Scatter reduction in additive manufacturing

Information

  • Patent Grant
  • 10898968
  • Patent Number
    10,898,968
  • Date Filed
    Friday, April 28, 2017
    7 years ago
  • Date Issued
    Tuesday, January 26, 2021
    3 years ago
Abstract
Systems and methods for reducing charged powder particle scattering in powder-bed fusion (PBF) systems are provided. A PBF apparatus can include a structure that supports a layer of powder material having a plurality of particles of powder. For example, the structure can be a build plate, a build floor, a build piece, etc. The apparatus can also include an energy beam source that generates an energy beam and a deflector that applies the energy beam to fuse an area of the powder material in the layer. The energy beam can electrically charge the particles of powder. The apparatus can also include an electrical system that generates an electrical force between the structure and the charged particles of powder. For example, the electrical system can include a voltage source that applies a first voltage to the structure.
Description
BACKGROUND
Field

The present disclosure relates generally to additive manufacturing (AM), and more particularly, to reducing charged powder scattering in AM applications, such as powder-bed fusion (PBF).


Background

PBF systems can produce structures (referred to as build pieces) with geometrically complex shapes, including some shapes that are difficult or impossible to create with conventional manufacturing processes. PBF systems create build pieces layer-by-layer. Each layer or ‘slice’ is formed by depositing a layer of powder and exposing portions of the powder to an energy beam. The energy beam is applied to melt areas of the powder layer that coincide with the cross-section of the build piece in the layer. The melted powder cools and fuses to form a slice of the build piece. The process can be repeated to form the next slice of the build piece, and so on. Each layer is deposited on top of the previous layer. The resulting structure is a build piece assembled slice-by-slice from the ground up.


Some energy beams that are used to fuse the powder layer can also cause some of the particles of powder to scatter or fly away from the layer. For example, applying an electron beam to a powder layer can electrically charge some of the particles of powder. The electrical charges on the powder particles repel each other and cause some of the particles to fly off the powder layer, a phenomenon also known as ‘smoking.’ In some cases, the scattered powder interferes with the AM operation and can result in poor quality build pieces.


SUMMARY

Several aspects of apparatuses and methods for reducing powder scatter in PBF systems will be described more fully hereinafter.


In various aspects, an apparatus for powder-bed fusion can include a structure that supports a layer of powder material having a plurality of particles of powder, an energy beam source that generates an energy beam, and a deflector that applies the energy beam to fuse an area of the powder material in the layer. The energy beam can electrically charge the particles of powder. The apparatus can also include an electrical system that generates an electrical force between the structure and the charged particles of powder.


In various aspects, an apparatus for PBF can include one or more structures including a powder material support structure, an energy beam source directed to the powder material support surface, a deflector operationally coupled with the energy beam source, and a voltage source connected to at least one of the structures.


Other aspects will become readily apparent to those skilled in the art from the following detailed description, wherein is shown and described only several exemplary embodiments by way of illustration. As will be realized by those skilled in the art, concepts described herein are capable of other and different embodiments, and several details are capable of modification in various other respects, all without departing from the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1A-D illustrate an example PBF system during different stages of operation.



FIG. 2 shows a close-up view illustrating an example of particle scattering in PBF.



FIG. 3 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering.



FIG. 4 shows a close-up view illustrating an exemplary embodiment of reducing particle scattering.



FIG. 5 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering.



FIG. 6 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering.



FIG. 7 illustrates an example beam error caused by an electric field.



FIG. 8 illustrates an exemplary embodiment of an electrical system including a beam compensation system.



FIG. 9 is a flow chart of an exemplary embodiment of a method of reducing powder scatter in a PBF system.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of the concepts disclosed herein and is not intended to represent the only embodiments in which the disclosure may be practiced. The term “exemplary” used in this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other exemplary embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the concepts to those skilled in the art. However, the disclosure may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


This disclosure is directed to reducing charged powder scattering, i.e., smoking, in PBF systems. The PBF system can be built, for example, such that one or more structures in the system can be charged to create an electrical force between the charged particles of powder and the powder layer. The electrical force can keep the charged particles of powder from flying off of the powder layer. For example, the build piece can be electrically charged such that the build piece is an anode, or pseudo-anode, to cause charge-accumulated powder particles to be attracted to the bed instead of repelled. Further, charged static shields can be placed with negative potential, with a near uniform field to reduce beam deflection, to prevent charge-accumulated particles from being attracted to the build chamber. Any deflections created by these mechanisms can be characterized by control systems of the PBF system, and compensations can be provided in the original beam deflection commands.



