessary. As indicated 5003b, the system informs the user that they may either remove 5.7 seconds from the step duration or add an additional 4.3 seconds to achieve a multiple of the detection cycle time (i.e., a multiple of 10 seconds). These “intra-cycle step adjustments” will be incorporated into the protocol after the user's selection.
One will recognize that the system may consider a plurality of other factors not indicated in this example when providing the user with an adjustment range. For example, additional delays to motor movement or incubation preparation may be factored in to the system's analysis.
Inter-Cycle Adjustments
As mentioned above, “inter-cycle adjustments” comprise adjustments to the first cycle of a substep so as to create a delay between cycle steps. “Inter-cycle adjustments” may depend on the timing of the preceding steps and the end temperature of the immediately preceding step (if one exists). With reference to
In some embodiments the adjustment 6005 is determined by first determining the time required to heat or cool the temperature from the end of the previous step to the first substep temperature of the next step. If any additional time is necessary for alignment, the temperature from the end of the previous step may be maintained for this time. An example of alignment between the end temperature of a hold step at 75° C. to the first substep temperature of 95° C. is shown in
Starting Offset Adjustments
The second protocol 3005 includes a different profile from 3001. The profile 3005 comprises an initialization step lasting from 0 to 30 seconds. The profile 3005 is then followed by a plurality of 50 second cycles, with the first detection at 40 seconds. These cycles represent a 3-Temperature PCR, which includes a denature at a high temperature, the anneal and detection at the low temperature, and then an extension at a middle temperature. As before, the first initialization cycle may include a small inter-cycle delay at the beginning for alignment. One will recognize that his inter-cycle delay may be inserted at a variety of positions about the initialization step to ensure detection alignment.
Thus, with properly selected “starting adjustments” the system can ensure consistent detection times across each of the reactors. As illustrated in
Active Cooling
In certain of the embodiments while heating of the reactor chamber is active, that is, heaters are actively applied to the chamber, cooling of the reactor chamber may passive, where convection alone is used to cool the reactor contents. In order to further provide for consistent diagnostic performance, certain of the embodiments contemplate active participation in the reactor's cooling process to ensure consistent behavior.
The ambient temperature in the location where the heating/detection unit is located may not be the same. That is, a system operating in southern Arizona may not be subjected to the same ambient temperatures as a system operating in northern Alaska. Thus, in the hottest ambient temperature in which the system is expected to be operated, the profile 7001 may have a cooling curve 7003. In a cooler environment, the cooling profile 7002 may instead result. To compensate for the difference, certain embodiments contemplate monitoring the reactor cooling profile via the temperature sensors, possibly those discussed with regard to
Certain of these embodiments apply Newton's law of cooling to determine when to apply the heaters:
T(t)=Ta+(T(0)−Ta)e−rt
Where: T(t) is the temperature at time t, T(0) is the initial temperature, Ta is the ambient temperature parameter, r is the decay constant parameter, and t is time. In some embodiments 50.2 degrees Celsius and 0.098 may be used as the ambient temperature parameter and decay constant parameter, respectively. In this embodiment, the ambient temperature parameter is selected to be higher than any expected ambient operating temperature, thus allowing full control over the cooling cycle by applying at least some small amount of heat during each cooling cycle, regardless of ambient temperature, in order to match the actual cooling to the cooling curve of the maximal profile 7003 in each instance.
As used herein, an “input” can be, for example, data received from a keyboard, rollerball, mouse, voice recognition system or other device capable of transmitting information from a user to a computer. The input device can also be a touch screen associated with the display, in which case the user responds to prompts on the display by touching the screen. The user may enter textual information through the input device such as the keyboard or the touch-screen.
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, microcontrollers, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices.
As used herein, “instructions” refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware and include any type of programmed step undertaken by components of the system.
A “microprocessor” or “processor” may be any conventional general purpose single- or multi-core microprocessor such as a Pentium® processor, Intel® Core™, a 8051 processor, a MIPS® processor, or an ALPHA® processor. In addition, the microprocessor may be any conventional special purpose microprocessor such as a digital signal processor or a graphics processor. A “processor” may also refer to, but is not limited to, microcontrollers, field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), complex programmable logic devices (CPLDs), programmable logic arrays (PLAs), microprocessors, or other similar processing devices.
The system is comprised of various modules as discussed in detail below. As can be appreciated by one of ordinary skill in the art, each of the modules comprises various sub-routines, procedures, definitional statements and macros. Each of the modules are typically separately compiled and linked into a single executable program. Therefore, the following description of each of the modules is used for convenience to describe the functionality of the preferred system. Thus, the processes that are undergone by each of the modules may be arbitrarily redistributed to one of the other modules, combined together in a single module, or made available in, for example, a shareable dynamic link library.
Certain embodiments of the system may be used in connection with various operating systems such as SNOW LEOPARD®, iOS®, LINUX, UNIX or MICROSOFT WINDOWS®, or any other suitable operating system.
Certain embodiments of the system may be written in any conventional programming language such as assembly, C, C++, BASIC, Pascal, or Java, and run under a conventional operating system, or the like, or any other suitable programming language.
In addition, the modules or instructions may be stored onto one or more programmable storage devices, such as FLASH drives, CD-ROMs, hard disks, and DVDs. One embodiment includes a programmable storage device having instructions stored thereon.
While the above processes and methods are described above as including certain steps and are described in a particular order, it should be recognized that these processes and methods may include additional steps or may omit some of the steps described. Further, each of the steps of the processes does not necessarily need to be performed in the order it is described.
While the above description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the system or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium may be coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
This application is a divisional of U.S. application Ser. No. 14/054,397, filed Oct. 15, 2013, and scheduled to issue as U.S. Pat. No. 9,765,389, on Sep. 19, 2017, which is a continuation of International Patent Application No. PCT/US2012/033667, filed Apr. 13, 2012, entitled “SYNCHRONIZED THERMOCYCLING AND SCANNING OPTICAL DETECTION,” which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/476,175, filed on Apr. 15, 2011, entitled “SOFTWARE CONTROL PROCESS TO SYNCHRONIZE THERMOCYCLING AND SCANNING OPTICAL DETECTION” and U.S. Provisional Patent Application Ser. No. 61/476,167, filed on Apr. 15, 2011, entitled “6-COLOR SCANNING REAL-TIME MICROFLUIDIC THERMOCYCLER.” Each of the aforementioned applications is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D189404 | Nicolle | Dec 1960 | S |
3050239 | Williams | Aug 1962 | A |
3905772 | Hartnett et al. | Sep 1975 | A |
3985649 | Eddelman | Oct 1976 | A |
4018089 | Dzula et al. | Apr 1977 | A |
4018652 | Lanham et al. | Apr 1977 | A |
4038192 | Serur | Jul 1977 | A |
4055395 | Honkawa et al. | Oct 1977 | A |
D249706 | Adamski | Sep 1978 | S |
4139005 | Dickey | Feb 1979 | A |
D252157 | Kronish et al. | Jun 1979 | S |
D252341 | Thomas | Jul 1979 | S |
D254687 | Fadler et al. | Apr 1980 | S |
4212744 | Oota | Jul 1980 | A |
D261033 | Armbruster | Sep 1981 | S |
D261173 | Armbruster | Oct 1981 | S |
4301412 | Hill et al. | Nov 1981 | A |
4439526 | Columbus | Mar 1984 | A |
4457329 | Werley et al. | Jul 1984 | A |
4466740 | Kano et al. | Aug 1984 | A |
4472357 | Levy et al. | Sep 1984 | A |
4504582 | Swann | Mar 1985 | A |
4522786 | Ebersole | Jun 1985 | A |
D279817 | Chen et al. | Jul 1985 | S |
D282208 | Lowry | Jan 1986 | S |
4599315 | Terasaki et al. | Jul 1986 | A |
4612873 | Eberle | Sep 1986 | A |
4612959 | Costello | Sep 1986 | A |
D288478 | Carlson et al. | Feb 1987 | S |
4647432 | Wakatake | Mar 1987 | A |
4654127 | Baker et al. | Mar 1987 | A |
4673657 | Christian | Jun 1987 | A |
4678752 | Thorne et al. | Jul 1987 | A |
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4698302 | Whitehead et al. | Oct 1987 | A |
D292735 | Lovborg | Nov 1987 | S |
4720374 | Ramachandran | Jan 1988 | A |
4724207 | Hou et al. | Feb 1988 | A |
4798693 | Mase et al. | Jan 1989 | A |
4800022 | Leonard | Jan 1989 | A |
4827944 | Nugent | May 1989 | A |
4841786 | Schulz | Jun 1989 | A |
D302294 | Hillman | Jul 1989 | S |
4855110 | Marker et al. | Aug 1989 | A |
4871779 | Killat et al. | Oct 1989 | A |
4895650 | Wang | Jan 1990 | A |
4919829 | Gates et al. | Apr 1990 | A |
4921809 | Schiff et al. | May 1990 | A |
4935342 | Seligson et al. | Jun 1990 | A |
4946562 | Guruswamy | Aug 1990 | A |
4949742 | Rando et al. | Aug 1990 | A |
D310413 | Bigler et al. | Sep 1990 | S |
4963498 | Hillman | Oct 1990 | A |
4967950 | Legg et al. | Nov 1990 | A |
D312692 | Bradley | Dec 1990 | S |
4978502 | Dole et al. | Dec 1990 | A |
4978622 | Mishell et al. | Dec 1990 | A |
4989626 | Takagi et al. | Feb 1991 | A |
5001417 | Pumphrey et al. | Mar 1991 | A |
5004583 | Guruswamy et al. | Apr 1991 | A |
5048554 | Kremer | Sep 1991 | A |
5053199 | Keiser et al. | Oct 1991 | A |
5060823 | Perlman | Oct 1991 | A |
5061336 | Soane | Oct 1991 | A |
5064618 | Baker et al. | Nov 1991 | A |
5071531 | Soane | Dec 1991 | A |
5091328 | Miller | Feb 1992 | A |
D324426 | Fan et al. | Mar 1992 | S |
5096669 | Lauks et al. | Mar 1992 | A |
D325638 | Sloat et al. | Apr 1992 | S |
5126002 | Iwata et al. | Jun 1992 | A |
5126022 | Soane et al. | Jun 1992 | A |
D328135 | Fan et al. | Jul 1992 | S |
D328794 | Frenkel et al. | Aug 1992 | S |
5135627 | Soane | Aug 1992 | A |
5135872 | Pouletty et al. | Aug 1992 | A |
5147606 | Charlton et al. | Sep 1992 | A |
5169512 | Wiedenmann et al. | Dec 1992 | A |
D333522 | Gianino | Feb 1993 | S |
5186339 | Heissler | Feb 1993 | A |
5192507 | Taylor et al. | Mar 1993 | A |
5208163 | Charlton et al. | May 1993 | A |
5217694 | Gibler et al. | Jun 1993 | A |
5223226 | Wittmer et al. | Jun 1993 | A |
5229297 | Schnipelsky et al. | Jul 1993 | A |
D338275 | Fischer et al. | Aug 1993 | S |
5250263 | Manz | Oct 1993 | A |
5252743 | Barrett et al. | Oct 1993 | A |
5256376 | Callan et al. | Oct 1993 | A |
5273716 | Northrup et al. | Dec 1993 | A |
5275787 | Yuguchi et al. | Jan 1994 | A |
5282950 | Dietze et al. | Feb 1994 | A |
5296375 | Kricka et al. | Mar 1994 | A |
5304477 | Nagoh et al. | Apr 1994 | A |
5304487 | Wilding et al. | Apr 1994 | A |
D347478 | Pinkney | May 1994 | S |
5311896 | Kaartinen et al. | May 1994 | A |
5311996 | Duffy et al. | May 1994 | A |
5316727 | Suzuki et al. | May 1994 | A |
5327038 | Culp | Jul 1994 | A |
5339486 | Persic | Aug 1994 | A |
D351475 | Gerber | Oct 1994 | S |
D351913 | Hieb et al. | Oct 1994 | S |
5364591 | Green et al. | Nov 1994 | A |
5372946 | Cusak et al. | Dec 1994 | A |
5374395 | Robinson | Dec 1994 | A |
5389339 | Petschek et al. | Feb 1995 | A |
D356232 | Armstrong et al. | Mar 1995 | S |
5397709 | Berndt | Mar 1995 | A |
5401465 | Smethers et al. | Mar 1995 | A |
5411708 | Moscetta et al. | May 1995 | A |
5414245 | Hackleman | May 1995 | A |
5415839 | Zaun et al. | May 1995 | A |
5416000 | Allen et al. | May 1995 | A |
5422271 | Chen et al. | Jun 1995 | A |
5422284 | Lau | Jun 1995 | A |
5427946 | Kricka et al. | Jun 1995 | A |
5443791 | Cathcart et al. | Aug 1995 | A |
5474796 | Brennan | Dec 1995 | A |
5475487 | Mariella, Jr. et al. | Dec 1995 | A |
D366116 | Biskupski | Jan 1996 | S |
5486335 | Wilding et al. | Jan 1996 | A |
5494639 | Grzegorzewski | Feb 1996 | A |
5498392 | Wilding et al. | Mar 1996 | A |
5503803 | Brown | Apr 1996 | A |
5516410 | Schneider et al. | May 1996 | A |
5519635 | Miyake et al. | May 1996 | A |
5529677 | Schneider et al. | Jun 1996 | A |
5559432 | Logue | Sep 1996 | A |
5565171 | Dovichi et al. | Oct 1996 | A |
5569364 | Hooper et al. | Oct 1996 | A |
5578270 | Reichler et al. | Nov 1996 | A |
