The present invention relates to the field of surgery and, in particular, to devices and techniques for reattachment of interosseous ligaments such as the scapholunate ligament.
The wrist is a complex joint which relies on ligaments to provide a great degree of mobility for positioning the hand for function. The areas of the wrist most often affected by ligament injury are the joints of the first row of bones beyond the wrist joint, called the proximal carpal row, the particular joints affected being those between the scaphoid and lunate bones (scapholunate joint) and between the lunate and triquetral bones (lunotriquetral joint).
Scapholunate ligament injury allows the two bones to move apart, leaving a gap typically seen on an x-ray. The width of the gap is variable, but the most important effect of this injury is that the scaphoid is no longer properly controlled and falls into a flexed position (i.e., is bent forward). Smooth movement is no longer possible and the patient experiences clicking, pain and weakness. The instability can be progressive, with worsening symptoms and ultimately arthritic changes (known as scapholunate advanced collapse).
Various techniques for surgical repair of the scapholunate ligament are known in the art. These techniques typically involve the use of nearby tendon tissue to reconstruct ligaments between the two bones. This is supported with a temporary wire between the two bones to hold them together. The ligament repair takes about 7-8 weeks to heal, and the wire is then removed. It is usual that some movement (flexion and/or extension) is lost through operation, as joining of the two little, oddly-shaped bones (scaphoid and lunate) is difficult to achieve. The existing techniques also do not enable connecting biological graft directly to the fixation devices (i.e., to multiple anchors). Fusion of the scaphoid and lunate (an alternate to the wire repair technique) is also not indicated as it causes arthritis.
The present invention provides techniques and devices for reattachment of ligaments as an alternative to fusion. The techniques and devices may be applied to any interosseous ligament repairs, including scapholunate repairs, syndesmotic injuries, or hallux valgus repairs, among others. Particular applicability is to scapholunate ligament repairs, as the scapholunate joint is exceptionally small and requires specialized devices and techniques.
The present invention provides a scapholunate dissociation/instability construct including an anchor having a proximal end and a distal end, and a threaded internal bore which may communicate with an eyelet at the distal end. The anchor is provided with two opposing lateral, parallel sides that are smooth and non-threaded, and two adjacent opposing, parallel sides that are provided with a plurality of partial ribs or partial threads.
An exemplary method of biologic scapholunate interosseous ligament reconstruction of the present invention comprises inter alia the steps of: (i) inserting positioning pins into the scaphoid and the lunate; (ii) reducing the scapholunate dissociation by maneuvering the two pins; (iii) drilling a hole through the central axis of the scaphoid and the lunate; (iv) providing the anchor construct of the present invention with tendon (biologic material) attached thereto, and placing the anchor construct with the attached tendon into the ulnar portion of the lunate; (v) optionally, pulling on the tails of the tendon tight while reduction of the scapholunate interval is maintained; and (vi) inserting a fixation device (such as a tenodesis screw) to fix the tendon strands to the scaphoid.
a) is a schematic illustration of the final scapholunate interosseous ligament repair of
The present invention provides novel surgical procedures and reconstruction systems for connecting biological material directly to. multiple anchor(s) in interosseous ligament reconstructions such as scapholunate interosseous ligament repair.
The reconstruction system of the present invention comprises a fixation device in the form of a small anchor and biological or synthetic tissue material (for example, tendon, ligament or graft) attached to the anchor (for example, looped through an eyelet of the anchor). The anchor with the attached tissue (attached biological or synthetic material) is placed into a socket, opening or tunnel of a first bone and the loose tissue strands (tails) are fixated into the second bone (which is adjacent the first bone) with a fixation device such as a tenodesis screw, for example. In an exemplary embodiment only, the reconstruction system of the present invention comprises a fixation device in the form of a small 3.5 mm anchor and a tendon graft attached to the 3.5 mm anchor (for example, looped through an eyelet of the anchor). The 3.5 mm anchor with the attached tendon is placed into the ulnar portion of the lunate and the loose tendon strands (tendon tails) are fixated into the scaphoid with a fixation device such as a tenodesis screw, for example.
The tissue (biological or synthetic material such as tendon graft or ligament) may be threaded through the eyelet of the anchor before it is deployed into the first bone (i.e., the attached tissue and the anchor are simultaneously deployed into the first bone). Alternatively, the tissue may be “drawn” into the bone socket or tunnel of the first bone by pulling the suture tails through the anchor eyelet (i.e., the tissue is deployed/drawn into the first bone after deployment of the anchor into the first bone).
