The present invention relates to engines and more particularly, the present invention relates to a scavenging insert for an engine.
An internal combustion engine, and a two cycle engine in particular, includes a number of interrelated elements that normally include a cylinder unit, a piston generally housed by the cylinder unit, a crankcase, a crankshaft and a rod that connects the piston to the crankshaft. In a simplified model, the crankcase provides gaseous fuel mixture to the cylinder unit wherein the gaseous fuel mixture is ignited by a spark plug. The ignited mixture creates pressure that acts on the piston, thereby displacing it. As the piston is displaced, the rod affixed thereto similarly is displaced and causes a rotational movement to be imparted on the crankshaft.
As known in the prior art, with reference to
Disclosed according to an example embodiment of the present invention is an internal combustion engine having a cylinder chamber having a cylindrically hollow portion disposed therein; a piston slidably engaged with the cylindrically hollow portion; a crankcase in fluidic communication with the cylinder chamber; and at least one scavenging conduit insert providing for the communication between the cylinder chamber and the crankcase, wherein the scavenging insert provides at least a segment of the cylindrically hollow portion.
Further disclosed according to an example embodiment of the present invention is a piston chamber having at least one scavenging conduit insert, wherein the scavenging conduit insert is circumferentially discontinuous.
Also disclosed according to an example embodiment of the present invention is a scavenging conduit insert for an internal combustion engine, wherein the scavenging conduit insert includes a body portion; a first flange portion engaged with a first end of the body portion; and a second flange portion engaged with a second end of the body portion; wherein the first arm and the second arm are in a spaced apart relationship.
With reference to
The cylinder unit 130 is provided with a combustion chamber 125 near or at the first end 145. The combustion chamber 125 provides a location wherein incoming gaseous fuel mixture may be ignited by a sparkplug 105.
The cylinder unit 130 houses a piston 135 that is generally slidably engaged with the cylinder bore 137. The piston 135 is operatively connected with a crankshaft 155 through a connecting rod 150 affixed to the crankshaft 155 by a crank pin 145. The crankshaft 155 is supported by the crankcase 140. As the gaseous fuel mixture is ignited in the combustion chamber 125, the pressure created thereby acts on the piston 135 and forces the piston 135 to slide in the cylinder bore 137 away from the first end 145 of the cylinder unit 130 and toward the second end 152. As the piston 135 so slides, the connecting rod 150 causes the crankshaft 155 to rotate, and thereby provides a rotational force, as will be appreciated by the person of skill in the art.
According to the present invention, the cylinder unit 130 further comprises one or more scavenging conduit inserts 100. With reference to
An example scavenging conduit insert 100 has a shape as shown in
The scavenging conduit insert 100 is defined by a body 168, a first flange 160 attached to one side of the body 168, and a second flange 165 attached to another side of the body 168. The scavenging conduit insert 100 is further defined by an outer surface 175 and an inner surface 180. In a preferred example embodiment, the scavenging conduit insert 100 is circumferentially discontinuous. In other words, the insert 100 is provided as a panel, not a cylindrical member. It is to be appreciated, however, that the insert 100 could be provided as a cylindrical member having a continuous circumference.
According to one example, the body 168 may include a curve along the length of its longitudinal axis. The curve is generally circular in shape, with the apex of the curve being arranged on the inner surface 180 of the body 168 between the first flange 160 and the second flange 165.
The first flange 160 is a generally enlarged ridge (relative to the size of the body 168) that proceeds along the longitudinal length of body 168. The second flange 165 is also a generally enlarged ridge (relative to the size of the body 168) that proceeds along the longitudinal length of the body 168. The first flange 160 and the second flange 165 have a shape or are provided with structure complementary to a receiving cavity in the cylinder unit 130 for inserting and securing the insert 100 in the cylinder unit 130.
In the shown example, the first flange 160, second flange 165 and body 168 cooperate to form a recessed portion or aperture 162. When the insert 100 is positioned in the cylinder unit 130, the aperture 162 facilitates the flow of the gaseous fuel mixture by providing an opening through which the gaseous fuel mixture can pass. It is to be appreciated that the insert 100 may be provided without an aperture 162.
With reference to
Because the cavities may be positioned as a part of the cylinder bore 137, it is to be appreciated that the scavenging conduit inserts 100 may form at least a segment of the surface of the cylinder bore 137. Because the piston 135 is slidably engaged with the cylinder bore 137, the inserts 100 could provide at least a segment of the surface against which the piston 135 is slidably engaged.
The shown example of the insert 100 provides for a single port 142. In other words, the example shows that the insert 100 and the cavity of the cylinder unit 130 cooperate to define a single port 142 through which gaseous fuel mixture can pass. However, it is to be appreciated that the insert 100 and the cavity of the cylinder unit 130 may cooperate to define several ports, i.e., either the port 142 of
It is to be understood that the invention has been described with regard to certain example embodiments. For example, the scavenging conduit insert 100 is applicable to homogeneous scavenged internal combustion engines, stratified scavenged internal combustion engines, etc. It is to be appreciated that certain modifications, changes, adaptations, etc., are contemplated and considered within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4184462 | Hale | Jan 1980 | A |
5826567 | Sakaguchi et al. | Oct 1998 | A |
5881687 | Sakaguchi et al. | Mar 1999 | A |
6152093 | Sawada et al. | Nov 2000 | A |
6289856 | Noguchi | Sep 2001 | B1 |
6491006 | Jonsson et al. | Dec 2002 | B2 |
20020005180 | Jonsson et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
0 933 514 | Aug 1999 | EP |
0 933515 | Aug 1999 | EP |
0 971 110 | Jan 2000 | EP |
2000170538 | Jun 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040237914 A1 | Dec 2004 | US |