5578818 | Kain et al. | Nov 1996 | A |
5579928 | Anukwuem | Dec 1996 | A |
5580523 | Bard | Dec 1996 | A |
5582884 | Ball et al. | Dec 1996 | A |
5582988 | Backus et al. | Dec 1996 | A |
5585069 | Zanucchi et al. | Dec 1996 | A |
5585089 | Queen et al. | Dec 1996 | A |
5585242 | Bouma et al. | Dec 1996 | A |
5587128 | Wilding et al. | Dec 1996 | A |
5589136 | Northrup et al. | Dec 1996 | A |
5593838 | Zanzucchi et al. | Jan 1997 | A |
5595708 | Berndt | Jan 1997 | A |
5599432 | Manz et al. | Feb 1997 | A |
5599503 | Manz et al. | Feb 1997 | A |
5599667 | Arnold, Jr. et al. | Feb 1997 | A |
5601727 | Bormann et al. | Feb 1997 | A |
5603351 | Cherukuri et al. | Feb 1997 | A |
5605662 | Heller et al. | Feb 1997 | A |
5609910 | Hackleman | Mar 1997 | A |
D378782 | LaBarbera et al. | Apr 1997 | S |
5628890 | Carter et al. | May 1997 | A |
5630920 | Friese et al. | May 1997 | A |
5631337 | Sassi et al. | May 1997 | A |
5632876 | Zanzucchi et al. | May 1997 | A |
5632957 | Heller et al. | May 1997 | A |
5635358 | Wilding et al. | Jun 1997 | A |
5637469 | Wilding et al. | Jun 1997 | A |
5639423 | Northrup et al. | Jun 1997 | A |
5639428 | Cottingham | Jun 1997 | A |
5643738 | Zanzucchi et al. | Jul 1997 | A |
5645801 | Bouma et al. | Jul 1997 | A |
5646039 | Northrup et al. | Jul 1997 | A |
5646049 | Tayi | Jul 1997 | A |
5647994 | Tuunanen et al. | Jul 1997 | A |
5651839 | Rauf | Jul 1997 | A |
5652141 | Henco et al. | Jul 1997 | A |
5652149 | Mileaf et al. | Jul 1997 | A |
D382346 | Buhler et al. | Aug 1997 | S |
D382647 | Staples et al. | Aug 1997 | S |
5654141 | Mariani et al. | Aug 1997 | A |
5658515 | Lee et al. | Aug 1997 | A |
5667976 | Van Ness et al. | Sep 1997 | A |
5671303 | Shieh et al. | Sep 1997 | A |
5674394 | Whitmore | Oct 1997 | A |
5674742 | Northrup et al. | Oct 1997 | A |
5681484 | Zanzucchi et al. | Oct 1997 | A |
5681529 | Taguchi et al. | Oct 1997 | A |
5683657 | Mian | Nov 1997 | A |
5683659 | Hovatter | Nov 1997 | A |
5699157 | Parce et al. | Dec 1997 | A |
5700637 | Southern | Dec 1997 | A |
5705813 | Apffel et al. | Jan 1998 | A |
5721136 | Finney et al. | Feb 1998 | A |
5725831 | Reichler et al. | Mar 1998 | A |
5726026 | Wilding et al. | Mar 1998 | A |
5726404 | Brody | Mar 1998 | A |
5726944 | Pelley et al. | Mar 1998 | A |
5731212 | Gavin et al. | Mar 1998 | A |
5744366 | Kricka et al. | Apr 1998 | A |
5746978 | Bienhaus et al. | May 1998 | A |
5747666 | Willis | May 1998 | A |
5750015 | Soane et al. | May 1998 | A |
5755942 | Zanzucchi et al. | May 1998 | A |
5762874 | Seaton et al. | Jun 1998 | A |
5763262 | Wong et al. | Jun 1998 | A |
5770029 | Nelson et al. | Jun 1998 | A |
5770388 | Vorpahl | Jun 1998 | A |
5772966 | Maracas et al. | Jun 1998 | A |
5779868 | Parce et al. | Jul 1998 | A |
5783148 | Cottingham et al. | Jul 1998 | A |
5787032 | Heller et al. | Jul 1998 | A |
5788814 | Sun et al. | Aug 1998 | A |
5800600 | Lima-Marques et al. | Sep 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5804436 | Okun et al. | Sep 1998 | A |
D399959 | Prokop et al. | Oct 1998 | S |
5819749 | Lee et al. | Oct 1998 | A |
5827481 | Bente et al. | Oct 1998 | A |
5842106 | Thaler et al. | Nov 1998 | A |
5842787 | Kopf-Sill et al. | Dec 1998 | A |
5846396 | Zanzucchi et al. | Dec 1998 | A |
5846493 | Bankier et al. | Dec 1998 | A |
5849208 | Hayes et al. | Dec 1998 | A |
5849486 | Heller et al. | Dec 1998 | A |
5849489 | Heller | Dec 1998 | A |
5849598 | Wilson et al. | Dec 1998 | A |
5852495 | Parce | Dec 1998 | A |
5856174 | Lipshutz et al. | Jan 1999 | A |
5858187 | Ramsey et al. | Jan 1999 | A |
5858188 | Soane et al. | Jan 1999 | A |
5863502 | Southgate et al. | Jan 1999 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5863801 | Southgate et al. | Jan 1999 | A |
5866345 | Wilding et al. | Feb 1999 | A |
5869004 | Parce et al. | Feb 1999 | A |
5869244 | Martin et al. | Feb 1999 | A |
5872010 | Karger et al. | Feb 1999 | A |
5872623 | Stabile et al. | Feb 1999 | A |
5874046 | Megerle | Feb 1999 | A |
5876675 | Kennedy | Mar 1999 | A |
5880071 | Parce et al. | Mar 1999 | A |
5882465 | McReynolds | Mar 1999 | A |
5883211 | Sassi et al. | Mar 1999 | A |
5885432 | Hooper et al. | Mar 1999 | A |
5885470 | Parce et al. | Mar 1999 | A |
5895762 | Greenfield et al. | Apr 1999 | A |
5900130 | Benvegnu et al. | May 1999 | A |
5911737 | Lee et al. | Jun 1999 | A |
5912124 | Kumar | Jun 1999 | A |
5912134 | Shartle | Jun 1999 | A |
5914229 | Loewy | Jun 1999 | A |
5916522 | Boyd et al. | Jun 1999 | A |
5916776 | Kumar | Jun 1999 | A |
5919646 | Okun et al. | Jul 1999 | A |
5919711 | Boyd et al. | Jul 1999 | A |
5922591 | Anderson et al. | Jul 1999 | A |
5927547 | Papen et al. | Jul 1999 | A |
5928161 | Krulevitch et al. | Jul 1999 | A |
5928880 | Wilding et al. | Jul 1999 | A |
5929208 | Heller et al. | Jul 1999 | A |
D413391 | Lapeus et al. | Aug 1999 | S |
5932799 | Moles | Aug 1999 | A |
5935401 | Amigo | Aug 1999 | A |
5939291 | Loewy et al. | Aug 1999 | A |
5939312 | Baier et al. | Aug 1999 | A |
5942443 | Parce et al. | Aug 1999 | A |
5944717 | Lee et al. | Aug 1999 | A |
D413677 | Dumitrescu et al. | Sep 1999 | S |
D414271 | Mendoza | Sep 1999 | S |
5948227 | Dubrow | Sep 1999 | A |
5948363 | Gaillard | Sep 1999 | A |
5948673 | Cottingham | Sep 1999 | A |
5955028 | Chow | Sep 1999 | A |
5955029 | Wilding et al. | Sep 1999 | A |
5957579 | Kopf-Sill et al. | Sep 1999 | A |
5958203 | Parce et al. | Sep 1999 | A |
5958349 | Petersen et al. | Sep 1999 | A |
5958694 | Nikiforov | Sep 1999 | A |
5959221 | Boyd et al. | Sep 1999 | A |
5959291 | Jensen | Sep 1999 | A |
5935522 | Swerdlow et al. | Oct 1999 | A |
5964995 | Nikiforov et al. | Oct 1999 | A |
5964997 | McBride | Oct 1999 | A |
5965001 | Chow et al. | Oct 1999 | A |
5965410 | Chow et al. | Oct 1999 | A |
5965886 | Sauer et al. | Oct 1999 | A |
5968745 | Thorp et al. | Oct 1999 | A |
5972187 | Parce et al. | Oct 1999 | A |
5973138 | Collis | Oct 1999 | A |
D417009 | Boyd | Nov 1999 | S |
5976336 | Dubrow et al. | Nov 1999 | A |
5980704 | Cherukuri et al. | Nov 1999 | A |
5980719 | Cherukuri et al. | Nov 1999 | A |
5981735 | Thatcher et al. | Nov 1999 | A |
5985651 | Hunicke-Smith | Nov 1999 | A |
5989402 | Chow et al. | Nov 1999 | A |
5992820 | Fare et al. | Nov 1999 | A |
5993611 | Moroney, III et al. | Nov 1999 | A |
5993750 | Ghosh et al. | Nov 1999 | A |
5997708 | Craig | Dec 1999 | A |
6001229 | Ramsey | Dec 1999 | A |
6001231 | Kopf-Sill | Dec 1999 | A |
6001307 | Naka et al. | Dec 1999 | A |
6004450 | Northrup et al. | Dec 1999 | A |
6004515 | Parce et al. | Dec 1999 | A |
6007690 | Nelson et al. | Dec 1999 | A |
6010607 | Ramsey | Jan 2000 | A |
6010608 | Ramsey | Jan 2000 | A |
6010627 | Hood | Jan 2000 | A |
6012902 | Parce | Jan 2000 | A |
D420747 | Dumitrescu et al. | Feb 2000 | S |
D421130 | Cohen et al. | Feb 2000 | S |
6024920 | Cunanan | Feb 2000 | A |
D421653 | Purcell | Mar 2000 | S |
6033546 | Ramsey | Mar 2000 | A |
6033880 | Haff et al. | Mar 2000 | A |
6043080 | Lipshutz et al. | Mar 2000 | A |
6046056 | Parce et al. | Apr 2000 | A |
6048734 | Burns et al. | Apr 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6054277 | Furcht et al. | Apr 2000 | A |
6056860 | Amigo et al. | May 2000 | A |
6057149 | Burns et al. | May 2000 | A |
6062261 | Jacobson et al. | May 2000 | A |
6063341 | Fassbind et al. | May 2000 | A |
6063589 | Kellogg et al. | May 2000 | A |
6068751 | Neukermans | May 2000 | A |
6068752 | Dubrow et al. | May 2000 | A |
6071478 | Chow | Jun 2000 | A |
6074725 | Kennedy | Jun 2000 | A |
6074827 | Nelson et al. | Jun 2000 | A |
D428497 | Lapeus et al. | Jul 2000 | S |
6086740 | Kennedy | Jul 2000 | A |
6096509 | Okun et al. | Aug 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6102897 | Lang | Aug 2000 | A |
6103537 | Ullman et al. | Aug 2000 | A |
6106685 | McBride et al. | Aug 2000 | A |
6110343 | Ramsey et al. | Aug 2000 | A |
6117398 | Bienhaus et al. | Sep 2000 | A |
6123205 | Dumitrescu et al. | Sep 2000 | A |
6123798 | Gandhi et al. | Sep 2000 | A |
6130098 | Handique et al. | Oct 2000 | A |
6132580 | Mathies et al. | Oct 2000 | A |
6132684 | Marino | Oct 2000 | A |
6133436 | Koster et al. | Oct 2000 | A |
D433759 | Mathis et al. | Nov 2000 | S |
6143250 | Tajima | Nov 2000 | A |
6143547 | Hsu | Nov 2000 | A |
6149787 | Chow et al. | Nov 2000 | A |
6149872 | Mack et al. | Nov 2000 | A |
6156199 | Zuk | Dec 2000 | A |
6158269 | Dorenkott et al. | Dec 2000 | A |
6167910 | Chow | Jan 2001 | B1 |
6168948 | Anderson et al. | Jan 2001 | B1 |
6171850 | Nagle et al. | Jan 2001 | B1 |
6174675 | Chow et al. | Jan 2001 | B1 |
6180950 | Olsen | Jan 2001 | B1 |
D438311 | Yamanishi et al. | Feb 2001 | S |
6190619 | Kilcoin et al. | Feb 2001 | B1 |
6194563 | Cruickshank | Feb 2001 | B1 |
D438632 | Miller | Mar 2001 | S |
D438633 | Miller | Mar 2001 | S |
D439673 | Brophy et al. | Mar 2001 | S |
6197595 | Anderson et al. | Mar 2001 | B1 |
6211989 | Wulf et al. | Apr 2001 | B1 |
6213151 | Jacobson et al. | Apr 2001 | B1 |
6221600 | MacLeod et al. | Apr 2001 | B1 |
6228635 | Armstrong et al. | May 2001 | B1 |
6232072 | Fisher | May 2001 | B1 |
6235175 | Dubrow et al. | May 2001 | B1 |
6235313 | Mathiowitz et al. | May 2001 | B1 |
6235471 | Knapp et al. | May 2001 | B1 |
6236456 | Giebeler et al. | May 2001 | B1 |
6236581 | Foss et al. | May 2001 | B1 |
6238626 | Higuchi et al. | May 2001 | B1 |
6251343 | Dubrow et al. | Jun 2001 | B1 |
6254826 | Acosta et al. | Jul 2001 | B1 |
6259635 | Khouri et al. | Jul 2001 | B1 |
6261431 | Mathies et al. | Jul 2001 | B1 |
6267858 | Parce et al. | Jul 2001 | B1 |
D446306 | Ochi et al. | Aug 2001 | S |
6271021 | Burns et al. | Aug 2001 | B1 |
6274089 | Chow et al. | Aug 2001 | B1 |
6280967 | Ransom et al. | Aug 2001 | B1 |
6281008 | Komai et al. | Aug 2001 | B1 |
6284113 | Bjornson et al. | Sep 2001 | B1 |
6284470 | Bitner et al. | Sep 2001 | B1 |
6287254 | Dodds | Sep 2001 | B1 |
6287774 | Nikiforov | Sep 2001 | B1 |
6291248 | Haj-Ahmad | Sep 2001 | B1 |
6294063 | Becker et al. | Sep 2001 | B1 |
6300124 | Blumenfeld et al. | Oct 2001 | B1 |
6302134 | Kellogg et al. | Oct 2001 | B1 |
6302304 | Spencer | Oct 2001 | B1 |
6303343 | Kopf-sill | Oct 2001 | B1 |
6306273 | Wainright et al. | Oct 2001 | B1 |
6306590 | Mehta et al. | Oct 2001 | B1 |
6310199 | Smith et al. | Oct 2001 | B1 |
6316774 | Giebeler et al. | Nov 2001 | B1 |
6319469 | Mian et al. | Nov 2001 | B1 |
6319474 | Krulevitch et al. | Nov 2001 | B1 |
6322683 | Wolk et al. | Nov 2001 | B1 |
6326083 | Yang et al. | Dec 2001 | B1 |
6326147 | Oldham et al. | Dec 2001 | B1 |
6326211 | Anderson et al. | Dec 2001 | B1 |
6334980 | Hayes et al. | Jan 2002 | B1 |
6337435 | Chu et al. | Jan 2002 | B1 |
6353475 | Jensen et al. | Mar 2002 | B1 |
6358387 | Kopf-sill et al. | Mar 2002 | B1 |
6366924 | Parce | Apr 2002 | B1 |
6368561 | Rutishauser et al. | Apr 2002 | B1 |
6368871 | Christel et al. | Apr 2002 | B1 |
6370206 | Schenk | Apr 2002 | B1 |
6375185 | Lin | Apr 2002 | B1 |
6375901 | Robotti et al. | Apr 2002 | B1 |
6379884 | Wada et al. | Apr 2002 | B2 |
6379929 | Burns et al. | Apr 2002 | B1 |
6379974 | Parce et al. | Apr 2002 | B1 |
6382254 | Yang et al. | May 2002 | B1 |
6391541 | Petersen et al. | May 2002 | B1 |
6391623 | Besemer et al. | May 2002 | B1 |
6395161 | Schneider et al. | May 2002 | B1 |
6398956 | Coville et al. | Jun 2002 | B1 |
6399025 | Chow | Jun 2002 | B1 |
6399389 | Parce et al. | Jun 2002 | B1 |
6399952 | Maher et al. | Jun 2002 | B1 |
6401552 | Elkins | Jun 2002 | B1 |
6403338 | Knapp et al. | Jun 2002 | B1 |
6408878 | Unger et al. | Jun 2002 | B2 |
6413401 | Chow et al. | Jul 2002 | B1 |
6416642 | Alajoki et al. | Jul 2002 | B1 |
6420143 | Kopf-sill | Jul 2002 | B1 |
6425972 | McReynolds | Jul 2002 | B1 |
D461906 | Pham | Aug 2002 | S |
6428987 | Franzen | Aug 2002 | B2 |
6430512 | Gallagher | Aug 2002 | B1 |
6432366 | Ruediger et al. | Aug 2002 | B2 |
6440725 | Pourahmadi et al. | Aug 2002 | B1 |
D463031 | Slomski et al. | Sep 2002 | S |
6444461 | Knapp et al. | Sep 2002 | B1 |
6447661 | Chow et al. | Sep 2002 | B1 |
6447727 | Parce et al. | Sep 2002 | B1 |
6448064 | Vo-Dinh et al. | Sep 2002 | B1 |
6453928 | Kaplan et al. | Sep 2002 | B1 |
6458259 | Parce et al. | Oct 2002 | B1 |
6461570 | Ishihara et al. | Oct 2002 | B2 |
6465257 | Parce et al. | Oct 2002 | B1 |
6468761 | Yang et al. | Oct 2002 | B2 |
6472141 | Nikiforov | Oct 2002 | B2 |
D466219 | Wynschenk et al. | Nov 2002 | S |
6475364 | Dubrow et al. | Nov 2002 | B1 |
D467348 | McMichael et al. | Dec 2002 | S |
D467349 | Niedbala et al. | Dec 2002 | S |
6488897 | Dubrow et al. | Dec 2002 | B2 |
6495104 | Unno et al. | Dec 2002 | B1 |
6498497 | Chow et al. | Dec 2002 | B1 |
6500323 | Chow et al. | Dec 2002 | B1 |
6500390 | Boulton et al. | Dec 2002 | B1 |
D468437 | McMenamy et al. | Jan 2003 | S |
6506609 | Wada et al. | Jan 2003 | B1 |
6509186 | Zou et al. | Jan 2003 | B1 |
6509193 | Tajima | Jan 2003 | B1 |
6511853 | Kopf-sill et al. | Jan 2003 | B1 |
D470595 | Crisanti et al. | Feb 2003 | S |
6515753 | Maher | Feb 2003 | B2 |
6517783 | Horner et al. | Feb 2003 | B2 |
6520197 | Deshmukh et al. | Feb 2003 | B2 |
6521181 | Northrup et al. | Feb 2003 | B1 |
6521188 | Webster | Feb 2003 | B1 |
6524456 | Ramsey et al. | Feb 2003 | B1 |
6524532 | Northrup | Feb 2003 | B1 |
6524790 | Kopf-sill et al. | Feb 2003 | B1 |
D472324 | Rumore et al. | Mar 2003 | S |
6534295 | Tai et al. | Mar 2003 | B2 |
6537432 | Schneider et al. | Mar 2003 | B1 |
6537771 | Farinas et al. | Mar 2003 | B1 |