FIGS. 1A-D illustrate an example PBF system 100 during different stages of operation. PBF system 100 can include a depositor 101 that can deposit each layer of metal powder, an energy beam source 103 that can generate an energy beam, a deflector 105 that can apply the energy beam to fuse the powder material, and a build plate 107 that can support one or more build pieces, such as a build piece 109. PBF system 100 can also include a build floor 111 positioned within a powder bed receptacle. The walls of the powder bed receptacle are shown as powder bed receptacle walls 112. Build floor 111 can lower build plate 107 so that depositor 101 can deposit a next layer and a chamber 113 that can enclose the other components. Depositor 101 can include a hopper 115 that contains a powder 117, such as a metal powder, and a leveler 119 that can level the top of each layer of powder.


Referring specifically to FIG. 1A, this figure shows PBF system 100 after a slice of build piece 109 has been fused, but before the next layer of powder has been deposited. In fact, FIG. 1A illustrates a time at which PBF system 100 has already deposited and fused slices in multiple layers, e.g., 50 layers, to form the current state of build piece 109, e.g., formed of 50 slices. The multiple layers already deposited have created a powder bed 121, which includes powder that was deposited but not fused.



FIG. 1B shows PBF system 100 at stage in which build floor 111 can lower by a powder layer thickness 123. The lowering of build floor 111 causes build piece 109 and powder bed 121 to drop by powder layer thickness 123, so that the top of the build piece and powder bed are lower than the top of powder bed receptacle wall 112 by the powder layer thickness. In this way, for example, a space of with a consistent thickness equal to powder layer thickness 123 can be created over the top of build piece 109 and powder bed 121.



FIG. 1C shows PBF system 100 at a stage in which depositor 101 can deposit powder 117 in the space created over the top of build piece 109 and powder bed 121. In this example, depositor 101 can cross over the space while releasing powder 117 from hopper 115. Leveler 119 can level the released powder to form a powder layer 125 that has a thickness of powder layer thickness 123. Thus, the powder in a PBF system can be supported by a powder material support structure, which can include, for example, a build plate, a build floor, a build piece, etc. It should be noted, that elements of FIGS. 1A-D and the other figures in this disclosure are not necessarily drawn to scale, but may be drawn larger or smaller for the purpose of better illustration of concepts described herein. For example, the illustrated thickness of powder layer 125 (i.e., powder layer thickness 123) is greater than an actual thickness used for the example 50 previously-deposited layers.



FIG. 1D shows PBF system 100 at a stage in which energy beam source 103 can generate an energy beam 127 and deflector 105 can apply the energy beam to fuse the next slice in build piece 109. In various embodiments, energy beam source 103 can be an electron beam source, energy beam 127 can be an electron beam, and deflector 105 can include deflection plates that can generate an electric field or a magnetic field that deflects the electron beam to scan across areas to be fused. In various embodiments, energy beam source 103 can be a laser, energy beam 127 can be a laser beam, and deflector 105 can include an optical system that can reflect and/or refract the laser beam to scan across areas to be fused. In various embodiments, the deflector can include one or more gimbals and actuators that can rotate and/or translate the energy beam source to position the energy beam. In various embodiments, energy beam source 103 and/or deflector 105 can modulate the energy beam, e.g., turn the energy beam on and off as the deflector scans so that the energy beam is applied only in the appropriate areas of the powder layer. For example, in various embodiments, the energy beam can be modulated by a digital signal processor (DSP).


The application of energy beam 127 can cause particles of powder to fly away from the powder layer, shown in FIG. 1D as scattered powder particles 129. As noted above, scattered powder particles 129 can interfere with the printing operation and can result in poorer quality build pieces.



FIG. 2 shows a close-up view illustrating an example of particle scattering in PBF. In particular, FIG. 2 shows an energy beam 201 scanning across a powder layer 203 in the direction of the bold arrow (i.e., scanning to the right). As energy beam 201 is applied, powder is fused into fused powder 205 to form build piece 207. In the view shown in FIG. 2, a top portion of the previous slice 209 can be seen, as well as the portion of the current slice 211 that has been fused so far. As energy beam 201 is applied to an area of powder layer 203 to heat and fuse the area, some of the powder particles can become charged. In this example, some of the powder particles can become negatively charged, and these charged powder particles are represented by a “−” symbol. For example, energy beam 201 can be an electron beam, which is a beam of electrons, i.e., negatively-charged particles. The electrons in the electron beam can be captured by powder particles, such that the powder particles become negatively charged.