Referring now to the drawings, where like elements are designated by like reference numerals,
As shown in
Top and bottom side surfaces 16, 17 are opposed side surfaces of body 10 that extend in a direction about parallel to the longitudinal (central) axis 11 of the body 10. Top and bottom side surfaces 16, 17 are provided with smooth, non-threaded and non-ribbed outer (external) surfaces. Adjacent opposing lateral sides 18, 19 are opposed side surfaces of body 10 that are provided with non-flat surfaces, for example, with threaded and/or ribbed outer (external) surfaces. In this manner, when anchor construct 100 is inserted into a tunnel or socket in bone (for example, into the lunate), tissue strands attached to the anchor construct 100 will extend along the flat, smooth external surfaces 16, 17, while the threaded and/or ribbed outer (external) sides 18, 19 engage the walls of the bone tunnel or socket, to ensure secure fixation of the anchor construct 100 within the bone tunnel or socket.
In the specific embodiment illustrated in
In use, a tendon graft (or any biologic or synthetic material for ligament reconstruction) is passed through the eyelet 20 and looped over the smooth flat external surfaces/sides 16, 17 of body 10 for further manipulation and fixation into sockets/tunnels formed within two bones such as the scaphoid and the lunate bones, as detailed below. Anchor 100 may be cannulated (to allow insertion over a K-wire, for example), or may be preloaded with a suture strand and a needle (for example, with a 2-0 Fiberwire), or may be provided with a continuous suture loop attached to the anchor (i.e., with a continuous, uninterrupted suture loop attached to eyelet 20 of the anchor 100).
The 3.5 mm scapholunate push-in anchor 200 of
A method of biologic interosseous ligament reconstruction with anchor 100, 200, 300 of the present invention comprises inter alia the steps of: (i) forming (by drilling, for example) a hole or tunnel through the central axis of two adjacent first and second bones; (ii) providing the anchor construct 100, 200, 300 of the present invention with tissue (for example, biologic material such as tendon, graft or ligament, and/or synthetic material) attached thereto (by looping and folding the tissue over the eyelet, and extending the tissue strands along the flat side surfaces of the anchor, for example), and placing the anchor construct with the attached tissue into the first bone; (iii) optionally, pulling on the tails of the tissue (tendon) tight while reduction of the interval between the two bones is maintained; and (iv) inserting a fixation device (such as a tenodesis screw) to fix the tissue (tendon) strands to the second bone.
An exemplary method of biologic scapholunate interosseous ligament reconstruction of the present invention comprises inter alia the steps of: (i) inserting positioning pins into the scaphoid and the lunate; (ii) reducing the scapholunate dissociation by maneuvering the two pins; (iii) drilling a hole through the central axis of the scaphoid and the lunate; (iv) providing the anchor construct of the present invention with tendon (biologic material) attached thereto, and placing the anchor construct with the attached tendon into the ulnar portion of the lunate; (v) optionally, pulling on the tails of the tendon tight while reduction of the scapholunate interval is maintained; and (vi) inserting a fixation device (such as a tenodesis screw) to fix the tendon strands to the scaphoid.
Reference is now made to
A fixation device 88 (
Although the exemplary methods above have been described with reference to a biological material (such as tendon. graft 80) that is “drawn” into the tunnel by pulling the suture tails through the eyelet 20 of the 3.5 mm scapholunate threaded anchor 100, the invention also contemplates embodiments wherein the biological or synthetic material (tendon graft 80) is looped directly through the eyelet 20 (and folded over the eyelet 20) before it is deployed into the bony tunnel or socket, to achieve the final construct of
The devices and methods of the present invention have applicability to any type of interosseous ligament reconstruction, the scapholunate interosseous ligament repairs detailed above being just two exemplary embodiments. In the present invention, the graft is directly connected to, or through, the anchor/implant. The design of the anchor of the present invention employs an eyelet for the biological graft, while the prior art designs retain the graft only by interference fit. The design of the anchor of the present invention also allows the use of a biologic graft and fixation of such graft, while the prior art designs permit fixation of only synthetic materials. The methods of the present invention detailed above are also considered single-approach surgical procedures, in that anchoring of multiple anchors and/or fixation devices is conducted in-line, and through a single portal, resulting in minimally invasive repairs.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention is to be limited not by the specific disclosure herein, but only by the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/441,146, filed Feb. 9, 2011, the entire disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61441146 | Feb 2011 | US |