6540896 | Manz et al. | Apr 2003 | B1 |
6544734 | Briscoe et al. | Apr 2003 | B1 |
6547942 | Parce et al. | Apr 2003 | B1 |
6555389 | Ullman et al. | Apr 2003 | B1 |
6556923 | Gallagher et al. | Apr 2003 | B2 |
D474279 | Mayer et al. | May 2003 | S |
D474280 | Niedbala et al. | May 2003 | S |
6558916 | Veerapandian et al. | May 2003 | B2 |
6558945 | Kao | May 2003 | B1 |
6565815 | Chang et al. | May 2003 | B1 |
6569607 | McReynolds | May 2003 | B2 |
6572830 | Burdon et al. | Jun 2003 | B1 |
6575188 | Parunak | Jun 2003 | B2 |
6576459 | Miles et al. | Jun 2003 | B2 |
6579453 | Bächler et al. | Jun 2003 | B1 |
6589729 | Chan et al. | Jul 2003 | B2 |
6592821 | Wada et al. | Jul 2003 | B1 |
6597450 | Andrews et al. | Jul 2003 | B1 |
6602474 | Tajima | Aug 2003 | B1 |
6613211 | Mccormick et al. | Sep 2003 | B1 |
6613512 | Kopf-sill et al. | Sep 2003 | B1 |
6613580 | Chow et al. | Sep 2003 | B1 |
6613581 | Wada et al. | Sep 2003 | B1 |
6614030 | Maher et al. | Sep 2003 | B2 |
6620625 | Wolk et al. | Sep 2003 | B2 |
6623860 | Hu et al. | Sep 2003 | B2 |
6627406 | Singh et al. | Sep 2003 | B1 |
D480814 | Lafferty et al. | Oct 2003 | S |
6632655 | Mehta et al. | Oct 2003 | B1 |
6633785 | Kasahara et al. | Oct 2003 | B1 |
D482796 | Oyama et al. | Nov 2003 | S |
6640981 | Lafond et al. | Nov 2003 | B2 |
6649358 | Parce et al. | Nov 2003 | B1 |
6664104 | Pourahmadi et al. | Dec 2003 | B2 |
6669831 | Chow et al. | Dec 2003 | B2 |
6670153 | Stern | Dec 2003 | B2 |
D484989 | Gebrian | Jan 2004 | S |
6672458 | Hansen et al. | Jan 2004 | B2 |
6681616 | Spaid et al. | Jan 2004 | B2 |
6681788 | Parce et al. | Jan 2004 | B2 |
6685813 | Williams et al. | Feb 2004 | B2 |
6692700 | Handique | Feb 2004 | B2 |
6695009 | Chien et al. | Feb 2004 | B2 |
6699713 | Benett et al. | Mar 2004 | B2 |
6706519 | Kellogg et al. | Mar 2004 | B1 |
6720148 | Nikiforov | Apr 2004 | B1 |
6730206 | Ricco et al. | May 2004 | B2 |
6733645 | Chow | May 2004 | B1 |
6734401 | Bedingham et al. | May 2004 | B2 |
6737026 | Bergh et al. | May 2004 | B1 |
6740518 | Duong et al. | May 2004 | B1 |
D491272 | Alden et al. | Jun 2004 | S |
D491273 | Biegler et al. | Jun 2004 | S |
D491276 | Langille | Jun 2004 | S |
6750661 | Brooks et al. | Jun 2004 | B2 |
6752966 | Chazan | Jun 2004 | B1 |
6756019 | Dubrow et al. | Jun 2004 | B1 |
6762049 | Zou et al. | Jul 2004 | B2 |
6764859 | Kreuwel et al. | Jul 2004 | B1 |
6766817 | Dias da Silva | Jul 2004 | B2 |
6773567 | Wolk | Aug 2004 | B1 |
6777184 | Nikiforov et al. | Aug 2004 | B2 |
6783962 | Olander et al. | Aug 2004 | B1 |
D495805 | Lea et al. | Sep 2004 | S |
6787015 | Lackritz et al. | Sep 2004 | B2 |
6787016 | Tan et al. | Sep 2004 | B2 |
6787111 | Roach et al. | Sep 2004 | B2 |
6790328 | Jacobson et al. | Sep 2004 | B2 |
6790330 | Gascoyne et al. | Sep 2004 | B2 |
6811668 | Berndt et al. | Nov 2004 | B1 |
6818113 | Williams et al. | Nov 2004 | B2 |
6819027 | Saraf | Nov 2004 | B2 |
6824663 | Boone | Nov 2004 | B1 |
D499813 | Wu | Dec 2004 | S |
D500142 | Crisanti et al. | Dec 2004 | S |
D500363 | Fanning et al. | Dec 2004 | S |
6827831 | Chow et al. | Dec 2004 | B1 |
6827906 | Bjornson et al. | Dec 2004 | B1 |
6838156 | Neyer et al. | Jan 2005 | B1 |
6838680 | Maher et al. | Jan 2005 | B2 |
6852287 | Ganesan | Feb 2005 | B2 |
6858185 | Kopf-sill et al. | Feb 2005 | B1 |
6859698 | Schmeisser | Feb 2005 | B2 |
6861035 | Pham et al. | Mar 2005 | B2 |
6878540 | Pourahmadi et al. | Apr 2005 | B2 |
6878755 | Singh et al. | Apr 2005 | B2 |
6884628 | Hubbell et al. | Apr 2005 | B2 |
6887693 | McMillan et al. | May 2005 | B2 |
6893879 | Petersen et al. | May 2005 | B2 |
6900889 | Bjornson et al. | May 2005 | B2 |
6905583 | Wainright et al. | Jun 2005 | B2 |
6905612 | Dorian et al. | Jun 2005 | B2 |
6906797 | Kao et al. | Jun 2005 | B1 |
6908594 | Schaevitz et al. | Jun 2005 | B1 |
6911183 | Handique et al. | Jun 2005 | B1 |
6914137 | Baker | Jul 2005 | B2 |
6915679 | Chien et al. | Jul 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
D508999 | Fanning et al. | Aug 2005 | S |
6939451 | Zhao et al. | Sep 2005 | B2 |
6940598 | Christel et al. | Sep 2005 | B2 |
6942771 | Kayyem | Sep 2005 | B1 |
6951632 | Unger et al. | Oct 2005 | B2 |
6958392 | Fomovskaia et al. | Oct 2005 | B2 |
D512155 | Matsumoto | Nov 2005 | S |
6964747 | Banerjee et al. | Nov 2005 | B2 |
6977163 | Mehta | Dec 2005 | B1 |
6979424 | Northrup et al. | Dec 2005 | B2 |
6984516 | Briscoe et al. | Jan 2006 | B2 |
D515707 | Sinohara et al. | Feb 2006 | S |
D516221 | Wohlstadter et al. | Feb 2006 | S |
7001853 | Brown et al. | Feb 2006 | B1 |
7004184 | Handique et al. | Feb 2006 | B2 |
D517554 | Yanagisawa et al. | Mar 2006 | S |
7010391 | Handique et al. | Mar 2006 | B2 |
7023007 | Gallagher | Apr 2006 | B2 |
7024281 | Unno | Apr 2006 | B1 |
7036667 | Greenstein et al. | May 2006 | B2 |
7037416 | Parce et al. | May 2006 | B2 |
7038472 | Chien | May 2006 | B1 |
7039527 | Tripathi et al. | May 2006 | B2 |
7040144 | Spaid et al. | May 2006 | B2 |
7041258 | Desmond et al. | May 2006 | B2 |
7049558 | Baer et al. | May 2006 | B2 |
D523153 | Akashi et al. | Jun 2006 | S |
7055695 | Greenstein et al. | Jun 2006 | B2 |
7060171 | Nikiforov et al. | Jun 2006 | B1 |
7066586 | Dias da Silva | Jun 2006 | B2 |
7069952 | McReynolds et al. | Jul 2006 | B1 |
7072036 | Jones et al. | Jul 2006 | B2 |
7099778 | Chien | Aug 2006 | B2 |
D528215 | Malmsater | Sep 2006 | S |
7101467 | Spaid | Sep 2006 | B2 |
7105304 | Nikiforov et al. | Sep 2006 | B1 |
D531321 | Godfrey et al. | Oct 2006 | S |
7118910 | Unger et al. | Oct 2006 | B2 |
7122799 | Hsieh et al. | Oct 2006 | B2 |
7135144 | Christel et al. | Nov 2006 | B2 |
7138032 | Gandhi et al. | Nov 2006 | B2 |
D534280 | Gomm et al. | Dec 2006 | S |
7148043 | Kordunsky et al. | Dec 2006 | B2 |
7150814 | Parce et al. | Dec 2006 | B1 |
7150999 | Shuck | Dec 2006 | B1 |
D535403 | Isozaki et al. | Jan 2007 | S |
7160423 | Chien et al. | Jan 2007 | B2 |
7161356 | Chien | Jan 2007 | B1 |
7169277 | Ausserer et al. | Jan 2007 | B2 |
7169601 | Northrup et al. | Jan 2007 | B1 |
7169618 | Skold | Jan 2007 | B2 |
D537951 | Okamoto et al. | Mar 2007 | S |
D538436 | Patadia et al. | Mar 2007 | S |
7188001 | Young et al. | Mar 2007 | B2 |
7192557 | Wu et al. | Mar 2007 | B2 |
7195986 | Bousse et al. | Mar 2007 | B1 |
7205154 | Corson | Apr 2007 | B2 |
7208125 | Dong | Apr 2007 | B1 |
7235406 | Woudenberg et al. | Jun 2007 | B1 |
7247274 | Chow | Jul 2007 | B1 |
D548841 | Brownell et al. | Aug 2007 | S |
D549827 | Maeno et al. | Aug 2007 | S |
7252928 | Hafeman et al. | Aug 2007 | B1 |
7255833 | Chang et al. | Aug 2007 | B2 |
7270786 | Parunak et al. | Sep 2007 | B2 |
D554069 | Bolotin et al. | Oct 2007 | S |
D554070 | Bolotin et al. | Oct 2007 | S |
7276208 | Sevigny et al. | Oct 2007 | B2 |
7276330 | Chow et al. | Oct 2007 | B2 |
7288228 | Lefebvre | Oct 2007 | B2 |
7297313 | Northrup et al. | Nov 2007 | B1 |
D556914 | Okamoto et al. | Dec 2007 | S |
7303727 | Dubrow et al. | Dec 2007 | B1 |
D559995 | Handique et al. | Jan 2008 | S |
7315376 | Bickmore et al. | Jan 2008 | B2 |
7323140 | Handique et al. | Jan 2008 | B2 |
7332130 | Handique | Feb 2008 | B2 |
7338760 | Gong et al. | Mar 2008 | B2 |
D566291 | Parunak et al. | Apr 2008 | S |
7351377 | Chazan et al. | Apr 2008 | B2 |
D569526 | Duffy et al. | May 2008 | S |
7374949 | Kuriger | May 2008 | B2 |
7390460 | Osawa et al. | Jun 2008 | B2 |
7419784 | Dubrow et al. | Sep 2008 | B2 |
7422669 | Jacobson et al. | Sep 2008 | B2 |
7440684 | Spaid et al. | Oct 2008 | B2 |
7476313 | Siddiqi | Jan 2009 | B2 |
7480042 | Phillips et al. | Jan 2009 | B1 |
7494577 | Williams et al. | Feb 2009 | B2 |
7494770 | Wilding et al. | Feb 2009 | B2 |
7514046 | Kechagia et al. | Apr 2009 | B2 |
7518726 | Rulison et al. | Apr 2009 | B2 |
7521186 | Burd Mehta | Apr 2009 | B2 |
7527769 | Bunch et al. | May 2009 | B2 |
D595423 | Johansson et al. | Jun 2009 | S |
7553671 | Sinclair et al. | Jun 2009 | B2 |
D596312 | Giraud et al. | Jul 2009 | S |
D598566 | Allaer | Aug 2009 | S |
7578976 | Northrup et al. | Aug 2009 | B1 |
D599234 | Ito | Sep 2009 | S |
7595197 | Brasseur | Sep 2009 | B2 |
7604938 | Takahashi et al. | Oct 2009 | B2 |
7622296 | Joseph et al. | Nov 2009 | B2 |
7628902 | Knowlton et al. | Dec 2009 | B2 |
7633606 | Northrup et al. | Dec 2009 | B2 |
7635588 | King et al. | Dec 2009 | B2 |
7645581 | Knapp et al. | Jan 2010 | B2 |
7670559 | Chien et al. | Mar 2010 | B2 |
7674431 | Ganesan | Mar 2010 | B2 |
7689022 | Weiner et al. | Mar 2010 | B2 |
7704735 | Facer et al. | Apr 2010 | B2 |
7705739 | Northrup et al. | Apr 2010 | B2 |
7723123 | Murphy et al. | May 2010 | B1 |
D618820 | Wilson et al. | Jun 2010 | S |
7727371 | Kennedy et al. | Jun 2010 | B2 |
7727477 | Boronkay et al. | Jun 2010 | B2 |
7744817 | Bui | Jun 2010 | B2 |
D621060 | Handique | Aug 2010 | S |
7785868 | Yuan et al. | Aug 2010 | B2 |
D628305 | Gorrec et al. | Nov 2010 | S |
7829025 | Ganesan et al. | Nov 2010 | B2 |
7858366 | Northrup et al. | Dec 2010 | B2 |
7867776 | Kennedy et al. | Jan 2011 | B2 |
D632799 | Canner et al. | Feb 2011 | S |
7892819 | Wilding et al. | Feb 2011 | B2 |
D637737 | Wilson et al. | May 2011 | S |
7955864 | Cox et al. | Jun 2011 | B2 |
7987022 | Handique et al. | Jul 2011 | B2 |
7998708 | Handique et al. | Aug 2011 | B2 |
8053214 | Northrup | Nov 2011 | B2 |
8071056 | Burns et al. | Dec 2011 | B2 |
8088616 | Handique | Jan 2012 | B2 |
8105783 | Handique | Jan 2012 | B2 |
8110158 | Handique | Feb 2012 | B2 |
8133671 | Williams et al. | Mar 2012 | B2 |
8182763 | Duffy et al. | May 2012 | B2 |
8246919 | Herchenbach et al. | Aug 2012 | B2 |
8273308 | Handique et al. | Sep 2012 | B2 |
D669597 | Cavada et al. | Oct 2012 | S |
8287820 | Williams et al. | Oct 2012 | B2 |
8323584 | Ganesan | Dec 2012 | B2 |
8323900 | Handique et al. | Dec 2012 | B2 |
8324372 | Brahmasandra et al. | Dec 2012 | B2 |
8415103 | Handique | Apr 2013 | B2 |
8420015 | Ganesan et al. | Apr 2013 | B2 |
8440149 | Handique | May 2013 | B2 |
8470586 | Wu et al. | Jun 2013 | B2 |
8473104 | Handique et al. | Jun 2013 | B2 |
D686749 | Trump | Jul 2013 | S |
D687567 | Jungheim et al. | Aug 2013 | S |
D692162 | Lentz et al. | Oct 2013 | S |
8592157 | Petersen et al. | Nov 2013 | B2 |
8679831 | Handique et al. | Mar 2014 | B2 |
D702854 | Nakahana et al. | Apr 2014 | S |
8685341 | Ganesan | Apr 2014 | B2 |
8703069 | Handique et al. | Apr 2014 | B2 |
8709787 | Handique | Apr 2014 | B2 |
8710211 | Brahmasandra et al. | Apr 2014 | B2 |
8734733 | Handique | May 2014 | B2 |
D710024 | Guo | Jul 2014 | S |
8765076 | Handique et al. | Jul 2014 | B2 |
8765454 | Zhou et al. | Jul 2014 | B2 |
8768517 | Handique et al. | Jul 2014 | B2 |
8852862 | Wu et al. | Oct 2014 | B2 |
8883490 | Handique et al. | Nov 2014 | B2 |
8894947 | Ganesan et al. | Nov 2014 | B2 |
8895311 | Handique et al. | Nov 2014 | B1 |
D729404 | Teich et al. | May 2015 | S |
9028773 | Ganesan | May 2015 | B2 |
9040288 | Handique et al. | May 2015 | B2 |
9051604 | Handique | Jun 2015 | B2 |
9080207 | Handique et al. | Jul 2015 | B2 |
D742027 | Lentz et al. | Oct 2015 | S |
9186677 | Williams et al. | Nov 2015 | B2 |
9217143 | Brahmasandra et al. | Dec 2015 | B2 |
9222954 | Lentz et al. | Dec 2015 | B2 |
9234236 | Thomas et al. | Jan 2016 | B2 |
9238223 | Handique | Jan 2016 | B2 |
9259734 | Williams et al. | Feb 2016 | B2 |
9259735 | Handique et al. | Feb 2016 | B2 |
9347586 | Williams et al. | May 2016 | B2 |
9480983 | Lentz et al. | Nov 2016 | B2 |
9528142 | Handique | Dec 2016 | B2 |
9618139 | Handique | Apr 2017 | B2 |
D787087 | Duffy et al. | Jun 2017 | S |
9670528 | Handique et al. | Jun 2017 | B2 |
9677121 | Ganesan et al. | Jun 2017 | B2 |
9701957 | Wilson et al. | Jul 2017 | B2 |
9745623 | Steel | Aug 2017 | B2 |
9789481 | Petersen et al. | Oct 2017 | B2 |
9802199 | Handique et al. | Oct 2017 | B2 |
9815057 | Handique | Nov 2017 | B2 |
9958466 | Dalbert et al. | May 2018 | B2 |
10065185 | Handique | Sep 2018 | B2 |
10071376 | Williams et al. | Sep 2018 | B2 |
10076754 | Lentz et al. | Sep 2018 | B2 |
10100302 | Brahmasandra et al. | Oct 2018 | B2 |
10139012 | Handique | Nov 2018 | B2 |
10179910 | Duffy et al. | Jan 2019 | B2 |
10234474 | Williams et al. | Mar 2019 | B2 |
10351901 | Ganesan et al. | Jul 2019 | B2 |
10364456 | Wu et al. | Jul 2019 | B2 |
10443088 | Wu et al. | Oct 2019 | B1 |
10494663 | Wu et al. | Dec 2019 | B1 |
10571935 | Handique et al. | Feb 2020 | B2 |
10590410 | Brahmasandra et al. | Mar 2020 | B2 |
10604788 | Wu et al. | Mar 2020 | B2 |
20010005489 | Roach et al. | Jun 2001 | A1 |
20010012492 | Acosta et al. | Aug 2001 | A1 |
20010016358 | Osawa et al. | Aug 2001 | A1 |
20010021355 | Baugh et al. | Sep 2001 | A1 |
20010023848 | Gjerde et al. | Sep 2001 | A1 |
20010038450 | McCaffrey et al. | Nov 2001 | A1 |
20010045358 | Kopf-Sill et al. | Nov 2001 | A1 |
20010046702 | Schembri | Nov 2001 | A1 |
20010048899 | Marouiss et al. | Dec 2001 | A1 |
20010055765 | O'Keefe et al. | Dec 2001 | A1 |
20020001848 | Bedingham et al. | Jan 2002 | A1 |
20020008053 | Hansen et al. | Jan 2002 | A1 |
20020009015 | Laugharn et al. | Jan 2002 | A1 |
20020014443 | Hansen et al. | Feb 2002 | A1 |
20020015667 | Chow | Feb 2002 | A1 |
20020021983 | Comte et al. | Feb 2002 | A1 |
20020022261 | Anderson et al. | Feb 2002 | A1 |
20020037499 | Quake et al. | Mar 2002 | A1 |
20020039783 | McMillan et al. | Apr 2002 | A1 |
20020047003 | Bedingham et al. | Apr 2002 | A1 |
20020053399 | Soane et al. | May 2002 | A1 |