Negatively-charged objects repel each other due to the electrostatic force. As illustrated in FIG. 2, if enough negatively-charged powder particles are in close proximity, the repulsive electrostatic force between them can overcome the force of gravity, causing some of the charged powder particles to fly upward from powder layer 203. These powder particles are shown as scattered powder particles 213.



FIG. 3 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering. An electrical system 300 can include a voltage source 301 and a voltage source 303. In this example, the positive terminal of voltage source 301 can be connected to a build plate 305 through an opening in a build floor 307. Build plate 305 and build floor 307 can support a powder bed 309 and a conductive build piece 311. For example, conductive build piece 311 can be formed of a metal or other conductive material.


In this example, build plate 305 can be electrically conductive and can be electrically connected to conductive build piece 311. For example, conductive build piece 311 can be fused to build plate 305. The connection of build plate 305 to voltage source 301 can cause positive charge to collect on the build plate and on the conductive build piece. The positive charge can create an electric field, shown by electric field lines 312. In this example, because positive charge can collect at the top of conductive build piece 311, the electric field through the powder layer on top of the build piece may be stronger compared to the electric field in the example of FIG. 3, particularly if the top of the build piece is far away from the build plate. This may allow electrical system 300 to more efficiently reduce powder scatter.


Voltage source 303 can be applied to an electron beam source 313 as the acceleration voltage used to create the electron beam, which can be scanned by a deflector 315 to fuse powder. In this case, the positive terminal of voltage source 303 is the anode of electron beam source 313. Voltage source 301 is also connected to the anode of electron beam source 313, such that voltage source 301 is applied between the anode and build plate 305. In this way, for example, the voltage applied by voltage source 301 can help reduce powder scatter and increase beam modulation gain by further accelerating the beam for greater beam energy.



FIG. 4 shows a close-up view illustrating an exemplary embodiment of reducing particle scattering. In particular, FIG. 4 illustrates the top of a conductive build piece 400, such as conductive build piece 311 above. An energy beam 401 scanning across a powder layer 403 in the direction of the bold arrow (i.e., scanning to the right). As energy beam 401 is applied, powder is fused into fused powder 405 to form build piece 400. In the view shown in FIG. 4, a top portion of the previous slice 409 can be seen, as well as the portion of the current slice 411 that has been fused so far. As energy beam 401 is applied to an area of powder layer 403 to heat and fuse the area, some of the powder particles can become charged. In this example, some of the powder particles can become negatively charged, as represented by the “−” symbol. For example, energy beam 201 can be an electron beam, and the electrons in the electron beam can be captured by powder particles, such that the powder particles become negatively charged.


In this example, conductive build piece 400 can be connected to an electrical system such as electrical system 300 in FIG. 3 above, such that positive charge collects at the top of the conductive build piece. The positive charge can create an electric field, shown as electric field lines 413, that can attract the negatively charge powder particles. The attraction is shown in FIG. 4 by electric field lines 413 between the positive and negative charges. The attractive force exerted by the electric field on the negatively-charged powder particles can be greater than the repulsive force between the powder particles, and the negatively-charged powder particles can be prevented from flying upward, as illustrated by immobilized powder particle 415. In this way, for example, powder scattering may be reduced or eliminated.



FIG. 5 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering. An electrical system 500 can include a voltage source 501 and a voltage source 503. In this example, the positive terminal of voltage source 501 can be connected to a build floor 505, which supports a build plate 507, a powder bed 509, and a build piece 511. In this implementation, build floor 505 can be electrically conductive. In other implementations, build plate 507 can also be electrically conductive. In other implementations, build plate 507 and build piece 511 can also be electrically conductive. Different electric fields can be generated in the different implementations to reduce or eliminate powder scatter.


Voltage source 503 can be applied to an electron beam source 513 as the acceleration voltage used to create the electron beam, which can be scanned by a deflector 515 to fuse powder. In this case, the positive terminal of voltage source 503 is the anode of electron beam source 513. Voltage source 501 is also connected to the anode of electron beam source 513, such that voltage source 501 is applied between the anode and build floor 505. In this way, for example, the voltage applied by voltage source 501 can help reduce powder scatter and increase beam modulation gain by further accelerating the beam for greater beam energy.



FIG. 6 illustrates another exemplary embodiment of an electrical system implementation for reducing powder scattering. An electrical system 600 can include a voltage source 601 and a voltage source 603. In this example, the positive terminal of voltage source 601 can be connected to a conductive plug 604 in a non-conductive build plate 605 through an opening in a build floor 607. Non-conductive build plate 605 and build floor 607 can support a powder bed 609 and a conductive build piece 611. For example, conductive build piece 611 can be formed of a metal or other conductive material.


In this example, when printing the first few layers of conductive build piece 611, the PBF system also prints a conductive extension 612 that can connect the conductive build piece to conductive plug 604. In this way, for example, voltage source 601 can be connected to conductive build piece 611 to cause positive charge to collect on the conductive build piece. The electric field (not shown) generated by the positive charge collected on conductive build piece 611 can help reduce or eliminate powder scatter from powder layers on top of the build piece. Because the positive charge is collected on conductive build piece 611, but not on non-conductive build plate 605, the electric field may be concentrated in the build piece without requiring the build plate to be charged. In this way, for example, the voltage generated by voltage source 601 may be reduced.


Voltage source 603 can be applied to an electron beam source 613 as the acceleration voltage used to create the electron beam, which can be scanned by a deflector 615 to fuse powder. In this case, the positive terminal of voltage source 603 is the anode of electron beam source 613. Voltage source 601 is also connected to the anode of electron beam source 613, such that voltage source 601 is applied between the anode and build plate 605. In this way, for example, the voltage applied by voltage source 601 can help reduce powder scatter and increase beam modulation gain by further accelerating the beam for greater beam energy.


In various embodiments, one or more conductive extensions could be formed in various shapes and configurations to connect one or more build pieces to a voltage source. For example, multiple build pieces could be connected by a lattice of conductive extensions. In various embodiments, a conductive extension need not be directly connected between each build piece and the voltage source. For example, a first conductive extension could connect a first build piece to the voltage source (e.g., directly connect to a conductive plug, such as in FIG. 6), and a second conductive extension could connect the first build piece directly to a second build piece. In this way, for example, the second build piece can be connected to the voltage source through the first build piece (i.e., not directly connected).



FIG. 7 illustrates an example beam error caused by an electric field. An electrical system 700, including a voltage source 701 and a voltage source 703. The positive terminal of voltage source 701 can be connected to a conductive build plate 705 through an opening in a build floor 707. Conductive build plate 705 and build floor 707 can support a powder bed 709 and a conductive build piece 711. Conductive build plate 705 can be electrically connected to conductive build piece 711, such as being fused to the build piece, and accordingly, positive charge can collect on the build plate and on the conductive build piece to create an electric field similar to the example of FIG. 3. For the purpose of clarity, the electric field lines are not shown in FIG. 7.


Voltage source 703 can be applied to an electron beam source 713 as the acceleration voltage used to create an electron beam 715, which can be scanned by a deflector 717 to fuse powder. In this case, the positive terminal of voltage source 703 is the anode of electron beam source 713. Voltage source 701 is also connected to the anode of electron beam source 713, such that voltage source 701 is applied between the anode and build plate 705. In this way, for example, the voltage applied by voltage source 701 can help reduce powder scatter and increase beam modulation gain by further accelerating the beam for greater beam energy.


In some cases, the electric field generated by various embodiments can cause an energy beam to bend. In this example, the electrons in electron beam 715 can be attracted to the positively-charged conductive build piece 711 and can bend. FIG. 7 shows a zero field beam 719, which represents the path the electron beam would take in a zero electric field to hit a target spot 721. The amount of bending of energy beam 715 can be determined from the strength of the electric field. Therefore, deflector 717 can compensate for the predicted amount of beam bending and can hit target spot 721 by aiming energy beam in a different direction than zero field beam 719, as shown in FIG. 7.