20020054835 | Robotti et al. | May 2002 | A1 |
20020055167 | Pourahmadi et al. | May 2002 | A1 |
20020058332 | Quake et al. | May 2002 | A1 |
20020060156 | Mathies et al. | May 2002 | A1 |
20020068357 | Mathies et al. | Jun 2002 | A1 |
20020068821 | Gundling | Jun 2002 | A1 |
20020090320 | Burow et al. | Jul 2002 | A1 |
20020092767 | Bjornson et al. | Jul 2002 | A1 |
20020094303 | Yamamoto et al. | Jul 2002 | A1 |
20020131903 | Ingenhoven et al. | Sep 2002 | A1 |
20020141903 | Parunak et al. | Oct 2002 | A1 |
20020142471 | Handique et al. | Oct 2002 | A1 |
20020143297 | Francavilla et al. | Oct 2002 | A1 |
20020143437 | Handique et al. | Oct 2002 | A1 |
20020155010 | Karp et al. | Oct 2002 | A1 |
20020155477 | Ito | Oct 2002 | A1 |
20020169518 | Luoma et al. | Nov 2002 | A1 |
20020173032 | Zou et al. | Nov 2002 | A1 |
20020176804 | Strand et al. | Nov 2002 | A1 |
20020187557 | Hobbs et al. | Dec 2002 | A1 |
20020192808 | Gambini et al. | Dec 2002 | A1 |
20030008308 | Enzelberger et al. | Jan 2003 | A1 |
20030019522 | Parunak | Jan 2003 | A1 |
20030022392 | Hudak | Jan 2003 | A1 |
20030049174 | Ganesan | Mar 2003 | A1 |
20030049833 | Chen et al. | Mar 2003 | A1 |
20030059823 | Matsunaga et al. | Mar 2003 | A1 |
20030064507 | Gallagher et al. | Apr 2003 | A1 |
20030070677 | Handique et al. | Apr 2003 | A1 |
20030072683 | Stewart et al. | Apr 2003 | A1 |
20030073106 | Johansen et al. | Apr 2003 | A1 |
20030083686 | Freeman et al. | May 2003 | A1 |
20030087300 | Knapp et al. | May 2003 | A1 |
20030096310 | Hansen et al. | May 2003 | A1 |
20030099954 | Miltenyi et al. | May 2003 | A1 |
20030127327 | Kurnik | Jul 2003 | A1 |
20030136679 | Bohn et al. | Jul 2003 | A1 |
20030156991 | Halas et al. | Aug 2003 | A1 |
20030180192 | Seippel | Sep 2003 | A1 |
20030186295 | Colin et al. | Oct 2003 | A1 |
20030190608 | Blackburn et al. | Oct 2003 | A1 |
20030199081 | Wilding et al. | Oct 2003 | A1 |
20030211517 | Carulli et al. | Nov 2003 | A1 |
20040014202 | King et al. | Jan 2004 | A1 |
20040014238 | Krug et al. | Jan 2004 | A1 |
20040018116 | Desmond et al. | Jan 2004 | A1 |
20040018119 | Massaro | Jan 2004 | A1 |
20040022689 | Wulf et al. | Feb 2004 | A1 |
20040029258 | Heaney et al. | Feb 2004 | A1 |
20040029260 | Hansen et al. | Feb 2004 | A1 |
20040037739 | McNeely et al. | Feb 2004 | A1 |
20040043479 | Briscoe et al. | Mar 2004 | A1 |
20040053290 | Terbrueggen et al. | Mar 2004 | A1 |
20040063217 | Webster et al. | Apr 2004 | A1 |
20040065655 | Brown | Apr 2004 | A1 |
20040072278 | Chou et al. | Apr 2004 | A1 |
20040072375 | Gjerde et al. | Apr 2004 | A1 |
20040076996 | Kondo et al. | Apr 2004 | A1 |
20040086427 | Childers et al. | May 2004 | A1 |
20040086956 | Bachur | May 2004 | A1 |
20040132059 | Scurati et al. | Jul 2004 | A1 |
20040141887 | Mainquist et al. | Jul 2004 | A1 |
20040151629 | Pease et al. | Aug 2004 | A1 |
20040157220 | Kurnool et al. | Aug 2004 | A1 |
20040161788 | Chen et al. | Aug 2004 | A1 |
20040189311 | Glezer et al. | Sep 2004 | A1 |
20040197810 | Takenaka et al. | Oct 2004 | A1 |
20040200909 | McMillan et al. | Oct 2004 | A1 |
20040209331 | Ririe | Oct 2004 | A1 |
20040209354 | Mathies et al. | Oct 2004 | A1 |
20040219070 | Handique | Nov 2004 | A1 |
20040224317 | Kordunsky et al. | Nov 2004 | A1 |
20040235154 | Oh et al. | Nov 2004 | A1 |
20040240097 | Evans | Dec 2004 | A1 |
20050009174 | Nikiforov et al. | Jan 2005 | A1 |
20050013737 | Chow et al. | Jan 2005 | A1 |
20050019902 | Mathis et al. | Jan 2005 | A1 |
20050037471 | Liu et al. | Feb 2005 | A1 |
20050041525 | Pugia et al. | Feb 2005 | A1 |
20050042639 | Knapp et al. | Feb 2005 | A1 |
20050048540 | Inami et al. | Mar 2005 | A1 |
20050058574 | Bysouth et al. | Mar 2005 | A1 |
20050058577 | Micklash et al. | Mar 2005 | A1 |
20050064535 | Favuzzi et al. | Mar 2005 | A1 |
20050069898 | Moon et al. | Mar 2005 | A1 |
20050084424 | Ganesan et al. | Apr 2005 | A1 |
20050106066 | Saltsman et al. | May 2005 | A1 |
20050112754 | Yoon et al. | May 2005 | A1 |
20050121324 | Park et al. | Jun 2005 | A1 |
20050129580 | Swinehart et al. | Jun 2005 | A1 |
20050133370 | Park et al. | Jun 2005 | A1 |
20050135655 | Kopf-sill et al. | Jun 2005 | A1 |
20050142036 | Kim et al. | Jun 2005 | A1 |
20050152808 | Ganesan | Jul 2005 | A1 |
20050158781 | Woudenberg et al. | Jul 2005 | A1 |
20050170362 | Wada et al. | Aug 2005 | A1 |
20050186585 | Juncosa et al. | Aug 2005 | A1 |
20050196321 | Huang | Sep 2005 | A1 |
20050202470 | Sundberg et al. | Sep 2005 | A1 |
20050202489 | Cho et al. | Sep 2005 | A1 |
20050202504 | Anderson et al. | Sep 2005 | A1 |
20050208676 | Kahatt | Sep 2005 | A1 |
20050214172 | Burgisser | Sep 2005 | A1 |
20050220675 | Reed et al. | Oct 2005 | A1 |
20050227269 | Lloyd et al. | Oct 2005 | A1 |
20050233370 | Ammann et al. | Oct 2005 | A1 |
20050238545 | Parce et al. | Oct 2005 | A1 |
20050272079 | Burns et al. | Dec 2005 | A1 |
20050276728 | Muller-Cohn et al. | Dec 2005 | A1 |
20060002817 | Bohm et al. | Jan 2006 | A1 |
20060041058 | Yin et al. | Feb 2006 | A1 |
20060057039 | Morse et al. | Mar 2006 | A1 |
20060057629 | Kim | Mar 2006 | A1 |
20060062696 | Chow et al. | Mar 2006 | A1 |
20060094004 | Nakajima et al. | May 2006 | A1 |
20060094108 | Yoder et al. | May 2006 | A1 |
20060113190 | Kurnik | Jun 2006 | A1 |
20060133965 | Tajima et al. | Jun 2006 | A1 |
20060134790 | Tanaka et al. | Jun 2006 | A1 |
20060148063 | Fauzzi et al. | Jul 2006 | A1 |
20060165558 | Witty et al. | Jul 2006 | A1 |
20060165559 | Greenstein et al. | Jul 2006 | A1 |
20060166233 | Wu et al. | Jul 2006 | A1 |
20060177376 | Tomalia et al. | Aug 2006 | A1 |
20060177855 | Utermohlen et al. | Aug 2006 | A1 |
20060183216 | Handique | Aug 2006 | A1 |
20060201887 | Siddiqi | Sep 2006 | A1 |
20060205085 | Handique | Sep 2006 | A1 |
20060207944 | Siddiqi | Sep 2006 | A1 |
20060210435 | Alavie et al. | Sep 2006 | A1 |
20060223169 | Bedingham et al. | Oct 2006 | A1 |
20060228734 | Vann et al. | Oct 2006 | A1 |
20060246493 | Jensen et al. | Nov 2006 | A1 |
20060246533 | Fathollahi et al. | Nov 2006 | A1 |
20060269641 | Atwood et al. | Nov 2006 | A1 |
20060269961 | Fukushima et al. | Nov 2006 | A1 |
20070004028 | Lair et al. | Jan 2007 | A1 |
20070009386 | Padmanabhan et al. | Jan 2007 | A1 |
20070020699 | Carpenter et al. | Jan 2007 | A1 |
20070020764 | Miller | Jan 2007 | A1 |
20070026421 | Sundberg et al. | Feb 2007 | A1 |
20070042441 | Masters et al. | Feb 2007 | A1 |
20070048188 | Bigus | Mar 2007 | A1 |
20070054413 | Aviles et al. | Mar 2007 | A1 |
20070077648 | Okamoto et al. | Apr 2007 | A1 |
20070092901 | Ligler et al. | Apr 2007 | A1 |
20070098600 | Kayyem et al. | May 2007 | A1 |
20070099200 | Chow et al. | May 2007 | A1 |
20070104617 | Coulling et al. | May 2007 | A1 |
20070116613 | Elsener | May 2007 | A1 |
20070154895 | Spaid et al. | Jul 2007 | A1 |
20070177147 | Parce | Aug 2007 | A1 |
20070178607 | Prober et al. | Aug 2007 | A1 |
20070184463 | Molho et al. | Aug 2007 | A1 |
20070184547 | Handique et al. | Aug 2007 | A1 |
20070196237 | Neuzil et al. | Aug 2007 | A1 |
20070196238 | Kennedy et al. | Aug 2007 | A1 |
20070199821 | Chow | Aug 2007 | A1 |
20070215554 | Kreuwel et al. | Sep 2007 | A1 |
20070218459 | Miller et al. | Sep 2007 | A1 |
20070231213 | Prabhu et al. | Oct 2007 | A1 |
20070243626 | Windeyer et al. | Oct 2007 | A1 |
20070248958 | Jovanovich et al. | Oct 2007 | A1 |
20070261479 | Spaid et al. | Nov 2007 | A1 |
20070269861 | Williams et al. | Nov 2007 | A1 |
20070292941 | Handique et al. | Dec 2007 | A1 |
20080000774 | Park et al. | Jan 2008 | A1 |
20080003649 | Maltezos et al. | Jan 2008 | A1 |
20080017306 | Liu et al. | Jan 2008 | A1 |
20080050804 | Handique et al. | Feb 2008 | A1 |
20080056948 | Dale et al. | Mar 2008 | A1 |
20080069729 | McNeely | Mar 2008 | A1 |
20080075634 | Herchenbach et al. | Mar 2008 | A1 |
20080090244 | Knapp et al. | Apr 2008 | A1 |
20080095673 | Xu | Apr 2008 | A1 |
20080118987 | Eastwood et al. | May 2008 | A1 |
20080124723 | Dale et al. | May 2008 | A1 |
20080149840 | Handique et al. | Jun 2008 | A1 |
20080160601 | Handique | Jul 2008 | A1 |
20080176230 | Owen et al. | Jul 2008 | A1 |
20080182301 | Handique et al. | Jul 2008 | A1 |
20080192254 | Kim et al. | Aug 2008 | A1 |
20080226502 | Jonsmann et al. | Sep 2008 | A1 |
20080240898 | Manz et al. | Oct 2008 | A1 |
20080247914 | Edens et al. | Oct 2008 | A1 |
20080257882 | Turner | Oct 2008 | A1 |
20080262213 | Wu et al. | Oct 2008 | A1 |
20080280285 | Chen et al. | Nov 2008 | A1 |
20080308500 | Brassard | Dec 2008 | A1 |
20090047180 | Kawahara | Feb 2009 | A1 |
20090047713 | Handique | Feb 2009 | A1 |
20090066339 | Glezer et al. | Mar 2009 | A1 |
20090129978 | Wilson et al. | May 2009 | A1 |
20090130719 | Handique | May 2009 | A1 |
20090130745 | Williams et al. | May 2009 | A1 |
20090131650 | Brahmasandra et al. | May 2009 | A1 |
20090134069 | Handique | May 2009 | A1 |
20090136385 | Handique et al. | May 2009 | A1 |
20090136386 | Duffy et al. | May 2009 | A1 |
20090148933 | Battrell et al. | Jun 2009 | A1 |
20090155123 | Williams et al. | Jun 2009 | A1 |
20090189089 | Bedingham et al. | Jul 2009 | A1 |
20090221059 | Williams et al. | Sep 2009 | A1 |
20090223925 | Morse et al. | Sep 2009 | A1 |
20090325164 | Vossenaar et al. | Dec 2009 | A1 |
20090325276 | Battrell et al. | Dec 2009 | A1 |
20100009351 | Brahmasandra et al. | Jan 2010 | A1 |
20100120129 | Amshey et al. | May 2010 | A1 |
20100173393 | Handique et al. | Jul 2010 | A1 |
20100284864 | Holenstein et al. | Nov 2010 | A1 |
20110008825 | Ingber et al. | Jan 2011 | A1 |
20110027151 | Handique et al. | Feb 2011 | A1 |
20110097493 | Kerr et al. | Apr 2011 | A1 |
20110127292 | Sarofim et al. | Jun 2011 | A1 |
20110158865 | Miller et al. | Jun 2011 | A1 |
20110207140 | Handique et al. | Aug 2011 | A1 |
20110210257 | Handique et al. | Sep 2011 | A9 |
20110287447 | Norderhaug | Nov 2011 | A1 |
20110300033 | Battisti | Dec 2011 | A1 |
20120022695 | Handique et al. | Jan 2012 | A1 |
20120085416 | Ganesan | Apr 2012 | A1 |
20120122108 | Handique | May 2012 | A1 |
20120122231 | Tajima | May 2012 | A1 |
20120160826 | Handique | Jun 2012 | A1 |
20120171678 | Maltezos et al. | Jul 2012 | A1 |
20120171759 | Williams et al. | Jul 2012 | A1 |
20120183454 | Handique | Jul 2012 | A1 |
20120258463 | Duffy et al. | Oct 2012 | A1 |
20130037564 | Williams et al. | Feb 2013 | A1 |
20130071851 | Handique et al. | Mar 2013 | A1 |
20130096292 | Brahmasandra et al. | Apr 2013 | A1 |
20130101990 | Handique et al. | Apr 2013 | A1 |
20130164832 | Ganesan et al. | Jun 2013 | A1 |
20130183769 | Tajima | Jul 2013 | A1 |
20130217013 | Steel et al. | Aug 2013 | A1 |
20130217102 | Ganesan et al. | Aug 2013 | A1 |
20130251602 | Handique et al. | Sep 2013 | A1 |
20130280131 | Handique et al. | Oct 2013 | A1 |
20130288358 | Handique et al. | Oct 2013 | A1 |
20130315800 | Yin et al. | Nov 2013 | A1 |
20140030798 | Wu et al. | Jan 2014 | A1 |
20140045186 | Gubatayao et al. | Feb 2014 | A1 |
20140206088 | Lentz et al. | Jul 2014 | A1 |
20140212882 | Handique et al. | Jul 2014 | A1 |
20140227710 | Handique et al. | Aug 2014 | A1 |
20140297047 | Ganesan et al. | Oct 2014 | A1 |
20140323357 | Handique et al. | Oct 2014 | A1 |
20140323711 | Brahmasandra et al. | Oct 2014 | A1 |
20140329301 | Handique et al. | Nov 2014 | A1 |
20140342352 | Handique et al. | Nov 2014 | A1 |
20140377850 | Handique et al. | Dec 2014 | A1 |
20150045234 | Stone et al. | Feb 2015 | A1 |
20150064702 | Handique et al. | Mar 2015 | A1 |
20150118684 | Wu et al. | Apr 2015 | A1 |
20150133345 | Handique et al. | May 2015 | A1 |
20150142186 | Handique et al. | May 2015 | A1 |
20150152477 | Ganesan et al. | Jun 2015 | A1 |
20150174579 | Iten et al. | Jun 2015 | A1 |
20150315631 | Handique et al. | Nov 2015 | A1 |
20150328638 | Handique et al. | Nov 2015 | A1 |
20150376682 | Handique | Dec 2015 | A1 |
20160038942 | Roberts | Feb 2016 | A1 |
20160102305 | Brahmasandra et al. | Apr 2016 | A1 |
20160107161 | Lentz et al. | Apr 2016 | A1 |
20160250635 | Handique | Sep 2016 | A1 |
20160250640 | Williams et al. | Sep 2016 | A1 |
20160333337 | Duffy et al. | Nov 2016 | A1 |
20170097373 | Williams et al. | Apr 2017 | A1 |
20170266666 | Lentz et al. | Sep 2017 | A1 |
20170275702 | Dahiya et al. | Sep 2017 | A1 |
20180017184 | Handique | Jan 2018 | A1 |
20180112252 | Handique | Apr 2018 | A1 |
20180119204 | Ganesan et al. | May 2018 | A1 |
20180154364 | Handique et al. | Jun 2018 | A1 |
20180333722 | Handique | Nov 2018 | A1 |
20190054467 | Handique | Feb 2019 | A1 |
20190054471 | Williams et al. | Feb 2019 | A1 |
20190106692 | Brahmasandra et al. | Apr 2019 | A1 |
20190144849 | Duffy et al. | May 2019 | A1 |
20190145546 | Handique | May 2019 | A1 |
20190151854 | Baum et al. | May 2019 | A1 |
20190154719 | LaChance et al. | May 2019 | A1 |
20190284606 | Wu et al. | Sep 2019 | A1 |
20190324050 | Williams et al. | Oct 2019 | A1 |
20200010872 | Ganesan et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
1357102 | Mar 2002 | AU |
3557502 | Jul 2002 | AU |
4437602 | Jul 2002 | AU |
4437702 | Jul 2002 | AU |
764319 | Aug 2003 | AU |
2574107 | Sep 1998 | CA |
2294819 | Jan 1999 | CA |
1312287 | Apr 2007 | CN |
1942590 | Apr 2007 | CN |
1968754 | May 2007 | CN |
101466848 | Jun 2009 | CN |
101522909 | Sep 2009 | CN |
103540518 | Jan 2014 | CN |
19929734 | Dec 1999 | DE |
19833293 | Jan 2000 | DE |
0365828 | May 1990 | EP |
0483620 | May 1992 | EP |
0688602 | Dec 1995 | EP |
0766256 | Apr 1997 | EP |