FIG. 8 illustrates an exemplary embodiment of an electrical system including a beam compensation system. Like the example of FIG. 7, an electrical system 800 can include a voltage source 801 and a voltage source 803. Voltage source 803 can be applied to an electron beam source 813 as the acceleration voltage used to create an electron beam 815, which can be applied by a deflector 817 to fuse powder. Voltage source 801 can apply a voltage between an anode of electron beam source 813 and a conductive build plate 805 through an opening in a build floor 807. Conductive build plate 805 and build floor 807 can support a powder bed 809 and a conductive build piece 811. Conductive build plate 805 can be electrically connected to conductive build piece 811, such as being fused to the build piece, and accordingly, positive charge can collect on the build plate and on the conductive build piece to create an electric field similar to the example of FIG. 3. For the purpose of clarity, the electric field lines are not shown in FIG. 8.


Electrical system 800 can include a system with additional structures that can be charged to provide further scatter reduction. In this example, the additional structures can include shields 819 and 820, which can be connected to the negative terminal of voltage source 801. A negative voltage can cause negative charge to collect on shields 819 and 820, which can repulse the negatively charged powder particles in the powder layer of powder bed 809. In other words, the additional charged structures can create an electric field that causes a force between the charged powder particles and the powder layer that pushes the charged powder particles toward the powder layer. In this way, for example, charged powder particle scatter may be further reduced. In various embodiments, the additional structures can be arranged symmetrically around a normal axis extending between the deflector and the powder material support structure. In this way, for example, a deflection of electron beam 815 may be minimized. In various embodiments, for example, a single shield can include a ring of conductive material symmetrically surrounding a normal axis extending between the deflector and the build plate. A constant voltage source can be applied to the ring. The shape of the ring can be, for example, circular, rectangular, a torus, etc. In various embodiments, the shape of the ring can mimic the shape of the surface of the powder bed.