0772494 | May 1997 | EP |
0810030 | Dec 1997 | EP |
1059458 | Dec 2000 | EP |
1064090 | Jan 2001 | EP |
1077086 | Feb 2001 | EP |
1346772 | Sep 2003 | EP |
1541237 | Jun 2005 | EP |
1574586 | Sep 2005 | EP |
1745153 | Jan 2007 | EP |
1780290 | May 2007 | EP |
1792656 | Jun 2007 | EP |
2372367 | Oct 2011 | EP |
2672301 | Aug 1992 | FR |
2795426 | Dec 2000 | FR |
2453432 | Apr 2009 | GB |
S50-100881 | Aug 1975 | JP |
58212921 | Dec 1983 | JP |
S62-119460 | May 1987 | JP |
H01-502319 | Aug 1989 | JP |
H 03181853 | Aug 1991 | JP |
04-053555 | May 1992 | JP |
06-064156 | Sep 1994 | JP |
07-020010 | Jan 1995 | JP |
H07-290706 | Nov 1995 | JP |
H08-122336 | May 1996 | JP |
H08-173194 | Jul 1996 | JP |
H08-211071 | Aug 1996 | JP |
H08-285859 | Nov 1996 | JP |
H08-337116 | Dec 1996 | JP |
H09-325151 | Dec 1997 | JP |
2001-502790 | Jan 1998 | JP |
H01-219669 | Sep 1998 | JP |
H10-327515 | Dec 1998 | JP |
11009258 | Jan 1999 | JP |
H 11-501504 | Feb 1999 | JP |
H11-503315 | Mar 1999 | JP |
2000-514928 | Apr 1999 | JP |
H11-156231 | Jun 1999 | JP |
H11-316226 | Nov 1999 | JP |
H11-515106 | Dec 1999 | JP |
2000-180455 | Jun 2000 | JP |
2000-266760 | Sep 2000 | JP |
2000-275255 | Oct 2000 | JP |
2001-502319 | Feb 2001 | JP |
2001-204462 | Jul 2001 | JP |
2001-509437 | Jul 2001 | JP |
3191150 | Jul 2001 | JP |
2001-515216 | Sep 2001 | JP |
2001-523812 | Nov 2001 | JP |
2001-527220 | Dec 2001 | JP |
2002-503331 | Jan 2002 | JP |
2002-085961 | Mar 2002 | JP |
2002-517735 | Jun 2002 | JP |
2002-215241 | Jul 2002 | JP |
2002-540382 | Nov 2002 | JP |
2002-544476 | Dec 2002 | JP |
2003-500674 | Jan 2003 | JP |
2003-047839 | Feb 2003 | JP |
2003-047840 | Feb 2003 | JP |
2003-516125 | May 2003 | JP |
2003-164279 | Jun 2003 | JP |
2003-185584 | Jul 2003 | JP |
2003-299485 | Oct 2003 | JP |
2003-329693 | Nov 2003 | JP |
2003-329696 | Nov 2003 | JP |
2003-532382 | Nov 2003 | JP |
2004-003989 | Jan 2004 | JP |
2004-506179 | Feb 2004 | JP |
2004-150797 | May 2004 | JP |
2004-531360 | Oct 2004 | JP |
2004-533838 | Nov 2004 | JP |
2004-361421 | Dec 2004 | JP |
2004-536291 | Dec 2004 | JP |
2004-536689 | Dec 2004 | JP |
2005-009870 | Jan 2005 | JP |
2005-010179 | Jan 2005 | JP |
2005-511264 | Apr 2005 | JP |
2005-514718 | May 2005 | JP |
2005-518825 | Jun 2005 | JP |
2005-176613 | Jul 2005 | JP |
2005-192439 | Jul 2005 | JP |
2005-192554 | Jul 2005 | JP |
2005-519751 | Jul 2005 | JP |
2005-204661 | Aug 2005 | JP |
2005-525816 | Sep 2005 | JP |
2005-291954 | Oct 2005 | JP |
2005-532043 | Oct 2005 | JP |
2005-323519 | Nov 2005 | JP |
2005-533652 | Nov 2005 | JP |
2005-535904 | Nov 2005 | JP |
2006-021156 | Jan 2006 | JP |
2006-055837 | Mar 2006 | JP |
2006-094866 | Apr 2006 | JP |
2006-145458 | Jun 2006 | JP |
2006-167569 | Jun 2006 | JP |
2006-284409 | Oct 2006 | JP |
2007-024742 | Feb 2007 | JP |
2007-074960 | Mar 2007 | JP |
2007-097477 | Apr 2007 | JP |
2007-101364 | Apr 2007 | JP |
2007-510518 | Apr 2007 | JP |
2007-514405 | Jun 2007 | JP |
2007-178328 | Jul 2007 | JP |
2007-535933 | Dec 2007 | JP |
2009-515140 | Apr 2009 | JP |
2009-542207 | Dec 2009 | JP |
3193848 | Oct 2014 | JP |
2418633 | May 2011 | RU |
WO 1988006633 | Sep 1988 | WO |
WO 1990012350 | Oct 1990 | WO |
WO 1992005443 | Apr 1992 | WO |
WO 1994011103 | May 1994 | WO |
WO 1996004547 | Feb 1996 | WO |
WO 1996018731 | Jun 1996 | WO |
WO 1996039547 | Dec 1996 | WO |
WO 1997005492 | Feb 1997 | WO |
WO 1997021090 | Jun 1997 | WO |
WO 1998000231 | Jan 1998 | WO |
WO 1998022625 | May 1998 | WO |
WO 199835013 | Aug 1998 | WO |
WO 1998049548 | Nov 1998 | WO |
WO 1998050147 | Nov 1998 | WO |
WO 1998053311 | Nov 1998 | WO |
WO 1999001688 | Jan 1999 | WO |
WO 1999009042 | Feb 1999 | WO |
WO 1999012016 | Mar 1999 | WO |
WO 1999017093 | Apr 1999 | WO |
WO 1999029703 | Jun 1999 | WO |
WO 1999033559 | Jul 1999 | WO |
WO 2000022436 | Apr 2000 | WO |
WO 2001005510 | Jan 2001 | WO |
WO 2001014931 | Mar 2001 | WO |
WO 2001027614 | Apr 2001 | WO |
WO 2001028684 | Apr 2001 | WO |
WO 2001030995 | May 2001 | WO |
WO 2001041931 | Jun 2001 | WO |
WO 2001046474 | Jun 2001 | WO |
WO 2001054813 | Aug 2001 | WO |
WO 2001089681 | Nov 2001 | WO |
WO 2002024322 | Mar 2002 | WO |
WO 2002048164 | Jun 2002 | WO |
WO 2002072264 | Sep 2002 | WO |
WO 2002078845 | Oct 2002 | WO |
WO 2002086454 | Oct 2002 | WO |
WO 2003007677 | Jan 2003 | WO |
WO 2003012325 | Feb 2003 | WO |
WO 2003012406 | Feb 2003 | WO |
WO 2003048295 | Jun 2003 | WO |
WO 2003055605 | Jul 2003 | WO |
WO 2003076661 | Sep 2003 | WO |
WO 2003078065 | Sep 2003 | WO |
WO 2003087410 | Oct 2003 | WO |
WO 2004007081 | Jan 2004 | WO |
WO 2004010760 | Feb 2004 | WO |
WO 2004048545 | Jun 2004 | WO |
WO 2004055522 | Jul 2004 | WO |
WO 2004056485 | Jul 2004 | WO |
WO 2004074848 | Sep 2004 | WO |
WO 2004094986 | Nov 2004 | WO |
WO 2005008255 | Jan 2005 | WO |
WO 2005011867 | Feb 2005 | WO |
WO 2005030984 | Apr 2005 | WO |
WO 2005072353 | Aug 2005 | WO |
WO 2005094981 | Oct 2005 | WO |
WO 2005107947 | Nov 2005 | WO |
WO 2005108571 | Nov 2005 | WO |
WO 2005108620 | Nov 2005 | WO |
WO 2005116202 | Dec 2005 | WO |
WO 2005118867 | Dec 2005 | WO |
WO 2005120710 | Dec 2005 | WO |
WO 2006010584 | Feb 2006 | WO |
WO 2006032044 | Mar 2006 | WO |
WO 2006035800 | Apr 2006 | WO |
WO 2006043642 | Apr 2006 | WO |
WO 2006066001 | Jun 2006 | WO |
WO 2006079082 | Jul 2006 | WO |
WO 2006081995 | Aug 2006 | WO |
WO 2006113198 | Oct 2006 | WO |
WO 2006119280 | Nov 2006 | WO |
WO 2007044917 | Apr 2007 | WO |
WO 2007050327 | May 2007 | WO |
WO 2007064117 | Jun 2007 | WO |
WO 2007075919 | Jul 2007 | WO |
WO 2007091530 | Aug 2007 | WO |
WO 2007112114 | Oct 2007 | WO |
WO 2008005321 | Jan 2008 | WO |
WO 2008030914 | Mar 2008 | WO |
WO 2008060604 | May 2008 | WO |
WO 2008149282 | Dec 2008 | WO |
WO 2009012185 | Jan 2009 | WO |
WO 2009054870 | Apr 2009 | WO |
WO 2010118541 | Oct 2010 | WO |
WO 2010130310 | Nov 2010 | WO |
WO 2010140680 | Dec 2010 | WO |
WO 2011009073 | Jan 2011 | WO |
WO-2011009073 | Jan 2011 | WO |
WO 2011101467 | Aug 2011 | WO |
Entry |
---|
Sanchez et al., “Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis”, PNAS (2004) 101(7): 1933-1938. |
Allemand et al., “pH-Dependent Specific Binding and Combing of DNA”, Biophys J. (1997) 73(4): 2064-2070. |
Bollet, C. et al., “A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria”, Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955. |
Brahmasandra et al., On-chip DNA detection in microfabricated separation systems, SPIE Conference on Microfluidic Devices and Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, CA. |
Breadmore, M.C. et al., “Microchip-Based Purification of DNA from Biological Samples”, Anal. Chem., vol. 75 (2003), pp. 1880-1886. |
Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18. |
Broyles et al., “Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices” Analytical Chemistry (American Chemical Society), (2003) 75(11): 2761-2767. |
Burns et al., “An Integrated Nanoliter DNA Analysis Device”, Science 282:484-487 (1998). |
Chung, Y. et al., “Microfluidic chip for high efficiency DNA extraction”, Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147. |
COB Industries, INc., Qwik-Freezer Portable Pipe Freezing Equipment. (brochure) Created on Mar. 2, 2004, URL: http://www.cob-industries.com/quickbrochure.pdf (last retrieved on Mar. 8, 2007); p. 2. |
Goldmeyer et al., “Identification of Staphylococcus aureus and Determination of Methicillin Resistance Directly from Positive Blood Cultures by Isothermal Amplification and a Disposable Detection Device”, J Clin Microbiol. (Apr. 2008) 46(4): 1534-1536. |
Handique et al, “Microfluidic flow control using selective hydrophobic patterning”, SPIE, (1997) 3224: 185-194. |
Handique et al., “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping”, Anal. Chem., (2001) 73(8):1831-1838. |
Handique et al., “Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems”, Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349. |
Handique et al., “Mathematical Modeling of Drop Mixing in a Slit-Type Microchannel”, J. Micromech. Microeng., 11:548-554 (2001). |
Handique et al., “Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns”, Anal. Chem., 72(17):4100-4109 (2000). |
Harding et al., “DNA isolation using Methidium-Spermine-Sepharose”, Meth Enzymol. (1992) 216: 29-39. |
Harding et al., “Rapid isolation of DNA from complex biological samples using a novel capture reagent—methidium-spermine-sepharose”, Nucl Acids Res. (1989) 17(17): 6947-6958. |
He, et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468. |
Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, 70(9): 2013-2017. |
International Preliminary Report on Patentability and Written Opinion dated Jan. 19, 2010 for Application No. PCT/US2008/008640, filed Jul. 14, 2008. |
International Search Report and Written Opinion dated Jul. 12, 2013 for Application No. PCT/US2012/033667, filed Apr. 13, 2012. |
International Search Report and Written Opinion dated Oct. 6, 2008, issued in International Application No. PCT/US2008/069895, filed Jul. 11, 2008. |
International Search Report dated Jun. 17, 2009 for Application No. PCT/US2008/008640, filed Jul. 14, 2008. |
Khandurina et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, 71(9): 1815-1819. |
Kopp et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048. |
Kuo et al., “Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis”, J Biotech. (2007) 129: 383-390. |
Kutter et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, 12(2): 93-97. |
Labchem; Sodium Hydroxide, 0,5N (0.5M); Safety Data Sheet, 2015; 8 pages. |
Lagally et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, 73(3): 565-570. |
Livache et al., “Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping”, Analytical Biochemistry, (1998) 255: 188-194. |
Mascini et al., “DNA electrochemical biosensors”, Fresenius J. Anal. Chem., 369: 15-22, (2001). |
Meyers, R.A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference; VCH Publishers, Inc. New York, NY; (1995) pp. 418-419. |
Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, 116: 105-111. |
Northrup et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, 70(5): 918-922. |
Oleschuk et al., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, 72(3): 585-590. |
Plambeck et al., “Electrochemical Studies of Antitumor Antibiotics”, J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563. |
Roche et al. “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells” Faseb J (2005) 19: 1341-1343. |
Ross et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, 70(10): 2067-2073. |
Shoffner et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, (1996) 24(2): 375-379. |
Smith, K. et al., “Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples”, Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443. |
Tanaka et al., “Modification of DNA extraction from maize using polyamidoamine-dendrimer modified magnetic particles”, Proceedings of the 74th Annual Meeting of the Electrochemical Society of Japan, Mar. 29, 2007; Faculty of Engineering, Science University of Tokyo; 2 pages. |
Wang, “Survey and Summary, from DNA Biosensors to Gene Chips”, Nucleic Acids Research, 28(16):3011-3016, (2000). |
Waters et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, 70(1): 158-162. |
Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347. |
Wu et al., “Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes”, Chem Commun. (2005) 3: 313-315. |
Yoza et al., “Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidoamine Dendrimer”, J Biosci Bioeng, 2003, 95(1): 21-26. |
Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, J Biotechnol., Mar. 20, 2003, 101(3): 219-228. |
Zhou et al., “Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules”, Org Biomol Chem. (2006) 4(3): 581-585. |
Zhou et al., “PAMAM dendrimers for efficient siRNA delivery and potent gene silencing”, Chem Comm.(Camb.) (2006) 22: 2362-2364. |
Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Proceedings, SPIE Conference on Microfluids and BioMEMS, (Oct. 2001), 12 pages. |
Kim et al., “Electrohydrodynamic Generation and Delivery of Monodisperse Picoliter Droplets Using a Poly(dimethylsiloxane) Microchip”, Anal Chem. (2006) 78: 8011-8019. |
Oh K.W. et al., “A Review of Microvalves”, J Micromech Microeng. (2006) 16:R13-R39. |
Pal et al., “Phase Change Microvalve for Integrated Devices”, Anal Chem. (2004) 76: 3740-3748. |
Decision instituting Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 8 in IPR2019-00488) dated Jul. 16, 2019 (20 pages). |
Decision instituting Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 8 in IPR2019-00490) dated Jul. 16, 2019 (23 pages). |
Mastrangelo et al., Microfabricated Devices for Genetic Diagnostics. Proceedings of the IEEE (1998) 86(8):1769-1787. |
Becker H., “Hype, hope and hubris: the quest for the killer application in microfluidics”, Lab on a Chip, The Royal Society of Chemistry (2009) 9:2119-2122. |
Becker H., “Collective Wisdom”, Lab on a Chip, The Royal Society of Chemistry (2010) 10:1351-1354. |
Chaudhari et al., “Transient Liquid Crystal Thermometry of Microfabricated PCR Vessel Arrays”, J Microelectro Sys., (1998) 7(4):345-355. |
Chang-Yen et al., “Design, fabrication, and packaging of a practical multianalyte-capable optical biosensor,” J Microlith Microfab Microsyst. (2006) 5(2):021105 in 8 pages. |
Chen et al., “Total nucleic acid analysis integrated on microfluidic devices,” Lab on a Chip. (2007) 7:1413-1423. |
Cui et al., “Design and Experiment of Silicon PCR Chips,” Proc. SPIE 4755, Design, Test, Integration, and Packaging of MEMS/MOEMS 2002, (Apr. 19, 2002) pp. 71-76. |
Grunenwald H., “Optimization of Polymerase Chain Reactions,” in Methods in Molecular Biology, PCR Protocols., Second Edition by Bartlett et al. [Eds.] Humana Press (2003) vol. 226, pp. 89-99. |
Handal et al., “DNA mutation detection and analysis using miniaturized microfluidic systems”, Expert Rev Mol Diagn. (2006) 6(1):29-38. |
Irawan et al., “Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System,” Biomed Micro. (2005) 7(3):205-211. |
Khandurina et al., “Bioanalysis in microfluidic devices,” J Chromatography A, (2002) 943:159-183. |
Liao et al., “Miniature RT-PCR system for diagnosis of RNA-based viruses,” Nucl Acids Res. (2005) 33(18):e156 in 7 pages. |
Lin et al., “Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method,” IEEE Transactions on Semiconductor Manufacturing, (2000) 13(4):448-456. |
Manz et al., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,” Sensors and Actuators B1, (1990) 244-248. |
Minco, “Conductive Heating Technologies for Medical Diagnostic Equipment,” (2006) in 13 pages. |
Picard et al., Laboratory Detection of Group B Streptococcus for Prevention of Perinatal Disease, Eur. J. Clin. Microbiol. Infect. Dis., Jul. 16, 2004, 23: 665-671. |
Rohsenow et al. [Eds.], Handbook of Heat Transfer, 3rd Edition McGraw-Hill Publishers (1998) Chapters 1 & 3; pp. 108. |
Shen et al., “A microchip-based PCR device using flexible printed circuit technology,” Sensors and Actuators B (2005), 105:251-258. |
Spitzack et al., “Polymerase Chain Reaction in Miniaturized Systems: Big Progress in Little Devices”, in Methods in Molecular Biology—Microfluidic Techniques, Minteer S.D. [Ed.] Humana Press (2006), pp. 97-129. |
Squires et al., “Microfluidics: Fluid physics at the nanoliter scale”, Rev Modern Phys. (2005) 77:977-1026. |
Velten et al., “Packaging of Bio-MEMS: Strategies, Technologies, and Applications,” IEEE Transactions on Advanced Packaging, (2005) 28(4):533-546. |
Zhang et al., “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends,” Nucl Acids Res., (2007) 35(13):4223-4237. |
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 25 in IPR2019-00490) dated Oct. 16, 2019 (80 pages). |
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 25 in IPR 2019-00488) dated Oct. 16, 2019 (93 pages). |
Transcript of Deposition of Bruce K. Gale, Ph.D., in Support of Patent Owner's Responses (Exhibit 2012 in IPR2019-00488 and IPR2019-00490), taken Sep. 24, 2019 (124 pages). |
Declaration of M. Allen Northrup, Ph.D. in Support of Patent Owner's Responses (Exhibit 2036 in IPR2019-00488 and IPR2019-00490) dated Oct. 16, 2019 (365 pages). |
Complaint filed by Becton, Dickinson and Company et al., v. NeuModx Molecular, Inc. on Jun. 18, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Pat. No. 7,998,708; U.S. Pat. No. 8,273,308; U.S. Pat. No. 8,323,900; U.S. Pat. No. 8,415,103; U.S. Pat. No. 8,703,069; and U.S. Pat. No. 8,709,787 (29 pages). |
Answer to Complaint filed by NeuModx Molecular, Inc. on Aug. 9, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (24 pages). |
Amended Answer to Complaint filed by NeuModx Molecular, Inc. on Oct. 4, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (31 pages). |
Edwards, “Silicon (Si),” in “Handbook of Optical Constants of Solids” (Ghosh & Palik eds., 1997) in 24 pages. |
Hale et al., “Optical constants of Water in the 200-nm to 200-μm Wavelength Region”, Applied Optics, 12(3): 555-563 (1973). |
Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J Optical Society of America, 55:1205-1209 (1965). |
Palina et al., “Laser Assisted Boron Doping of Silicon Wafer Solar Cells Using Nanosecond and Picosecond Laser Pulses,” 2011 37th IEEE Photovoltaic Specialists Conference, pp. 002193-002197, IEEE (2011). |
Paulson et al., “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Nature, Scientific Reports 8:9358 (2018) published at www.nature.com/scientificreports, Jun. 19, 2018. |
Zhang et al., “PCR Microfluidic Devices for DNA Amplification,” Biotechnology Advances, 24:243-284 (2006). |
Zou et al., “A Micromachined Integratable Thermal Reactor,” technical digest from International Electron Devices Meeting, IEEE, Washington, D.C., Dec. 2-5, 2001 (6 pages). |
Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 1 in IPR2019-00488) dated Dec. 20, 2018 (94 pages). |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Papers 5 and 6 in IPR2019-00488) dated Apr. 18, 2019 (79 pages). |
Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 1 in IPR2019-00490) dated Dec. 20, 2018 (85 pages). |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Papers 5 and 6 in IPR2019-00490) dated Apr. 18, 2019 (73 pages). |
Declaration of Bruce K. Gale, Ph.D. (Exhibit 1001 in IPR2019-00488 and IPR2019-00490) dated Dec. 20, 2018 (235 pages). |
Declaration of Michael G. Mauk, Ph.D. in Support of Patent Owner Preliminary Responses in IPR2019-00488 and IPR2019-00490 dated Apr. 18, 2019 (43 pages). |
Altet et al., [Eds.] “Thermal Transfer and Thermal Coupling in IC's”, Thermal Testing of Integrated Circuits; Chapter 2 (2002) Springer Science pp. 23-51. |
Ateya et al., “The good, the bad, and the tiny: a review of microflow cytometry”, Anal Bioanal Chem. (2008) 391(5):1485-1498. |
Auroux et al., “Miniaturised nucleic acid analysis”, Lab Chip. (2004) 4(6):534-546. |
Baechi et al., “High-density microvalve arrays for sample processing in PCR chips”, Biomed Microdevices. (2001) 3(3):183-190. |
Baker M., “Clever PCR: more genotyping, smaller volumes.” Nature Methods (May 2010) 70(5):351-356. |
Becker H. “Fabrication of Polymer Microfluidic Devices”, in Biochip Technology (2001), Chapter 4, pp. 63-96. |
Becker H., “Microfluidic Devices Fabricated by Polymer Hot Embossing,” in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002), Chapter 13, 32 pages. |
Becker H., “Microfluidics: A Technology Coming of Age”, Med Device Technol. (2008) 19(3):21-24. |
Becker et al., “Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis”, SPIE Proceedings MOEMS-MEMS 2008 Micro and Nanofabrication (2008) vol. 6886 in 8 pages. |
Belgrader et al., “Rapid PCR for Identity Testing Using a Battery-Powered Miniature Thermal Cycler”, J Forensic Sci. (1998) 43(2):315-319. |
Belgrader et al., “A minisonicator to rapidly disrupt bacterial spores for DNA analysis.”, Anal Chem. (1999) 71(19):4232-4236. |
Belgrader et al., “Real-time PCR Analysis on Nucleic Acids Purified from Plasma Using a Silicon Chip”, Micro Total Analysis Systems 2000 (pp. 525-528). Springer, Dordrecht. |
Belgrader et al., “A microfluidic cartridge to prepare spores for PCR analysis”, Biosens Bioelectron. (2000) 14(10-11):849-852. |
Belgrader et al., “A Battery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis”, Anal Chem. (2001) 73(2):286-289. |
Belgrader et al., “Rapid and Automated Cartridge-based Extraction of Leukocytes from Whole Blood for Microsatellite DNA Analysis by Capillary Electrophoresis”, Clin Chem. (2001) 47(10):1917-1933. |
Belgrader et al., “A Rapid, Flow-through, DNA Extraction Module for Integration into Microfluidic Systems”, Micro Total Analysis Systems (2002) pp. 697-699). Springer, Dordrecht. |
Belgrader et al., “Development of a Battery-Powered Portable Instrumentation for Rapid PCR Analysis”, in Integrated Microfabicated Devices, (2002) Ch. 8, pp. 183-206, CRC Press. |
Bell M., “Integrated Microsystems in Clinical Chemistry”, in Integrated Microfabicated Devices, (2002) Ch. 16, pp. 415-435, CRC Press. |
Berthier et al., “Managing evaporation for more robust microscale assays Part 1. Volume loss in high throughput assays”, Lab Chip (2008) 8(6):852-859. |
Berthier et al., “Managing evaporation for more robust microscale assays Part 2. Characterization of convection and diffusion for cell biology”, Lab Chip (2008) 8(6):860-864. |
Berthier et al., “Microdrops,” in Microfluidics for Biotechnology (2006), Chapter 2, pp. 51-88. |
Biomerieux Press Release: “bioMérieux—2018 Financial Results,” dated Feb. 27, 2019, accessed at www.biomerieux.com, pp. 13. |
Blanchard et al., “Micro structure mechanical failure characterization using rotating Couette flow in a small gap”, J Micromech Microengin. (2005) 15(4):792-801. |
Blanchard et al., “Single-disk and double-disk viscous micropumps”, Sensors and Actuators A (2005) 122:149-158. |
Blanchard et al., “Performance and Development of a Miniature Rotary Shaft Pump”, J Fluids Eng. (2005) 127(4):752-760. |
Blanchard et al., “Single-disk and double-disk viscous micropump”, ASME 2004 Inter'l Mechanical Engineering Congress & Exposition, Nov. 13-20, 2004, Anaheim, CA, IMECE2004-61705:411-417. |
Blanchard et al., “Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization”, J Fluids Eng. (2006) 128(3):602-610. |
Brahmasandra et al., “Microfabricated Devices for Integrated DNA Analysis”, in Biochip Technology by Cheng et al., [Eds.] (2001) pp. 229-250. |
Bu et al., “Design and theoretical evaluation of a novel microfluidic device to be used for PCR”, J Micromech Microengin. (2003) 13(4):S125-S130. |
Cady et al., “Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform”, Sensors Actuat B. (2005) 107:332-341. |
Carlen et al., “Paraffin Actuated Surface Micromachined Valve,” in IEEE MEMS 2000 Conference, Miyazaki, Japan, (Jan. 2000) pp. 381-385. |
Carles et al., “Polymerase Chain Reaction on Microchips” in Methods in Molecular Biology—Microfluidic Techniques, Reviews & Protocols by Minteer S.D. [Ed.] Humana Press (2006), vol. 321; Chapter 11, pp. 131-140. |
Chang-Yen et al., “A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems”, IEEE Technical Digest MEMS International Conference Jan. 24, 2002, 4 pages. |
Chang-Yen et al., “A PDMS microfluidic spotter for fabrication of lipid microarrays”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages. |
Chang-Yen et al., “Design and fabrication of a multianalyte-capable optical biosensor using a multiphysics approach”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages. |
Chang-Yen et al., “A Novel PDMS Microfluidic Spotter for Fabrication of Protein Chips and Microarrays”, IEEE J of Microelectromech Sys. (2006) 15(5): 1145-1151. |
Chang-Yen et al., “Spin-assembled nanofilms for gaseous oxygen sensing.” Sens Actuators B: Chemical (2007), 120(2):426-433. |
Chen P-C., “Accelerating micro-scale PCR (polymerase chain reactor) for modular lab-on-a-chip system”, LSU Master's Theses—Digital Commons, (2006) 111 pages. |
Cheng et al., “Biochip-Based Portable Laboratory”, Biochip Tech. (2001):296-289. |
Cho et al., “A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches”, Rev Sci Instrum. (2008) 79(3):034901-1 to -8. |
Chong et al., “Disposable Polydimethylsioxane Package for ‘Bio-Microfluidic System’”, IEEE Proceedings Electronic Components and Technology (2005); 5 pages. |
Chou et al., “A miniaturized cyclic PCR device—modeling and experiments”, Microelec Eng. (2002) 61-62:921-925. |
Christel et al., “Nucleic Acid Concentration and PCR for Diagnostic Applications”, in Micro Total Analysis Systems. (1998) D.J. Harrison et al. [Eds.] pp. 277-280. |
Christel et al., “Rapid, Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration”, J Biomech Eng. (1999) 121(1):22-27. |
Christensen et al., “Characterization of interconnects used in PDMS microfluidic systems”, J Micromech Microeng. (2005) 15:928 in 8 pages. |
Crews et al, “Rapid Prototyping of a Continuous-Flow PCR Microchip”, Proceedings of the AiChE Annual Meeting(Nov. 15, 2006) (335a) 3 pages. |
Crews et al., Thermal gradient PCR in a continuous-flow microchip. In Microfluidics, BioMEMS, and Medical Microsystems V; Jan. 2007; vol. 6465, p. 646504; 12 pages. |
Crews et al., “Continuous-flow thermal gradient PCR”, Biomed Microdevices. (2008) 10(2):187-195. |
Cui et al., “Electrothermal modeling of silicon PCR chips”, In MEMS Design, Fabrication, Characterization, and Packaging, (Apr. 2001) (vol. 4407, pp. 275-280. |
Danaher Press Release: “Danaher to Acquire Cepheid for $53.00 per share, or approximately $4 Billion,” dated Sep. 6, 2016, accessed at www.danaher.com, pp. 3. |
Demchenko A.P., “The problem of self-calibration of fluorescence signal in microscale sensor systems”, Lab Chip. (2005) 5(11):1210-1223. |
Dineva et al., “Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings”, Analyst. (2007) 132(12):1193-1199. |
Dishinger et al., “Multiplexed Detection and Applications for Separations on Parallel Microchips”, Electophoresis. (2008) 29(16):3296-3305. |
Dittrich et al., “Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in muTAS?”, Anal Bioanal Chem. (2005) 382(8):1771-1782. |
Dittrich et al., “Lab-on-a-chip: microfluidics in drug discovery”, Nat Rev Drug Discov. (2006) 5(3):210-208. |
Dunnington et al., “Approaches to Miniaturized High-Throughput Screening of Chemical Libraries”, in Integrated Microfabicated Devices, (2002) Ch. 15, pp. 371-414, CRC Press. |
Eddings et al., “A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices”, J Micromech Microengin. (2006) 16(11):2396-2402. |
Edwards et al., “Micro Scale Purification Systems for Biological Sample Preparation”, Biomed Microdevices (2001) 3(3):211-218. |
Edwards et al., “A microfabricated thermal field-flow fractionation system”, Anal Chem. (2002) 74(6):1211-1216. |
Ehrlich et al., “Microfluidic devices for DNA analysis”, Trends Biotechnol. (1999) 17(8):315-319. |