FIG. 9 is a flow chart of an exemplary embodiment of a method of reducing powder scatter in a PBF system. The PBF system can support (901) a layer of powder material on a structure. For example, a powder layer can be deposited on the top surfaces of a powder bed and one or more build pieces, and the powder bed and the one or more build pieces can be supported by a build plate. The PBF system can generate (902) an energy beam. For example, the PBF system can include an electron beam source that generated an electron beam. The PBF system can scan (903) the energy beam to fuse an area of the powder material in the layer. For example, the PBF system can include a deflector that deflects the electron beam to scan the beam across the powder layer. The energy beam can electrically charge the particles of powder. The PBF system can generate an electrical force between the structure and the charged particles of powder. For example, the PBF system can include an electrical system that applies a voltage between an electron beam source and a structure, such as the build floor, the build plate, the build piece, etc., that creates an electric field resulting in an electrostatic force that attracts the charged particles of powder to the powder layer. In this way, for example, charged powder scatter may be reduced or eliminated.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An apparatus for powder-bed fusion, comprising: a structure that supports powder material having a plurality of particles of powder, wherein the structure comprises a non-conductive build plate that supports a build piece and the non-conductive build plate has a through-hole;an energy beam source that generates an energy beam;a deflector that applies the energy beam to fuse an area of the powder material to create a layer of the build piece, wherein the energy beam electrically charges the particles of powder; andan electrical system that generates an attractive electrical force between the build piece and the charged particles of powder, wherein the electrical system includes a voltage source configured for connection to the build piece through the through-hole.
  • 2. The apparatus of claim 1, wherein the deflector is further configured to apply the energy beam to the powder material to create a conductive extension to the build piece, wherein the voltage source is further configured for connection to the build piece through the conductive extension.
  • 3. The apparatus of claim 1, wherein the build piece comprises a conductive build piece, wherein the voltage source is further connected to the conductive build piece to cause positive charge to collect on the conductive build piece.
  • 4. The apparatus of claim 1, wherein the structure further comprises a conductive build floor that supports at least one of the powder material or the build piece, wherein the voltage source is further connected to the conductive build floor.
  • 5. The apparatus of claim 1, further comprising one or more shields, wherein the electrical system is further configured to generate a repulsive electrical force between the one or more shields and the charged particles of powder.
  • 6. The apparatus of claim 5, wherein the structure further comprises a build floor, wherein the electrical system includes a voltage source having a positive terminal and a negative terminal, the positive terminal being configured for connection to at least one of the build piece, the non-conductive build plate, or the build floor and the negative terminal being connected to the one or more shields.
  • 7. A method of powder-bed fusion, comprising: supporting powder material on a structure, the powder material having a plurality of particles of powder and the structure comprising a non-conductive build plate supporting a build piece, the non-conductive build plate having a through-hole;generating an energy beam;scanning the energy beam to fuse an area of the powder material to create a layer of the build piece, wherein the energy beam electrically charges the particles of powder; andgenerating an attractive electrical force between the build piece and the charged particles of powder by applying a voltage from a voltage source to the build piece, the voltage source being configured for connection to the build piece through the through-hole.
  • 8. The method of claim 7, further comprising applying the energy beam to the powder material to create a conductive extension to the build piece, wherein the voltage source is further configured for connection to the build piece through the conductive extension.
  • 9. The method of claim 7, wherein the build piece comprises a conductive build piece, wherein the voltage source is further connected to the conductive build piece to cause positive charge to collect on the conductive build piece.
  • 10. The method of claim 7, wherein the structure further comprises a conductive build floor that supports at least one of the powder material or the build piece, wherein the voltage source is further connected to the conductive build floor.
  • 11. The method of claim 7, wherein the voltage source is further configured to generate a repulsive electrical force between one or more shields and the charged particles of powder.
  • 12. The method of claim 11, wherein the structure further comprises a build floor, wherein the voltage source has a positive terminal and a negative terminal, the positive terminal being configured for connection to at least one of the build piece, the non-conductive build plate, or the build floor and the negative terminal being connected to the one or more shields.
  • 13. An apparatus for powder-bed fusion, comprising: a structure that supports powder material, wherein the structure comprises a non-conductive build plate that supports a build piece and the non-conductive build plate has a through-hole;an energy beam source directed to the powder material to create a layer of the build piece, wherein the energy beam electrically charges a plurality of particles of powder;a deflector operationally coupled with the energy beam source; andan electrical system that generates an attractive electrical force between the build piece and the charged particles of powder, wherein the electrical system comprises a voltage source configured for connection to the build piece through the through-hole.
US Referenced Citations (354)
Number Name Date Kind
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Feffatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
10500834 Furukawa Dec 2019 B2
20060108783 Ni et al. May 2006 A1
20100270708 Jonasson Oct 2010 A1
20140277669 Nardi et al. Sep 2014 A1
20150306699 Honda Oct 2015 A1
20160368056 Swaminathan Dec 2016 A1
20170113344 Schönberg Apr 2017 A1
20170246709 Guerrier Aug 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
Foreign Referenced Citations (42)
Number Date Country
105665708 Jun 2016 CN
106536165 Mar 2017 CN
6019267 Nov 2016 JP
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016044561 Mar 2016 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (11)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
K.E. Lulay, K. Khan and D. Chaaya: “The Effect of Cryogenic Treatments on 7075 Aluminum Alloy,” Journal of Materials Engineering and Performance, Oct. 2002, vol. 11(5), pp. 479-480.
P. Gargarella; S. Pauly; M. Samadi Khoshkhoo; U. Kuhn; and J. Eckert: “Phase Formation and Mechanical Properties of Ti—Cu—Ni—Zr Bulk Metallic Glass Composites,” ScienceDirect, Acta Materialia 65 (2014) 259-269.
B.A. Sun; M.X. Pan; D.Q. Zhao; W.H. Wang; X.K. Xi; M.T. Sandor; and Y. Wu: “Aluminum-Rich Bulk Metallic Glasses,” Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, ScienceDirect, Scripta Materialia 59 (2008) 1159-1162.
J. Ilcik; D. Koutny; and D. Palousek: “Geometrical Accuracy of the Metal Parts Produced by Selective Laser Melting: Initial Tests,” Lecture Notes in Mechanical Engineering, DOI: 10.1007/978-3-319-05203-8_76, © Springer International Publishing Switzerland 2014.
S. Chianrabutra; B.G. Mellor; and S. Yang: “A Dry Powder Material Delivery Device for Multiple Material Additive Manufacturing,” Engineering Sciences Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom, 2014.
Di Xie; Sujun Wu; Juan Guan; Lin Yan; and Jinyan Cui: “Effect of Cryogenic Treatment on the Fatigue Crack Propagation Behavior of 7075 Aluminum Alloy,” School of Material Science and Engineering, Beihang University, Beijing 100191, China, 2014.
Nandwana, P., et al., Recyclability Study on Inconel 718 and Ti-6AI-4V Powders for Use in Electron Beam Melting, U.S. Department of Energy, 21 pages.
European Supplemental Search Report for Europen Application No. 18791416.3, dated Oct. 16, 2020, 33 pages.
Related Publications (1)
Number Date Country
20180311758 A1 Nov 2018 US