El-Ali et al., “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor”, Sens Actuators A: Physical (2004) 110(1-3):3-10. |
Erickson et al., “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems”, Lab Chip (2003) 3(3):141-149. |
Erickson et al., “Integrated Microfluidic Devices”, Analytica Chim Acta. (2004) 507:11-26. |
Erill et al., “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, J Micromech Microengin. (2004) 14(11):1-11. |
Fair R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics Nanofluid. (2007) 3:245-281. |
Fan et al., “Integrated Plastic Microfluidic Devices for Bacterial Detection”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 6, pp. 78-89. |
Fiorini et al., “Disposable microfluidic devices: fabrication, function, and application”, Biotechniques (2005) 38(3):429-446. |
Frazier et al., “Integrated micromachined components for biological analysis systems”, J Micromech. (2000) 1(1):67-83. |
Gale et al., “Micromachined electrical field-flow fractionation (mu-EFFF) system”, IEEE Trans Biomed Eng. (1998) 45(12):1459-1469. |
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 1. Theoretical analysis”, Anal Chem. (2001) 73(10):2345-2352. |
Gale et al., “BioMEMS Education at Louisiana Tech University”, Biomed Microdevices, (2002) 4:223-230. |
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 2. Experimental results”, Anal Chem. (2002) 74(5):1024-1030. |
Gale et al., “Cyclical electrical field flow fractionation”, Electrophoresis. (2005) 26(9):1623-1632. |
Gale et al., “Low-Cost MEMS Technologies”, Elsevier B.V. (2008), Chapter 1.12; pp. 342-372. |
Garst et al., “Fabrication of Multilayered Microfluidic 3D Polymer Packages”, IEEE Proceedings Electronic Components & Tech, Conference May/Jun. 2005, pp. 603-610. |
Gärtner et al., “Methods and instruments for continuous-flow PCR on a chip”, Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, (2007) 646502; 8 pages. |
Giordano et al., “Toward an Integrated Electrophoretic Microdevice for Clinical Diagnostics”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 1; pp. 1-34. |
Graff et al., “Nanoparticle Separations Using Miniaturized Field-flow Fractionation Systems”, Proc. Nanotechnology Conference and Trade Show (NSTI) (2005); pp. 8-12. |
Greer et al., “Comparison of glass etching to xurography prototyping of microfluidic channels for DNA melting analysis”, J Micromech Microengin. (2007) 17(12):2407-2413. |
Guijt et al., “Chemical and physical processes for integrated temperature control in microfluidic devices”, Lab Chip. (2003) 3(1):1-4. |
Gulliksen A., “Microchips for Isothermal Amplification of RNA”, Doctoral Thesis (2007); Department of Mol. Biosciences—University of Oslo; 94 pages. |
Guttenberg et al., “Planar chip device for PCR and hybridization with surface acoustic wave pump”, Lab Chip. (2005) 5(3):308-317. |
Haeberle et al., “Microfluidic platforms for lab-on-a-chip applications”, Lab Chip. (2007) 7(9):1094-1110. |
Hansen et al., “Microfluidics in structural biology: smaller, faster . . . better”, Curr Opin Struct Biol. (2003) 13(5):538-544. |
Heid et al., “Genome Methods—Real Time Quantitative PCR”, Genome Res. (1996) 6(10):986-994. |
Henry C.S. [Ed], “Microchip Capillary electrophoresis”, Methods in Molecular Biology, Humana Press 339 (2006) Parts I-IV in 250 pages. |
Herr et al., “Investigation of a miniaturized capillary isoelectric focusing (cIEF) system using a full-field detection approach”, Solid State Sensor and Actuator Workshop, Hilton Head Island (2000), pp. 4-8. |
Herr et al., “Miniaturized Isoelectric Focusing (μIEF) As a Component of a Multi-Dimensional Microfluidic System”, Micro Total Analysis Systems (2001) pp. 51-53. |
Herr et al., Miniaturized Capillary Isoelectric Focusing (cIEF): Towards a Portable High-Speed Separation Method. In Micro Total Analysis Systems (2000) Springer, Dordrecht; pp. 367-370. |
Holland et al., “Point-of-care molecular diagnostic systems—past, present and future”, Curr Opin Microbiol. (2005) 8(5):504-509. |
Hong et al., “Integrated nanoliter systems”, Nat Biotechnol. (2003) 21(10):1179-1183. |
Hong et al., “Molecular biology on a microfluidic chip”, J Phys.: Condens Matter (2006) 18(18):S691-S701. |
Hong et al., “Integrated Nucleic Acid Analysis in Parallel Matrix Architecture”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 8, pp. 107-116. |
Horsman et al., “Forensic DNA Analysis on Microfluidic Devices: A Review”, J Forensic Sci. (2007) 52(4):784-799. |
Hsieh et al., “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction”, Sens Actuators B: Chemical. (2008) 130(2):848-856. |
Huang et al., “Temperature Uniformity and DNA Amplification Efficiency in Micromachined Glass PCR Chip”, TechConnect Briefs; Tech Proc. of the 2005 NSTI Nanotechnology Conference and Trade Show. (2005) vol. 1:452-455. |
Huebner et al., “Microdroplets: A sea of applications?”, Lab Chip. (2008) 8(8):1244-1254. |
Iordanov et al., “PCR Array on Chip—Thermal Characterization”, IEEE Sensors (2003) Conference Oct. 22-24, 2003; pp. 1045-1048. |
Ji et al., “DNA Purification Silicon Chip”, Sensors and Actuators A: Physical (2007) 139(1-2):139-144. |
Jia et al., “A low-cost, disposable card for rapid polymerase chain reaction”, Colloids Surfaces B: Biointerfaces (2007) 58:52-60. |
Kaigala et al., “An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electophoresis”, The Analyst (2008) 133(3):331-338. |
Kajiyama et al., “Genotyping on a Thermal Gradient DNA Chip”, Genome Res. (2003) 13(3):467-475. |
Kang et al., “Simulation and Optimization of a Flow-Through Micro PCR Chip”, NSTI-Nanotech (2006) vol. 2, pp. 585-588. |
Kantak et al.,“Microfluidic platelet function analyzer for shear-induced platelet activation studies”, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. (May 2002) 5 pages. |
Kantak et al., “Microfabricated cyclical electrical field flow fractionation”, 7th International Conference on Miniaturized Chomical and Biochem Analysis Sys. (2003) pp. 1199-1202. |
Kantak et al., “Platelet function analyzer: Shear activation of platelets in microchannels”, Biomedical Microdevices (2003) 5(3):207-215. |
Kantak et al., “Characterization of a microscale cyclical electrical field flow fractionation system”, Lab Chip. (2006) 6(5):645-654. |
Kantak et al., “Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation”, Anal Chem. (2006) 78(8):2557-2564. |
Kantak et al., “Improved theory of cyclical electrical field flow fractions”, Electrophoresis (2006) 27(14):2833-2843. |
Karunasiri et al.,“Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement”, SPIE's Inter'l Symposium on Optical Science, Engineering, and Instrumentation; Proceedings (1998) vol. 3436, Infrared Technology and Applications XXIV; (1998) 8 pages. |
Kelly et al., “Microfluidic Systems for Integrated, High-Throughput DNA Analysis,” Analytical Chemistry, (2005), 97A-102A, Mar. 1, 2005, in 7 pages. |
Kim et al., “Reduction of Microfluidic End Effects in Micro-Field Flow Fractionation Channels”, Proc. MicroTAS 2003, pp. 5-9. |
Kim et al., “Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure”, 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Med and Biol. (May 2005). |
Kim et al., “Geometric optimization of a thin film ITO heater to generate a uniform temperature distribution”, (2006), Tokyo, Japan; pp. 293-295; Abstract. |
Kim et al., “Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip”, J Micromech Microeng. (2006) 16(3):526-530. |
Kim et al., “Patterning of a Nanoporous Membrane for Multi-sample DNA Extraction”, J Micromech Microeng. (2006) 16:33-39. |
Kim et al., “Performance evaluation of thermal cyclers for PCR in a rapid cycling condition”, Biotechniques. (2008) 44(4):495-505. |
Kim et al., “Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane”, Lab Chip. (2008) 8(9):1516-1523. |
Kogi et al., “Microinjection-microspectroscopy of single oil droplets in water: an application to liquid/liquid extraction under solution-flow conditions”, Anal Chim Acta. (2000) 418(2):129-135. |
Kopf-Sill et al., “Creating a Lab-on-a-Chip with Microfluidic Technologies”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 2; pp. 35-54. |
Kricka L.J., “Microchips, Bioelectronic Chips, and Gene Chips—Microanalyzers for the Next Century”, in Biochip Technology by Cheng et al. [Eds]; (2006) Chapter 1, pp. 1-16. |
Krishnan et al., “Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures”, Anal Chem. (2004) 76(22):6588-6593. |
Kuswandi et al., “Optical sensing systems for microfluidic devices: a review”, Anal Chim Acta. (2007) 601(2):141-155. |
Lagally et al., “Genetic Analysis Using Portable PCR-CE Microsystem”, Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (2003) pp. 1283-1286. |
Lagally et al., “Integrated portable genetic analysis microsystem for pathogen/infectious disease detection”, Anal Chem. (2004) 76(11):3152-3170. |
Lauerman L.H., “Advances in PCR technology”, Anim Health Res Rev. (2004) 5(2):247-248. |
Lawyer et al., “High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquaticus DNA Polymerase and a Truncated Form Deficient in 5′to 3′Exonuclease Activity.” Genome research (1993) 2(4):275-287. |
Lee et al., “Submicroliter-volume PCR chip with fast thermal response and very power consumption”, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, (2003) pp. 187-190. |
Lee et al., “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption”, Lab Chip. (2004) 4(4):401-407. |
Lewin et al., “Use of Real-Time PCR and Molecular Beacons to Detect Virus Replication in Human Immunodeficiency Virus Type 1-infected Individuals on Prolonged Effective Antiretroviral Therapy”. J Virol. (1999) 73(7), 6099-6103. |
Li et al., “Effect of high-aspect-ratio microstructures on cell growth and attachment”, 1st Annual Inter'l IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. Proceedings Cat. No. 00EX451; (Oct. 2000) Poster 66, pp. 531-536. |
Li PCH., “Micromachining Methods et al.” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 2-3 to 2-5; pp. 10-49. |
Li PCH., “Microfluidic Flow” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 3, pp. 55-99. |
Li PCH., “Detection Methods” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 7, pp. 187-249. |
Li PCH., “Applications to Nucleic Acids Analysis” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 9; pp. 293-325. |
Li et al., “A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control”, J Microelectromech Syst. (2006) 15(1):223-236. |
Lien et al., “Integrated reverse transcription polymerase chain reaction systems for virus detection”, Biosens Bioelectron. (2007) 22(8):1739-1748. |
Lien et al., “Microfluidic Systems Integrated with a Sample Pretreatment Device for Fast Nucleic-Acid Amplification”, J Microelectro Sys. (2008) 17(2):288-301. |
Lifesciences et al., “Microfluidics in commercial applications; an industry perspective.” Lab Chip (2006) 6:1118-1121. |
Lin et al., “Simulation and experimental validation of micro polymerase chain reaction chips”, Sens Actuators B: Chemical. (2000) 71(1-2):127-133. |
Linder et al., “Microfluidics at the Crossroad with Point-of-care Diagnostics”, Analyst (2007) 132:1186-1192. |
Liu et al., “Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing”, Anal Chem. (2007) 79(5):1881-1889. |
Liu et al. [Eds], Integrated Biochips for DNA Analysis—Biotechnology Intelligence Unit; Springer/Landes Bioscience (2007) ISBN:978-0-387-76758-1; 216 pages. |
Locascio et al., “ANYL 67 Award Address—Microfluidics as a tool to enable research and discovery in the life sciences”, Abstract; The 236th ACS National Meeting (Aug. 2008); 2 pages. |
Mahjoob et al., “Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification”, Inter'l J Heat Mass Transfer. (2008) 51(9-10):2109-2122. |
Marcus et al., “Parallel picoliter rt-PCR assays using microfluidics”, Anal Chem. (2006) 78(3):956-958. |
Mariella R.P. Jr., “Microtechnology”, Thrust Area Report FY 96 UCRL-ID-125472; Lawrence Livermore National Lab., CA (Feb. 1997) Chapter 3 in 44 pages. |
Mariella R., “Sample preparation: the weak link in microfluidics-based biodetection”, Biomed Microdevices. (2008) 10(6):777-784. |
McMillan et al., “Application of advanced microfluidics and rapid PCR to analysis of microbial targets”, In Proceedings of the 8th international symposium on microbial ecology (1999), in 13 pages. |
Melin et al., “Microfluidic large-scale integration: the evolution of design rules for biological automation”, Annu Rev Biophys Biomol Struct. (2007) 36:213-231. |
Merugu et al., “High Throughput Separations Using a Microfabricated Serial Electric Split Ssystem” (2003), Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; 1191-1194, in 3 pages. |
Miao et al., “Low cost micro-PCR array and micro-fluidic integration on single silicon chip”, Int'l J Comput Eng Science (2003) 4(2):231-234. |
Miao et al., “Flip-Chip packaged micro-plate for low cost thermal multiplexing”, Int'l J Comput Eng Science. (2003) 4(2):235-238. |
Micheletti et al., “Microscale Bioprocess Optimisation”, Curr Opin Biotech. (2006) 17:611-618. |
MicroTAS 2005., “Micro Total Analysis Systems”, Proceedings 9th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Boston, MA in Oct. 10-12, 2005 in 1667 pages. |
MicroTAS 2007., “Micro Total Analysis Systems”, Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 1948 pages. |
MicroTAS 2007., “Micro Total Analysis Systems”, Advance Program for the Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 42 pages. |
Mitchell et al., “Modeling and validation of a molded polycarbonate continuous-flow polymerase chain reaction device,” Microfluidics, BioMEMS, and Medical Microsystems, Proc. SPIE (2003) 4982:83-98. |
Myers et al., “Innovations in optical microfluidic technologies for point-of-care diagnostics”, Lab Chip (2008) 8:2015-2031. |
Namasivayam et al., “Advances in on-chip photodetection for applications in miniaturized genetic analysis systems”, J Micromech Microeng. (2004) 14:81-90. |
Narayanan et al., “A microfabricated electrical SPLITT system,” Lab Chip, (2006) 6:105-114. |
Neuzil et al., “Disposable real-time microPCR device: lab-on-a-chip at a low cost,” Mol. Biosyst., (2006) 2:292-298. |
Neuzil et al., “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Research, (2006) 34(11)e77, in 9 pages. |
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microfluidics” in Fundamentals and Applications of Microfluidics; 2nd Edition (2006) Introduction Chapter 1, pp. 1-9. |
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microvalves” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 6, pp. 211-254. |
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Micropumps” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 7, pp. 255-309. |
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microdispensers” in Fundamentals and Applications of Microfluidics; (2006) , Chapter 11, pp. 395-418. |
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microreactors” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 13, pp. 443-477. |
Ning et al., “Microfabrication Processes for Silicon and Glass Chips”, in Biochip Technology, CRC-Press (2006) Chapter 2, pp. 17-38. |
Northrup et al., “A MEMs-based Miniature DNA Analysis System,” Lawrence Livermore National Laboratory, (1995), submitted to Transducers '95, Stockholm, Sweden, Jun. 25-29, 1995, in 7 pages. |
Northrup et al., “Advantages Afforded by Miniaturization and Integration of DNA Analysis Instrumentation,” Microreaction Technology, (1998) 278-288. |
Northrup et al., “A New Generation of PCR Instruments and Nucleic Acid Concentration Systems,” in PCR Applications: Protocols for Functional Genomics, (1999), Chapter 8, pp. 105-125. |
Northrup, “Microfluidics, A few good tricks,” Nature materials (2004), 3:282-283. |
Northrup et al.,“Microfluidics-based integrated airborne pathogen detection systems,” Abstract, Proceedings of the SPIE, (2006), vol. 6398, Abstract in 2 pages. |
Oh et al., “World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays,” Lab Chip, (2005), 5:845-850. |
Ohno et al., “Microfluidics: Applications for analytical purposes in chemistry and biochemistry,” Electrophoresis (2008), 29:4443-4453. |
Pal et al., “Phase Change Microvalve for Integrated Devices,” Anal. Chem. (2004), 76(13):3740-3748, Jul. 1, 2004, in 9 pages. |
Pal et al., “An integrated microfluidic for influenza and other genetic analyses,” Lab Chip, (2005), 5:1024-1032, in 9 pages. |
Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip, (2007), 7:1644-1659. |
Pang et al., “A novel single-chip fabrication technique for three-dimensional MEMS structures,” Institute of Microelectronics, Tsinghua University, Beijing, P.R. China, (1998), IEEE, 936-938. |
Pang et al., “The Study of Single-Chip Integrated Microfluidic System,” Tsinghua University, Beijing, P.R. China, (1998), IEEE, 895-898. |
Papautsky et al., “Effects of rectangular microchannel aspect ratio on laminar friction constant”, in Microfluidic Devices and Systems II (1999) 3877:147-158. |
Petersen, Kurt E., “Silicon as a Mechanical Material.” Proceedings of the IEEE, (May 1982) 70(5):420-457. |
Petersen et al., “Toward Next Generation Clinical Diagnostic Instruments: Scaling and New Processing Paradigms,” Biomedical Microdevices (1998) 1(1):71-79. |
Poser et al., “Chip elements for fast thermocycling,” Sensors and Actuators A, (1997), 62:672-675. |
Pourahmadi et al., “Toward a Rapid, Integrated, and Fully Automated DNA Diagnostic Assay for Chlamydia trachomatis and Neisseria gonorrhea,” Clinical Chemistry, (2000), 46(9):1511-1513. |
Pourahmadi et al., “Versatile, Adaptable and Programmable Microfluidic Platforms for DNA Diagnostics and Drug Discovery Assays,” Micro Total Analysis Systems, (2000), 243-248. |
Raisi et al., “Microchip isoelectric focusing using a miniature scanning detection system,” Electrophoresis, (2001), 22:2291-2295. |
Raja et al., “Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcriptin-PCR Clinical Testing,” Clinical Chemistry, (2005), 51(5):882-890. |
Reyes et al., “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology”, Anal Chem (2002) 74:2623-2636. |
Rodriguez et al., “Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis,” Electrophoresis, (2003), 24:172-178. |
Roper et al., “Advances in Polymer Chain Reaction on Microfluidic Chips,” Anal. Chem., (2005), 77:3887-3894. |
Ross et al., “Scanning Temperature Gradient Focusing for Simultaneous Concentration and Separation of Complex Samples,” Micro Total Analysis Systems 2005, vol. 2, (2005), Proceedings of μTAS 2005, Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 9-13, 2005, Boston, Massachusetts; 1022-1024. |
Ross et al., “Simple Device for Multiplexed Electrophoretic Separations Using Gradient Elution Moving Boundary Electrophoresis with Channel Current Detection,” Anal. Chem., (2008), 80(24):9467-9474. |
Sadler et al., “Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices,” IEEE Transactions on Components and Packaging Technologies, (2003) 26(2):309-316. |
Sant et al., “An Integrated Optical Detector for Microfabricated Electrical Field Flow Fractionation System,” Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; pp. 1259-1262. |
Sant et al., “Geometric scaling effects on instrumental plate height in field flow fractionation”, J Chromatography A (2006) 1104:282-290. |
Sant H.J., “Reduction of End Effect-Induced Zone Broadening in Field-Flow Fractionation Channels”, Anl Chem. (2006) 78:7978-7985. |
Sant et al., “Microscale Field-Flow Fractionation: Theory and Practice”, in Microfluidic Technologies for Miniaturized Analysis Systems. (2007) Chapter 12, pp. 4710521. |
Schäferling et al., “Optical technologies for the read out and quality control of DNA and protein microarrays,” Anal Bioanal Chem, (2006), 385: 500-517. |
Serpengüzel et al., “Microdroplet identification and size measurement in sprays with lasing images”, Optics express (2002) 10(20):1118-1132. |
Shackman et al., “Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices,” Anal. Chem. (2007), 79(2), 565-571. |
Shackman et al., “Temperature gradient focusing for microchannel separations,” Anal Bioanal Chem, (2007), 387:155-158. |
Shadpour et al., “Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array,” Anal Chem., (2007), 79(3), 870-878. |
Sia et al., “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, (2003), 24:3563-3576. |
Sigurdson M., “AC Electrokinetic Enhancement for Assay Enhancement”, ProQuest LLC (2008) Doctoral Thesis UMI Microform 3319791 in 24 pages. |
Singh et al., “PCR thermal management in an integrated Lab on Chip,” Journal of Physics: Conference Series, (2006), 34:222-227. |
Situma et al., “Merging microfluidics with microarray-based bioassays”, Biomol Engin. (2006) 23:213-231. |
Smith et al., “(576d) Micropatterned fluid lipid bilayers created using a continuous flow microspotter for multi-analyte assays,” (2007), Biosensors II, 2007 AIChE Annual Meeting, Nov. 8, 2007, Abstract in 2 pages. |
Sommer et al., “Introduction to Microfluidics”, in Microfluidics for Biological Applications by Tian et al. [Eds] (2008) Chapter 1, pp. 1-34. |
Squires et al., “Microfluidics: Fluid physics at the nanoliter scale,” Reviews of Modern Physics, (2005), 77(3):977-1026. |
Sundberg et al., “Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis,” Biomed Microdevices, (2007), 9:159-166, in 8 pages. |
Tabeling, P. [Ed.], “Physics at the micrometric scale,” in Introduction to Microfluidics (2005) Chapter 1, pp. 24-69. |
Tabeling, P. [Ed.], “Hydrodynamics of Microfluidic Systems”, in Introduction to Microfluidics; (2005) Chapter 2, pp. 70-129. |
Tabeling, P. [Ed.], Introduction to Microfluidics; (2005) Chapters 5-7, pp. 216-297. |
Taylor et al., Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette, in Micro Total Analysis Systems, Springer (2001), pp. 670-672. |
Taylor et al., “Lysing Bacterial Spores by Sonication through a Flexible Interface in a Microfluidic System,” Anal. Chem., (2001), 73(3):492-496. |
Taylor et al., “Microfluidic Bioanalysis Cartridge with Interchangeable Microchannel Separation Components,” (2001), The 11th International Conference on Solid-State Sensors and Actuators, Jun. 10-14, 2001, Munich, Germany; 1214-1247. |
Taylor et al., “Disrupting Bacterial Spores and Cells using Ultrasound Applied through a Solid Interface,” (2002), 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, Madison, Wisconsin; 551-555. |
Thorsen et al., “Microfluidic Large-scale integration,” Science, (2002), 298:580-584. |
Toriello et al., “Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis,” Anal. Chem., (2006) 78(23):7997-8003. |
Ugaz et al., “Microfabricated electrophoresis systems for DNA sequencing and genotyping applications,” Phil. Trans. R. Soc. Lond. A, (2004), 362:1105-1129. |
Ugaz et al., “PCR in Integrated Microfluidic Systems”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 7, pp. 90-106. |
Ullman et al., “Luminescent oxygen channeling assay (LOCI™): sensitive, broadly applicable homogeneous immunoassay method”. Clin Chem. (1996) 42(9), 1518-1526. |
Vinet et al., “Microarrays and microfluidic devices: miniaturized systems for biological analysis,” Microelectronic Engineering, (2002), 61-62:41-47. |
Wang et al., “From biochips to laboratory-on-a-chip system”, in Genomic Signal Processing and Statistics by Dougherty et al. [Eds]; (2005) Chapter 5, pp. 163-200. |
Wang et al., “A disposable microfluidic cassette for DNA amplification and detection”, Lab on a Chip (2006) 6(1):46-53. |
Wang et al., “Micromachined Flow-through Polimerase Chain Reaction Chip Utilizing Multiple Membrane-activated Micropumps,” (2006), MEMS 2006, Jan. 22-26, 2006, Istanbul, Turkey; 374-377. |
Woolley A.T., “Integrating Sample Processing and Detection with Microchip Capillary Electrophoresis of DNA”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 5, pp. 68-77. |
Xiang et al., “Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler,” Biomedical Microdevices, (2005), 7(4):273-279. |
Xuan, “Joule heating in electrokinetic flow,” Electrophoresis, (2008), 298:33-43. |
Yang et al., “High sensitivity PCR assay in plastic micro reactors,” Lab Chip, (2002), 2:179-187. |
Yang et al., “An independent, temperature controllable-microelectrode array,” Anal. Chem., (2004), 76(5):1537-1543. |
Yang et al., “Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices,” J Micromech Microeng, (2005), 15:221-230. |
Yobas et al., Microfluidic Chips for Viral RNA Extraction & Detection, (2005), 2005 IEEE, 49-52. |
Yobas et al., “Nucleic Acid Extraction, Amplification, and Detection on Si-Based Microfluidic Platforms,” IEEE Journal of Solid-State Circuits, (2007), 42(8):1803-1813. |
Yoon et al., “Precise temperature control and rapid thermal cycling in a micromachined DNA polymer chain reaction chip,” J. Micromech. Microeng., (2002), 12:813-823. |
Zhang et al, “Temperature analysis of continuous-flow micro-PCR based on FEA,” Sensors and Actuators B, (2002), 82:75-81. |
Zhang et al, “Continuous-Flow PCR Microfluidics for Rapid DNA Amplification Using Thin Film Heater with Low Thermal Mass,” Analytical Letters, (2007), 40:1672-1685, in 15 pages. |
Zhang et al, “Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays,” J Am Chem Soc., (2007), 129:9252-9253. |
Zhang et al, “Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trens,” Biotechnology Advances, (2007), 25:483-514. |
Zhao et al, “Heat properties of an integrated micro PCR vessel,” Proceedings of SPIE, (2001), International Conference on Sensor Technology, 4414:31-34. |
Zou et al., “Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing,” Sensors and Actuators A, (2002), 102:114-121. |
Zou et al., “Miniaturized Independently Controllable Multichamber Thermal Cycler,” IEEE Sensors Journal, (2003), 3(6):774-780. |
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 32 in IPR 2019-00488) dated Jan. 31, 2020 (34 pages). |
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 32 in IPR 2019-00490) dated Jan. 31, 2020 (35 pages). |
Second Declaration of Bruce K. Gale, Ph.D. (Exhibit 1026 in IPR2019-00488 and IPR2019-00490) dated Jan. 31, 2020 (91 pages). |
Transcript of Deposition of M. Allen Northrup, Ph.D., (Exhibit 1027 in IPR2019-00488 and IPR2019-00490), taken Dec. 19, 2019 (109 pages). |
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 42 in IPR2019-00490) dated Mar. 12, 2020 (39 pages). |
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 43 in IPR 2019-00488) dated Mar. 12, 2020 (41 pages). |
Transcript of Second Deposition of Bruce K. Gale, Ph.D., (Exhibit 2068 in IPR2019-00488 and IPR2019-00490), taken Feb. 19, 2020 (352 pages). |
Number | Date | Country | |
---|---|---|---|
20180135102 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
61476175 | Apr 2011 | US | |
61476167 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14054397 | Oct 2013 | US |
Child | 15706313 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/033667 | Apr 2012 | US |
Child | 14054397 | US |